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Hello everyone. Welcome back to lecture 18 of Spatial Statistics and Spatial Econometrics.

We are going to take the lead from the previous lecture, where we relaxed one of the

assumptions of a classical linear regression model.

In the previous lecture, we relaxed the assumption that the model errors are homoscedastic.

And we introduced heteroscedasticity into the variance-covariance structure of model errors

through the spatial dependence on prices of homes for example or groundwater levels

etcetera, right?

In today’s lecture, we are going to sort of, we are going to take another step and we are going

to relax assumption A 2 which in lecture 16 we established as an assumption fundamental for

causal inference.

So, to be able to move from correlation to causation, we require that the expectation, the

conditional expectation of model errors is 0. That is expectation ui given xi is 0, where xi is an

explanatory variable, alright. And we also saw that that assumption is also important for the

unbiasedness of a least squares estimator.

So, in the previous lecture, what we studied was a generalized least squares, estimator.

Remember, that had got nothing to do with unbiasedness or causality. It was to reconcile the

heteroscedastic model error structure.
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𝐻𝑜𝑤𝑒𝑣𝑒𝑟,  𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑛𝑎𝑙𝑜𝑔 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑠𝑝𝑎𝑐𝑒𝑠 𝑙𝑖𝑘𝑒 𝑓𝑜𝑟 𝑔𝑟𝑎𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑑𝑎𝑡𝑎( ).

𝑇ℎ𝑖𝑠 𝑖𝑠 𝑤ℎ𝑦 𝑤𝑒 𝑠𝑡𝑢𝑑𝑦 𝑡ℎ𝑒 𝑛𝑜𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑙𝑦 𝑙𝑎𝑔𝑔𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠.

So, before we sort of move forward and directly deal with the problem of causal inference, let

us get back to specifying spatial dependence with the notion of spatial lags.

So, in the previous lecture, we had that is lecture 17, we had said that we could imagine a

classical regression model, a traditional regression model that we are used to where each

value of dependent variable yi has an index i. This does not only provide us an ID for whom

this value y is measured but also the location.

So, in that case, we could say you know y i, j which is equivalent to saying y at the

coordinates i comma j. So, this you know enrichment of the notation is explicitly to account

for spatiality in data.

And then if you have a regular lattice? What is a regular lattice? Well, a regular lattice is

where you have equal, you know you have equal-sized cells constructed by n rows and m

columns in general. That is a regular lattice.

That is to say that if I am considering the value of yi at givens any given cell, I will be able to

find its neighbor in the north, one step up equal size cell. So, you know if I take a step down,

that is southward, I will find another neighbor. Similarly, a neighbor on the east and a

neighbor on the west, right?

So, this idea can be notionally represented as what you have already understood. Shifting up

would mean yi minus 1 and j, right? Then, you have shifting down we are calling it yi plus 1 j.

So, i is representing the vertical direction, downward south is conventionally taken to be

positive. It is you know; it is defined that way you could have also had it and vice versa.

Similarly, shifting left will give me the same i, but it will bring my j down from j to j minus 1,

and on the right, I will have yi, j plus 1, right? So, all of you are conversant with this by now.

Now, the issue is that this is a very stylized type of spatial structure. The data do not always

exist in such nice niceties so far as the spatial structure is concerned. A very good example or



case in point is the groundwater monitoring data that we have seen throughout this course,

right?

So, we have seen that data for the state of Uttar Pradesh. So, if you, if you pay attention like I

am going to draw an approximate shape of you, know of that state and you know it looks like

something like as following. It is not to scale, not to shape, it is just an approximation, right?

And there when we look at the groundwater data, we saw a very dense cluster of wells on the

west and when we move to the south you have a generally sorry on the east, we have a

generally sparse model sorry monitoring network. And the monitoring network becomes

denser around urban areas, right? So, they are just our observations till now.

So, in that case, we do not have a nice representation of a regular lattice in the case of

real-world data. In that case, if you want to specify spatial dependence, we bring in the notion

of spatially lagged variables. So, we bring in the notion of spatially lagged variables.

