
Spatial Statistics and Spatial Econometrics
Prof. Gaurav Arora

Department of Social Science and Humanities
Indraprastha Institute of Information Technology, Delhi

Lecture - 6A
Entropy

Hello everyone, my name is Gaurav Arora and welcome back to the 6th lecture of Spatial

Statistics and Spatial Econometrics, before we go on to this lecture let us do a little recap of

what we covered in the last lecture.

(Refer Slide Time: 00:37)

As you can see on your screen we broadly covered two topics, in the previous lecture where

we formally sort of transitioned from data understanding of you know of spatial delineated

products to statistical formulations and statistical you know modeling of those data.

So, the first thing we did was broad steps in spatial statistics. So, you know the first step was

you know what is spatial statistics. Well, it is a science of uncertainty of spatial nature. So,

the first step was to measure or quantify disorder of spatial nature right. So, to quantify

spatial disorder and we talked about variance inter-quartile range and entropy being the

measures alternative measures that we will look at.

The second step was mostly about modeling or measuring spatial dependence, the third step

was from moving from correlation that is what of location delineated statistics to why in



explaining, why do we see the type of spatial trends we see, why do we see the kind of you

know spatial dependent structures that we see. And we ended the lecture with this

understanding of random functions with spatial delineations right.

So, we looked at what a random variable is and how does an understanding of random

variables, then translates into these jointly distributed random functions, where you have

random variables located at different locations in space and then those are moving together

bound by a density function called as the joint CDF alright.

(Refer Slide Time: 02:28)

So, in today’s lecture we are going to look at a measure of spatial disorder or spatial variation

known as entropy.

So, here on this slide I have a heading or a title called as, entropy, as a measure of variability

of a random process. So, we are look going to study entropy in general, from those of you

coming from you know statistics background and econometrics background, economics

background, might not have heard of entropy or might not have really studied it in detail.

However, those coming from engineering and physical sciences might have actually studied

entropy formally in your studies right. So, it will be interesting to first review entropy as a

measure of disorder and then take that understanding for a general entropy measure of

variation to entropy as a measure for spatial variation what we call as spatial entropy alright.

So, let us get started.



So, in order to understand what is entropy, let first suppose there are k states of nature alright.

So, these can be indexed by or denoted by i goes from 1, …, k alright and each state i each

state i occurs with a probability Pi ok. So, we have a probability measure for each state

occurring in this system a random process or random system that we are trying to study.

So, basically you know what we have is states 1, 2, 3, 4 all the way to k and then we also

have a probability measure attached to each state that is P1, P2, P3, P4 all the way till Pk right.

And given that these are probability measures they should you know they should follow some

properties that we know from our you know previous training in probability and statistics, but

we are going to still look at them.

Each probability i must lie between 0 and 1 right, for all i's that is 1, 2, k right and the sum of

these probability measures for all k states must be equal to 1 right. So, the probabilities must

sum to 1 and each probability entity must be between 0 and 1 right. Then having learnt that

having learnt that we can define entropy of the probabilistic system as under; so, we have E

as the entropy measure for the system equals minus summation i equals 1 to k, Pi that is the

probability measure times the log of P.
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𝑖=1

𝑘

∑ 𝑃
𝑖 
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)

So, it is a natural log that I am taking of Pi and you know times the probability itself right. So,

Pi times log Pi summed across all k states of nature and then multiplied by minus 1 is equal to

entropy this is the definition of entropy right. We have to be a little bit careful here first of all,

you know look Pi can take a value of 0, but then log of 0 is not defined right. So, we say

where. So, to account for that we say where x log x is defined to be 0 for x equals 0.

So, wherever you have probability being 0, that does not contribute to the entropy of the

system right. So, the state that does not occur does not contribute to the entropy of the system

that is the interpretation of the physical world that we get here. So, one thing we you know

we have defined entropy formally, but the system that we have worked with is a discrete

probabilistic system right. So, what we are working with is a discrete random process right.

So, this is a entropy definition for discrete random process ok, what if we had a nature where

states were continuous let us look at that.



