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Welcome back everyone to the 16th lecture on Spatial Statistics and Spatial Econometrics. In

this lecture, we will make a formal break from spatial statistics and start to focus on spatial

econometrics. Within spatial econometrics, we will begin with what is called the Spatial

Regression Analysis.

Spatial regression analysis will provide us with an opportunity to conduct multivariate

statistical analysis. What does it mean? We will see in a minute, and we will sort of you know

kick off this module, we will do a review of the traditional regression analysis for all of you

who may not have seen or studied regression analysis earlier.

We will go over the basic material and I will sort of you know provide you references which

you can go back and read if in case you want to learn any of these subtopics in traditional

regression analysis in depth. We are not only covering this review of regression analysis

which is non-spatial in nature for just sort of doing a recap of it, but also this recap will

provide us with an opportunity to learn, where exactly spatial regression analysis departs

from regression analysis.

Just like in the case of statistics you know we always started with a traditional statistic and

then we found points of departure from there, right? So, we will look at crucial assumptions

of traditional regression analysis, we will study this pathway from correlation or association

to causation and also we will look at the impact of heteroskedastic errors on the least squares

estimator.

So, we will talk about these things if you have not heard of these terms, there is nothing to

worry about, but this is very crucial to also learning where spatial dependence shows up in

regression analysis. Then, we will move on from this non-spatial regression to spatial

regression, where we will look at the specification of spatial dependence, what are the

alternative ways of specifying spatial dependence and regression models.



Then, we will study the estimation of model parameters in the presence of spatial

autocorrelation or spatial dependence and finally, we will think about causal inference in a

spatial regression, right? So, we will review these things. Towards, the sort of last

sub-module within spatial econometrics will be about this idea of spatial lags to account for

spatial dependence.

It is a convenient specification for specifying spatial dependency regression models and it

allows us very powerful interpretations of how spatial spill over’s can impact the processes,

the random processes that we see around us in the real world.

Within that we will talk about something called a spatial weights matrix, we will look at some

of these spatial dependent summary statistics specifically Moran’s I, the Geary’s C which is

based on the definition of this spatial weights matrix, and then we will study regression

analysis in presence of spatial lags and finally, we will introduce hypothesis testing we will

ramp you up and then of course, there is a large literature to be explored at your own time,

ok.

So, let us get started with a review of regression analysis, alright. So, when I do that, you

know what I want to do is I want to sort of start with a mathematical formulation of a

regression model and also a graphical representation of a regression model. So, among the

regression you know regression within regression analysis, we have something called the

simple regression, simple linear regression model, ok.

The simple linear regression model goes as follows it is y equals beta 0 plus beta 1 xi plus ui,

where i grows from 1 to n. So, we have a data set of yi’s. These yi’s could be you know

groundwater levels something that we have looked at quite extensively throughout this

course, but also we could now sort of, think of something a newer example let us say the

price of homes, right?

I mean when we started this lecture series we studied or looked at these you know spatial real

estate phenomena for the National Capital Territory of Delhi. And at the time, I had said that

we want to be able to explain what goes into this phenomenon as it comes up in space as it

shows up in space, right? So, from that standpoint going forward in this module we will take

the example of you know home prices.



So, let us say we take an example let us specify an example of home prices or house prices.

So that means, that yi is defined as some price value of a home ith home in a given community

or in a city or a state or whatever ok; and we have n such homes tool study and these homes

as we view them, the prices of these homes as statisticians and econometricians, we are going

to view them as random processes, right?

So, we are going to say that yi or let us say we can say Pi is represented by a probability

density function f of Pi right? it could be a normal distribution, it could be anything. If it is a

parametric distribution you know you will have a parameter the density parameter you know

f of theta, right? But, the idea is that Pi can take multiple values, right?

Each home each ith unit of analysis can take multiple values as far as their price is concerned

and it is going to be drawn from this PDF f of Pi, right? So, there is some variation in the Pi’s

and the regression model that it wants to do it, wants to explain this variation using a variable

xi, right? So, yi by itself is called a predicted dependent you know or a response variable.

We want to explain the variation that is you know the PDF that is the true PDF you want to

explain it is properties using a covariate xi, right? Now, when I said covariate all I meant was

xi by itself is called an independent variable, it is also called an explanatory variable right? it

is a variable that explains variation in Pi or yi, right? It is also called a predictor variable, it is

called a control and it is also called a covariate of yi, right ok, alright?

So this particular portion of the regression that is beta 0 plus beta 1 xi if you realize it is a

systemic source of variation in yi right? it is a systemic source of variation in yi. Why is it

called systemic? Because it is a tangible source of variation. So, if xi varies a little bit more Pi

will vary a little bit more, but I can measure that change, right?