𝐼𝑛 𝑜𝑟𝑑𝑒𝑟 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑙𝑦 𝑙𝑎𝑔𝑔𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑤𝑒 𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

𝑓𝑜𝑟 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑚𝑜𝑛𝑔 𝑡ℎ𝑒 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑢𝑛𝑖𝑡𝑠.

𝑇ℎ𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒 𝑢𝑛𝑖𝑡 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑠 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑎𝑡 𝑎𝑛𝑦 𝑔𝑖𝑣𝑒𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

𝑖𝑛 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎𝑠 𝑡ℎ𝑒 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐿𝑎𝑔.  𝐹𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒.
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𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠,  𝑤ℎ𝑖𝑐ℎ 𝑤𝑜𝑢𝑙𝑑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑟𝑒𝑚𝑎𝑖𝑛 𝑢𝑛𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑.

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦,  𝑛 𝑥 𝑛−1( )
2 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑖𝑛𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑢𝑡 𝑜𝑛𝑙𝑦 𝑛 𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠.
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So, let us go ahead and look at an example where we will try to construct these spatially lag

variables for groundwater data.



To construct spatially lagged variables, we formalize the local similarity for describing the

structure of interaction among the spatial units. So, that is a sentence that is saying quite

many things. So, let us break it down.

So, we have, we are talking about the structure of interaction among spatial units. So, what

are we trying to do? We are trying to describe a structure of interaction. And we are doing

that through this idea of local similarity. So, the fact that we believe in local similarity or

local stationarity, you know we are designating spatial neighbors as the ones which will also

provide a spillover effect on the value that is being measured.

So, the local similarity is in terms of the value observed, so the value observation. Value

observed or you know the groundwater level observed, the price observed, or whatever,

right?

We are describing it through the structure of interaction among spatial units. So, we are

saying that units that are they are nearby might have similar values. This is also the idea of

local stationarity, right? So, we are when we are constructing these spatially lag variables, we

are following up on the ideas that we have developed till now, right? So, we are now

formalizing it.

So, the quantitative unit that formalizes interaction with neighbors at any given location in

space is called spatial lag. Very very important. So, we are now introducing an entity called

spatial lag. It is an entity that formalizes interactions with neighbors for any given location in

space.

For example, I am looking at, I am defining a spatially lag groundwater level at location i. So,

I am going on to location I, and I am searching for its neighbors. So, some wells are located

near i, and some others are located farther away from i. But I am interested in the spatially

lagged value at location i.

Remember the groundwater level that is observed at location i is given as G of i. We are

trying to create a lag. So, we are somehow summarizing information about what is happening

around this location i. So, GiL, where L is a representation of the spatial lag is equal to wi, 1

G1 plus all the way to win Gn which is equal to summation j equals 1 win Gj, right?



I am able to provide weight to each neighbor. So, in case if for example, we have this

neighbor k which is far away, and we do not believe that this is going to have any spatial

dependence of groundwater level at k on what is happening at location i, then you know I can

conveniently say wik is 0. But that you know specifying it to be 0 or nonzero is another

matter.

The point of point that I am trying to make here is that this formulation of creating or

constructing spatial lags with the help of these spatial weights, you know allows me to

generalize the idea of neighborhood spillovers or neighborhood effects, right?

I do not have to go in and specifically figure out who has how many neighbors. I can at least

mathematically or notational provide a general formulation of what a spatial lag means. So,

spatial lag is nothing, but values in the neighborhood, values in the neighborhood, such that

they are weighted by a factor w i, j for the jth neighbor or the j unit which is a neighbor of i in

the given domain, right?

In this formulation, everybody is designated a neighbor, right? A unit that is approximate to i

is also considered a unit, and which is farther away from i is also considered a neighbor.

What differentiates these two units which are approximate or farther away is this weight w i,

j. And so, this nice you know representation j equals 1 to n w i, j sorry for the typo w i, j Gj

provides me a generalized formalization of the spatial lag effect.