(Refer Slide Time: 08:00)

So, let us call this a side let us call this a little aside so, that we can define entropy for the case

where the states of nature were continuous. So, now, you know the states of nature are

denoted by instead of i, is a continuous random variable which goes from theta lower barθ θ 

to a upper bar. So, there is a lower bound and upper bound and each state of theta right each

theta will appear or occur with probability density function f of theta right.

So, each theta state occurs with a probability density function denoted by f( which isθ) 

nothing but also the frequency with which each theta value will appear. Then, the entropy of

this continuous random process will simply be given by E equals minus. So, now, the

summation in case of continuous system becomes integral, integral that ranges from the

lowest to the highest possible value of theta, times f( which is nothing but Pi in case of youθ) 

know the discrete case and times the natural log of f( ok.θ)𝑑(θ) 

𝐸 =  −
θ

𝑙𝑜𝑤𝑒𝑟

θ

∫ 𝑓(θ)𝑙𝑛(𝑓(θ))𝑑(θ) 

(Note: in the above equation implies the lowest value of , in the slide “lower bar”.)θ
𝑙𝑜𝑤𝑒𝑟

 θ θ

So, now I have a formal definition of entropy for the case when we are working with a

continuous you know states of nature we are working with a set of continuous states of



nature. So, this is an aside we will still sort of you know work with this formal setting that we

began with. So, we are working with suppose there are k states of nature, each state given by

a index i, i goes from 1 to k right.

And for each state we have a probability you know of occurrence of each of that state i given

by Pi and for that then we define the entropy as minus summation i equals 1 to k Pi ln Pi ok.

𝐸 =  −
𝑖=1

𝑘

∑ 𝑃
𝑖 
𝑙𝑛(𝑃

𝑖 
)

So, with that understanding let us come back you know to our discrete case.

(Refer Slide Time: 11:03)

So, first of all when I have this idea that i could be 1, 2, k, Pi could be P1 to Pk and I have an

entropy measure which is minus summation i equals 1 to k Pi ln Pi right.

𝐸 =  −
𝑖=1

𝑘

∑ 𝑃
𝑖 
𝑙𝑛(𝑃

𝑖 
)

Notice, that the states of nature states of nature may have real world interpretations right. So,

it is not necessarily a mathematical entity these could be real world entities as well right. So,

what could be those examples I mean. So, i’s could be a set of commodity prices right. So,



you could have a commodity let us say let us say gold or you could have a commodity like

wheat or rice and for that commodity you have k possible price levels that appear in the real

world and each price level i can appear with the probability Pi right.

So, we can adapt this abstract mathematical notation to a real world understanding of what

might i be you know representing right. So, we will have set of k commodity prices with an

attached probability for each price level. These may you know as well, you know as a second

example represent population density, population density you know at various locations in a

city. So, I have kept the city to be constant.

Let us say we talk about national capital territory of Delhi or we can talk about Mumbai, we

can talk about Chennai, talk about Kolkata or any other city that you may be interested in.

Now, the population density can be considered as a random variable, you could have k

different possibilities of population densities for that given city which can be sort of you

know where do these k different possibilities come from. Well, it depends what location are

you know drawing this population density from, if you are drawing it from a you know less

part sparsely populated area.

Let us say near the airport you know an international airport you might not have that much

population density, but if you go to the city center you might have very high population

density right. So, all these population densities you know may occur with attached probability

right. So, they can occur let us say probabilistically it could be probabilistic ok.

Now, in that case, in that case right, we may be interested, may be interested in you know the

mean of this random process right. So, you know mean is the first moment of a random

process, if I have a range of prices for gold occurring with different probabilities, I might

want to know what is the average price of gold that I can expect right or like I might be

interested in the second moment you know what is the variance you know can I give a

measure of variance to the price of gold.

If I am comparing two different commodities, you know I might want to know which

commodity has higher variability in prices before I for example, I am trying to you know

invest in those commodities right. So, in that case you know the mean is given by mu which

is the first moment.