I can observe and measure xi, I have data for xi just like I have data for yi, right? So, what

would be a good example of you know xi, xi would be you know a property of the home let us

say how spacious it is. We can include an index of the spaciousness of a home or a house by

looking at the number of rooms in that house, right? So, we can say xi is the number of rooms

in house i, right?

So, that means, we can say this is Ri, right? So, we are writing a model where we are trying to

explain variation in Pi using a separate variable Ri, right? So, there is a systemic portion, a

systemic component of variation that is you know going to be the one which is our modelled



variation, right? And what remains, which we could not explain through xi is called the model

error which is called the disturbance or error term, ok.

This is a random source of variation, right? Now, a random source of variation is critical to

regression analysis, right? Why is that well, it is because the way I sort of articulated, we say

ok as an econometrician if someone tells me can you explain the variation in Pi in a given

community? why are some homes of less price, why are some homes of a high price you

know and so on and so forth?

Why do we see the type of spatial data patterns or simple non-spatial data patterns in terms of

why are all homes you know in the world not priced equally? Well, you know it can then be

explained by a systemic portion, but as an econometrician, I must view the prices of homes as

random variables. Now, where is this randomness going to arise from in my regression

model, it is going to be embedded in this term ui, right?

Whatever is xi that is the number of rooms in a home that is you know that variable is

non-stochastic or non-random in nature? When I say that a home has 4 rooms or 3 rooms, I

do not mean that it is 3 plus minus 2 right? I do not mean, it is 4 plus minus you know 0.2,

right? I mean 4 exact 4 rooms when I say Ri equals 4. So, that is you know a degenerate form

of explaining the variation in Pi, right?

And the source of randomness is this disturbance or the error term which my model could not

explain. So, we cannot be perfect in explaining every real-world phenomenon, right? So, in

that spirit, you know the regression model has two components one is called a systemic

portion which is the modelled portion. The modelled portion has an independent variable and

it has what is called the model parameters, right?

In this case, we have the intercept that is beta 0 and we have the slope that is beta 1. Why are

they called, what they are called let us look at that term below, ok. So now, let us

conceptualize these data. So, we have a data set which comprises columns Pi and Ri. So, I

have data, right? So, I have prices for let us say, I have is or the ids of homes and I have let us

say data for 1000 homes where I have for each home a price level Pi and a corresponding

number of rooms or the space over which this is built.

Let us say indexed by R i, ok. Then with these data, I can definitely conceptualize the scatter

plot of Pi versus Ri. Let us say that the scatter plot for these 1000 data points looks like the



following. Of course, this is not a perfect plot, but I am trying to try and plot it, ok. So, let us

say the number of rooms could be 1 could be 2 could be 3 could be 4 could be 5 could be 6,

lets us say maximum there are about 8 rooms homes there are huge homes that we are

looking at.

Now, what a regression is doing. The systemic portion of the regression is saying that this Pi

can be explained by a real line a real number line which has an intercept of beta 0 and a slope

of beta 1 right? this is a regression line, right? But, for every given xi let us say when xi
equals 3 if I go and look at the graph you know the model will give me beta 0 plus beta 1

times 3 as the systemic component of Pi.

This is the modelled version, the regression model version of Pi. The true Pi, however, is not

the same, the true Pi for this one lies either here or it lied you know here. In that case, this

distance between the truth and the modelled version is my error representation, ok.

Remember also that here beta 0 and beta 1 are data-driven you know understanding of what

the intercept and the slope should be.

So, if I have data-driven representations, I use this terminology hat, ok. If I estimate or

predict these parameters you know to be predicted or estimated you know, once I estimate

them using the data, the intercept and the slope are called beta 0 hat and beta 1 hat, because

they are no longer the true model, they are no longer the parameters of a true model.

But they are the data-driven you know estimates of what beta 0 and beta 1 would be if I were

to believe that yi is indeed going to follow the true model that I have specified as an analyst,

ok. So, this gives you a gist of what a regression model is it. At the end of the day, it is a

linear regression equation, right? when I say linear it means linear in parameters, right?

If I were to include xi squared here it will still be a linear regression model, because it is

linearity between ys and betas the model parameters and the dependent variable. So, the

linearity is not between y and x in a linear regression model ok, it is very important as a

review you know from a review point of view ok, alright? So, this gives you a gist of what a

regression model is, how it views the world, and how or what are we trying to really explain

here.

We are trying to explain the variation in prices that we view in real-world data sets, the fact

that all these prices are different for different homes, can be ideally unique for each home.



But, then what explains this? Well, one thing that could explain is how big is the home that

we are trying to price in the market, right?

So, that is the way to sort of conceptualize it, there is a regression equation, the regression

equation has a systemic portion a non-stochastic portion and a stochastic or a random portion

or a component, right? So, ui is random in nature, at every xi, ui can be a different value,

right? And the fact that yi was viewed by an econometrician as a random variable is contained

in this error term which is ui.