So, if I am trying to understand what is the total extent of spatial effects on the groundwater

level at location i, I should study this spatial lag you know entity summation j equals 1 to n w

i, j Gj, right? Concisely we write as Gi capital L. This capital L is just a lag representation.

One thing to note here is that a location, any location is not set own neighbor. So, location i is

not her own neighbor; that means, wii will always be 0 for all i. So, wii will be 0 for all i.

Even though w ii is 0 my general formulation does not change. I can always for any i be it i

equals 1, 2, 3, 4, 5, n, I can use this formulation. The only matter to understand here is if I am

talking about the first location, location 1, location ID 1, then w11 will be 0. If I am talking

about location ID 2, then w22 will be 0, and so on and so forth.

So, overall constructing these spatial lags requires domain knowledge, right? But it

summarizes pairwise interactions which would otherwise remain unidentified. So, the spatial



lag is characterizing pair-wise interaction. So, i and j in a pairwise sense the way they interact

is summarized by the spatial lag. It is a component of the construction of the spatial lag

variable, right?

But constructing it requires domain knowledge. How and why? Well, what value should w i, j

carry? Should it be just 0 and 1? Well, should it be the nearer value should get larger, you

know a value of weights than the ones that are farther away? And how much? By how much?

What is the difference between different weights? Just because two points are equidistant to a

location i, will they have the same spillover effect?

Well, these are matters of complexities and that is why if you are working with groundwater

data, you know just like we have seen in the case of stationarity we require a lot of very

strong domain knowledge. Here too we require strong domain knowledge, right?

So, if you are working with groundwater data, it's best to work with a hydrologist. If you are

working with agricultural data, it is probably best to consult with agronomists and so on and

so forth.

If you are working with geological data, like cold exploration data or oil exploration data is

probably best to consult with geologists. If you are working with population density data, it is

probably best to consult with population scientists, right? So, whatever data set whichever

domain your data set belongs to, one should read up on the literature in that domain to do

justice in defining these weights.

Now, potentially you have n times n minus 1 by 2 pair-wise interactions, but only n

groundwater observation location. So, you have a lot of pair-wise interactions that you have

to worry about, right?

So, for every i, there are n potential neighbors. Of course, herself is not a neighbor. So, you

can remove it, but in this formulation, I am counting herself also a neighbor just because of

the general form that I am studying. Just because wii is 0, I am not keeping it out. I am just

saying you know because it is not her own neighbor, i is not her own neighbor, I can simply

assign or define wii to be 0, but then keep my formulation of GiL to be the same.

But potentially I have n times, n minus 1 by 2 which is much greater than n pairwise

interactions to study, right? So, if you have so many degrees of freedom, and probably so



many unknowns, so many parameters to estimate, then probably it is not going to be very

efficient.

I am also providing a matrix notation of the same entity here. So, I am calling GL a general

lag spatial lag matrix. I am not calling it GiL anymore. I am calling it GL is an n by 1 matrix,

so we can write this down, for our understanding.
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So, I am writing GL equals W times G. GL is considered to be n by 1, right? W is n by n and

G is n by 1. So, W is n by n and G is n by 1, right? So, I have a lag matrix. So, I have G1L, 2L,

and keep going GiL, right? G1L, G2L, keep going till GIL then I have finally, GnL.

This is an n by 1 matrix. This is equal to an n by n matrix of weights, so each row will

correspond to the location 1, 2, i, n. On the columns, I am looking for neighbors. So,

everybody is a neighbor to each other. The only thing is we have a weights understanding of

them, right? So, I have 1, 2, and keep going i, all the way to n.

So, columns are potential neighbors and rows are the entities for which we are trying to

search neighbors for. This is again n by n and then G is just the location, the column of values

observed at each location in my data set.

So, now w1 and its neighbor w11 which is going to be 0, we have learned that. Then, you have

w12, w1i, all the way to w1n. So, I have weights, like a row of weights sitting there as you

know w11. Then, I have for 2, w21, w22, w2i, all the way to w2n. Similarly, wi1, wi2, wii, win.