So, that would be expectation of i which is given as summation i equals 1 to k, i times Pi

right:

µ =  𝐸(𝑖) =  
𝑖=1

𝑘

∑ 𝑖𝑃
𝑖 

and if we and in case of you know use a different pen and in case of continuous random

variable mu will be integration integral of theta f of theta t theta where the integration is done

from the lower bound to the upper bound of theta right.

µ =  𝐸(𝑖) =  
θ

𝑙𝑜𝑤𝑒𝑟

θ

∫ θ𝑓(θ)𝑑(θ) 

(Note: in the above equation implies the lowest value of , in the slide “lower bar”.)θ
𝑙𝑜𝑤𝑒𝑟

 θ θ

So, this is a standard deviation of mean right, this is something we are aware from the basic

statistics you know a exposure right. The second moment that you may be interested in as I

talked about in a min a minute ago is called as the variance. So, variance sigma squared is the

second moment. So, it is given by expectation of i squared which is then given as i equals 1

to k i squared Pi right.

σ2 =  𝑉𝑎𝑟(𝑖) =  
𝑖=1

𝑘

∑ 𝑖2𝑃
𝑖 

And for the continuous case for the corresponding you know continuous case and in case for

the continuous random process, we can say sigma squared is nothing but integration theta

lower bar theta upper bar theta squared f of theta d theta ok.

σ2 =  𝑉𝑎𝑟(𝑖) =  
θ

𝑙𝑜𝑤𝑒𝑟

θ

∫ θ2𝑓(θ)𝑑(θ) 

(Note: in the above equation implies the lowest value of , in the slide “lower bar”.)θ
𝑙𝑜𝑤𝑒𝑟

 θ θ



Now, ok. So, ok just rely on the definition here ok. Having understood that now we know that

sigma squared measures sigma squared measures the amount or extent of variability amount

or extent of variability in the random process of interest ok. And of course, you know random

process of interest could be these examples like prices or you know population density,

whatever you deem to be you know interesting for your own research depends on the analyst

ok.

Now, the thing is that the interesting thing is that it turns out it turns out that E entropy and

variance sigma squared are closely related. So, what I am claiming the claim that I am giving

you here is that, entropy is an alternative measure of sigma squared if we speak

mathematically and you know more substantially you know entropy provide us provides us a

measure of variability of a random process just like variance would do that right.

And we will see this. So, we will see how this key information piece plays out for a for an

example distribution. So, I am going to go on to you know study this study for exponential

distribution in the next slide ok. So, let us talk about exponential distribution now and then

figure out how you know sigma squared and E might be closely related ok.

(Refer Slide Time: 19:49)

So, as a next step we are studying exponential distribution. So, what is exponential

distribution? So, we have a random variable x right, we always begin with a random variable



x and we say that this x is distributed with exp(lambda), what is lambda? Lambda is the

distribution parameter.

𝑥 ~ 𝑒λ

So, lambda where lambda is the distribution parameter ok and the density function f(x) which

is the frequency or the probability of occurrence of any given value of x, which is distributed

by an exponential distribution is given as lambda times exponential minus lambda x, such

that; x is greater than or equal to 0 and I have already said that lambda is the distribution

parameter. I mean alternatively I could have written this as lambda e to the power minus

lambda x right.

𝑓(𝑥) =  λ𝑒−λ𝑥     𝑠. 𝑡   𝑥 ≥ 0

You are aware that these are we are aware that these are equivalent expressions

mathematically. So, the real world instances so, how what good is exponential distribution,

why do we even care about it right. So, the real world instances that can be studied that can

be studied or modeled by an exponential distribution are entities like you know time interval

between hospital visits ok or you know visits to you know to a national park you know or

visits to a national park ok, or you know the visits for vacation right.

So, how frequently an individual takes vacation, an individual needs to you know visit a

hospital for getting some treatment or how frequently do they visit a given national park. So,

if you live around New Delhi we have Jim Corbett National Park and we can be interested in

modeling what is the time interval between two, you know visits between two visits to the

Jim Corbett National Park right.