Then, wn1, wn2, wni, wn.

So, now I am multiplying n by n matrix by n by 1 matrix. As we have seen earlier, they are

conformable and perfect. The overall product will be n by sorry about that. So, they are

conformable because the number of columns on the W matrix is equal to the number of rows

on the G matrix.



And, If I multiply them, I am going to get an n by 1 matrix, right? Something we are very

well aware of. So, let us write it down. So, I have an n by 1 that I am looking for. So, the first

column is to be multiplied by the first row to find the first cell of this n by 1 matrix.

So, this is going to be w11 G1, w12 G2, w1i Gi plus w1n Gn. Similarly, the second one will be

summation i equals or j equals 1 to n, w2j Gj, right? So, I am simply going to multiply the

second row with the first column to get the second row of this n by 1 matrix. Similarly, I am

going to have j equals 1 to n w i, j Gi, and then finally, the last element will be j equals 1 to n

wnj Gj, right?

So, now I can see that GiL equals, the summation GiL equals summation j equals 1 to n w i, j

Gj which is the same as the scalar formation that we had seen on the previous page here.

So, by now I am sure that you are very conversant between scalars and matrices, scalar forms

and matrix forms of expressing the same linear equations. But you know it is very critical to

keep learning and keep improving our translation between the two devices. That is why I

decided to sort of you know solve this for you.

My request is that you please go over this on your own time. So, that it becomes absolutely

clear you know for your purposes, right?

As we go forward we are going to move to the matrix of formulation more and more because

the matrix is so concise, I mean you have this type of a bulky GiL equals summation j equals 1

to n w i, j Gj, such a bulky notation in scalar form for all I's going from 1 to n. All of these n

equations; so, you have n equations sitting here are summarized in this simplistic matrix

form, right?

So, matrix form, matrices are very useful, and very handy when we are dealing with bulky

notations. So, it is very important to learn to translate between scalar and matrix notations.

So, I request you to write it out in your own time, so that it becomes more and more natural

going forward.

𝑊 = 0 1 0 1 0 0 0 1 1 0   0 1 1 0   0 0 1 1        1 1 0 1 1 0 0 0 1 0   1 1 0 0   1 0 0 0   [ ]
6 𝑥 6 

𝐵𝑖𝑛𝑎𝑟𝑦 𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑖𝑡𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑚𝑎𝑡𝑟𝑖𝑥

𝑤
𝑖𝑗

= {0 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 1 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠         



So, the next step is to construct a spatial weights matrix. So, now we look at an example

where there are some spatial units, units 1, 2, 3 4 5, and 6 are assembled in a given spatial

structure.

What is the spatial structure? The spatial structure is such that 1 has is neighbors with 2, with

4, and with 5. So, 1 is a neighbor with 2, with 4, and 5. 2 is a neighbor with 1, with 5, and

with 4, right?

So, 2 is also neighbors with 1, with 5, and with 4. 5 on the other hand is connected with 1, 2,

4, and 3. So, 5 has 4 neighbors unlike you know 1 and 2, 5 has many more neighbors. So, 5

has you know 1, 4, 2, and 3 as neighbors. 3 on the other hand has only two neighbors, 5 and

6. 6 finally, has just one neighbor that is 3, right?

Now, this is a complex spatial structure. There are entities distributed in space, right?

Location is deterministic. It is not random. So, once you are located as a neighbor of 2, 4, and

5 that is what it is for you, right? So, if it is a home that is a large mansion at location 1 and it

is connected to these 3 different homes home 2, home 4, and home 5, then their location are

sort of fixed.

You can only sort of you know do as much to change the neighborhood of location 1, right?

So, this is the spatial constraint that is driven by the links that are exogenously driven. We do

not get to choose who is connected to whom. What we get to do is we get to summarize that

in a spatial weights matrix.

So, what does this spatial weights matrix do? First of all, you can see the diagonal elements

are 0, these are wii’s which are 0. So, home 1 or location 1 is not her own neighbor, location 2

is not her own neighbor, location 3 is not her own neighbor, and so on, till location 6 not

being her own neighbor.

If we have 6 different entities the size of the weights matrix is 6 by 6, we are working with a

6 by 6 matrix, right? Whenever we have a neighbor we provide a weight of 1 and if they are

not neighbors we provide a weight of 0.

So, if I go back to location 1, I figured that 1 has, 1 is a neighbor with 2, 4, and 5. So, at

locations 2, 4, and 5 in the columns, I have 1s and for the rest, I have 0s at 3 and 6, right?



Now, if I look at it the number of 1s that I find in rows, the number of 1s provides me an

understanding of how networked or how richly networked each location is. At an extreme is

location 6 which only has 1 neighbor which is number 3, right? So, 6 only has 1 neighbor, the

rest all are non-neighbors including herself, right? So, that is how a weights matrix is able to

concisely account for the neighborhood structure.
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Now, we do not use these weights matrices. We define them as the way we have seen them

till now. We assign an entity 1, if j is my neighbor, and 0, if j is not my neighbor, for each

row, for each i in my data I am going to do that.

But I then row standardize these weights. What does it mean to row standardize? It means

that each row must sum to 1. So, if I have a row with 3 1s and the rest are 0s, I am going to

multiply each of these by the sum of what is found on that row. So, each value of 1 is now

normalized by 3. So, it becomes one-third, one-third, one-third. Of course, the 0 is also

divided by 3, but 0 divided by 3 is just a 0.

If I look at number 5 it has 4 neighbors, right? Now, what I do is I sum the row I get 4, and I

divide the whole thing by 4. So, I get 1 4, 1 by 4th, one-fourth, one-fourth, 0, and 0 in that

row, in row number 5.

Similarly, if I go and look at row number 2, again I have 3 neighbors, overall for entity 2, I

have only 2 neighbors. For Entity 3, so I have one-half and one-half. I have 3 neighbors for

Entity 4 and I have only 1 neighbor for Entity 6. So, I have a value of 1, which is 1 divided

by 1, right? So, the W prime is known as the rho standardized weights matrix. It is called the

row standardized weights matrix.
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A question arises why do we row standardize these matrices? Well, to understand that let us

look at the following model.

This model is a spatial regression model. What is happening in this model is that I am

multiplying, I am modeling G which is an n by 1 vector as a function of a lag of G, right? So,

this is GL which is nothing, but again an n by 1 matrix, where W is n by n and G is n by 1,

right?

So, I am regressing G on GL, X which are some exogenous variables, and then also WX. So, I

am all not only spatially weighing the G values which is the dependent variable, but also the

experimental variable. This is a very general structure that I have put in front of you.

Now, this is going to be n by k. So, I have an n by k sitting here, right? And then I have the

model error u, which is going to be n by 1. The parameters rho G and rho X are called spatial

coefficients, or coefficient parameters. These parameters explicitly account for the spatial

spillovers, and beta is my model parameter as I am already aware of. It is a coefficient sitting

on each X value, right? u is just a model error. Everything that I did not account for in this

model will go into this u, u is going to be a random number.

The question that we are asking is, why do we require W to be row standardized? Well, what

happens is that you know I am trying to understand the impact of the lags, the spatial lag on

the value at location i. So, I want to know how much groundwater levels in the neighborhood

impact groundwater level values at location i.

In this, quest, you see in this formulation this impact will be generated from two pieces of

information. One is W and the second is G, right? What I am really interested in is this G and

not in W, that is to say, my quest as an analyst is not about understanding whether more

neighbors or higher connectivity causes groundwater levels to increase or decrease, but to

understanding what happens with the levels in the neighborhood on the levels at location i.



Because I want to connect groundwater levels with groundwater levels in a neighborhood, I

want to normalize the effect of the number of neighbors. I do not want the effect to be driven

by the number of neighbors.