That gives us an understanding of how frequently an individual is undertaking recreation and

then moreover you know whenever they take recreation undertaken recreation what is the

time interval you know with which they visit a particular you know national park right. So,

that to be able to model this time interval between visits for a particular kind or two events is

you know is modeled by the exponential distribution.

So, x per say, x per say this random variable x is nothing but the you know the time interval

between two events of interest right. We can have different interpretations here right. So, it



could also be time spent on cab rides between points A and B right. So, you can have two

interest points A and B, you can have it from let us say the railway station to your work

place, from the airport to the to the city center, something like that and during the day you

have different during different time you have different parameters like heat, pollution, traffic

congestion or availability of rides right and so on and so forth.

Which can you know basically deliver different time periods that I will take from me to go

from the city cities airport to the city center right. How do we model this time spent you. So,

these the time spent can take a range of values and each value that this time spent takes has a

given probability distribution, in order to model this we have this exponential distribution you

know device at our disposal right.

So, to define finally, so, an exponential distribution an exponential distribution provides a

probability distribution of time between events that occur independently. So, two events like

for example, rides from the airport to the city center they have to be independent right. So, it

is not it is not that you know I go to the airport and then somehow my second right is

dependent on what I did in my first right. So, the two rides are independent of each other

right and these are continuous events.

So, I must be able to you know observe them happening frequently right, it is not that they

only happen once. So, if it happens only once in a while or it only happens once forever then

you know exponential distribution will not be able to model it and they happen at a constant

average rate. So, there is some rate at which these rides are taken or the hospital wages visits

are taken or visits to national parks occur and this constant average rate is modeled by the

parameter lambda of our distribution.

So, this is a measure for the average rate at which this happens is given by is given by you

know lambda ok.



(Refer Slide Time: 26:39)

So, I mean what do we have eventually I mean we have x is distributed as exponential lambda

and; that means, that f(x) is lambda e to the power minus lambda x, such that; x is between 0

to infinity bound open.

𝑓(𝑥) =  λ𝑒−λ𝑥     𝑠. 𝑡   𝑥 ∈ [0, ∞)

So, x is greater than or equal to 0 and then we can write mu x which is nothing but the first

moment of this distribution which is nothing the mean of x.

µ =  
0

∞

∫ 𝑥𝑓(𝑥)𝑑(𝑥)  =  1
λ  

So, if you have time spent on a cab right from airport to city center, then mu x will be

interpreted as the average time that is spent on this you know on this ride from the airport to

the city center. This is given as 0 to infinity that is the that is the range of xf(x)dx this value

turns out to be 1 over lambda. Similarly, I can figure out the second moment 0 to infinity

x2f(x)dx is given as 1 over lambda squared.



σ2 =  
0

∞

∫ 𝑥2𝑓(𝑥)𝑑(𝑥)  =  1

λ2  

And you know that will imply that the standard deviation of x is nothing but the square root

of variance that is 1 over lambda.

𝑆𝐷 =  σ2  =  1

λ
 

So, the one of the properties or exponential distribution is that the mean is exactly equal to

you know standard deviation and they are both inverse of the average rate at which this event

is happening. So, the next step that we will do now, next step that we will undertake is to

calculate the entropy of you know of this system described by the exponential distribution ok.

So, now the entropy we know is negative of integration from 0 to infinity which is the range

of x, f(x) times ln(f(x))dx ok.

𝐸 =  −
0

∞

∫ 𝑓(𝑥)𝑙𝑛(𝑓(𝑥))𝑑(𝑥) 

So, as a next step we want to first calculate this entropy. So, calculate E and after that we will

be showing we want to show at you know E and sigma squared x are closely related right. So,

what we are trying to do is, we are trying to verify this claim, verify this claim, for

exponential distribution ok. So, what we will do is, we will stop here in this lecture and we

will go to the next lecture and we will start from calculation of entropy and showing or

verifying the claim that entropy is indeed closely related to sigma squared x.

Thank you.