In case I do not use you know, I do not standardize wi’s, then what happens is that just because

some entities have 4 neighbors this wi value sums us 4 times, right? And just because some

other entity has just 1 neighbor which is entity 6 in our previous example, they will have a

smaller spillover, just by the virtue of low connectivity.

Well, that is not what I am trying to learn here. I am trying to learn the linkage between

groundwater levels in a neighborhood on a location i, right? So, to filter out the effects due to

the degree of connectivity, I row standardize my spatial weights matrix. So, I hope that is

clear.
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Now, a property of this spatial lag is that it is similar to, but not the same as window average

in the case of time series data. So, I have an example of a time series of sales per quarter.

Now, the time series is just joining all the different realizations of sales in different quarters

starting from 1986 to 1996 for some entity, right?

The window average says go to quarter 3 of your quarter 4 of 1992 till quarter one of 1994,

right basically takes 6 quarters and sums everything between them. So, this scanner will

move step by step, this scanner will move one step here and it will look like the following at

you know at t. So, this will be for t plus 1.

So, now, this scanner just averages everything between these windows. And this window, this

moving average window is moving as we go along the time periods.

Now, spatial lag if you think about it is doing something similar. It is taking a weights type of

a spanner or a scanner side window average type of a like a window which goes through

every value whenever I am standing at a value i and it just takes average, which is a weighted

sum, which is weighted average.

The only difference is that here the value at the middle itself which is here in the case of this

time t and t plus 1, these things are not counted in the weighted average, right?



So, the value at the location at which we are conducting this weighted average exercise or

this window average exercise, that value itself is excluded in case of the spatial lag

construction, right? So, the fact that each location i is not her own neighbor means that the

spatial lag is not a window average. It excludes the middle value. It excludes the value at the

location where I am standing wherein I am conducting a local average.

𝐺 =  ρ 𝑊 𝐺 + 𝑋β + 𝑢
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𝑥
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1.Spatially lagged dependent variables (W.G)
● Spatial Lag (or autoregressive) Model

2.Spatially lagged explanatory variables (W.X)
● Spatial cross-regressive model or SLX model

3.Spatially lagged error terms 𝑊. 𝑒( )
● Spatial Error Model

{𝐺 = 𝑋 β + 𝑢 𝑠. 𝑡:     𝑢 =  ρ𝑤𝑢 + ε 

So, a little bit more into, you know just a little introduction before we will go into these

things. I just want to introduce some of these variables that are constructed for a regression

model.

First is called a spatially lag-dependent variable. Now, G being a function of rho WG, this

here is called a spatially lag-dependent variable. And this, when it is added to the model that

we are used to which is you know X beta plus u if I were to remove rho WGi will get a model

that I am used to.

When I include a spatial lag-dependent variable such a model is called a spatial lag model. It

is a specific definition, as it is a spatial lag model. Instead of rho WG, if I were to include X

beta plus rho X, W X plus u, then such a model includes spatially lagged explanatory

variables. So, now, I have lagged behind the explanatory variables, so I am saying the spatial

effects are coming from the explanatory variables.

So, in the case of house price data, the spatial effects are not coming directly from the prices

of the homes in the neighborhood, but from the number of rooms in homes in the

neighborhood or the public amenities for the homes in the neighborhood, right? So, I am sort

of you know going over the example that we covered in the last class extensively, right? In

that case, we call such a model the slx model or the spatial cross-regressive model.



And if instead we were to include these effects in the error structure such that u is rho W u

plus epsilon then such a model is called a spatial error model. Going forward we will go over

each of these models one by one. We will look at what they mean, what is the consequence of

including or not including these effects, how we choose between these models and so on and

so forth.

We will conduct that exercise. But for now, I just want because we have introduced spatial

weights I wanted to you know also introduce these 3 model variants of spatial regression

models.

So, that is it for this part of the lecture. In the next part of lecture 18, we will be looking at

what we started with as the departure from the classical assumption of causality that ensures

causality which is assumption 2 of a linear regression model. And we will see how we obtain

causal inference in spatial regression models.

So, thank you very much. And see you in the next part.