So, a part of it is deterministic fine, but a part of it which remains, which I could not explain

with xi is you know explained by ui which is the error term, but the error term is random in

nature, right? So, that is the basic premise of a regression model. Now obviously, the linear

regression model is a bit restrictive you know it only has one regressor now.

The price of a home is not only explained by the number of rooms. It is also explained by

things like amenities around right? Pub, number of parks in the community, right? What is

the quality of schools you know in that community? What is the state of public infrastructure

roads and you know crime control or kind of security safety and so on and so forth in that

community?

What is the access to a local market for the convenience of residents of that community?

Many factors drive how a home is priced eventually in a market, right? Now, a simple linear

regression model is one which only has one covariate in this case it is xi or Ri if yi is Pi, right?

Now, you know to be able to relax this restriction we have what is called the multiple

regression model, ok. Now, you know the multiple regression model allows me to include

more than one covariate, that is it allows me to include you know a general number of many

covariates as many as one analyst thinks that will explain the variation in yi ok; again ui has

the same representation, right?

So now, you have, your systemic component is more complicated right, but the error term is

still you know exactly the same. Although it is real-world formulation will be different,

because now when we included only 1 xi let us say x1i what we did was we put all the other

xi’s x2 to xk into ui.



When we included x2 to xk now ui has whatever is not included from x1i till xki, right? So,

whatever we exclude from the regression you know simple linear regression, it is all in ui,

right? Now, obviously, you know it is a multiple linear regression model because the linearity

is between y and all the betas. So now, if x2i was for example, x1i squared and xki was let us

say x1i you know to the power k, then you know you will still have a linear model, right?

It does not matter how non-linear is the formulation of x, but what matters is you know the

fact that the model parameters are still linear in y, ok.

So, that is a note, alright. The other thing that I want to sort of talk about, going forward is

that a regression model links the mean value of yi which is the dependent variable with the

mean value of xi which is the covariate. What does that mean? Well, that really just says that

let us say I begin with my simple linear regression model SLRM, I have yi equals beta 0 plus

beta 1xi plus ui.

Now, if I were to take an expectation on this you know on both sides of this equation, I am

going to have the expectation of yi equals the expectation of beta 0 plus beta 1xi plus ui. Now,

the expectation operator is a linear operator so it will start entering and applying to each term.

Here beta 0 and beta 1 are constants, they do not vary at all even across i as they do not vary.

So, I have beta 0 plus beta 1 expectation of xi plus the expectation of ui. Now, the expectation

of ui is assumed to be 0 without loss of generality, I will just come to what it means by this

assumption of without loss of generality, but the idea is that now what you see here is that the

equation.

Once we assume the expectation ui to be 0, this equation is really linking the expectation of yi
with the expectation of xi which given the n values are nothing but the sample average of ys
and the sample average of x. So, what happens is that at the end of the day, a regression

model is a model on the mean, right? It is linking the mean value of xi with the mean value of

yi, ok.

Now, it can happen for you know, if I go back to my graph, what is happening is that this x

regression line is nothing but the expectation of Pi, the expectation of Pi equals beta 0 plus

beta 1 now these are hats these are data-driven slopes and intercept right beta 1 hat

expectation of Ri, right? That means, that the average of you know Ri. Let us say the R bar

wherever it touches this line will also refer to the y bar value.



And all this is doing is that at every point in xi on xi, I am actually going and figuring out

what is the average y value, ok. So, it is a model on the mean, if I keep xi as you know

variable then, it will be y bar to be figured out at every xi. Otherwise, the y bar and x bar will

pass through a regression line, right? Now, so this is the representation of a regression.

A regression line is a model of the mean values of an estimator of the dependent variable and

the independent variable. Now, while we explained this, we introduced an assumption right

away on which we had the definition of the regression line is based. The fact that a regression

line is a model on the mean depends on the expectation ui to be equal to 0. And I have said

that we are calling this a without loss of generality assumption, so what is a without loss of

generality assumption?

To move forward, I am going to start talking about the crucial assumptions of a linear

regression model, ok. So, the first assumption that we are going to talk about is the

expectation ui equals 0 which I am calling a without loss of generality assumption when beta

0 is included in the linear regression model.

That is to say that, when the intercept is included then, the expectation ui equals 0 without

loss of generality assumption what does it mean? So, let us sort of see what it means. So, we

have yi equals beta 0 plus beta 1xi plus ui. Now, the expectation of yi equals beta 0 plus beta 1

expectation of xi plus the expectation of ui. Now, say that the expectation of ui is equal to a

bar.

Note or notice that as long as beta 0 is included we cannot differentiate between it is self and

a bar right? we cannot differentiate between beta 0 and a bar, right? So, if we assume a bar

equals 0 then, you know any and all of the impacts of this assumption were not true. Let us

say we assumed a bar equal 0, but it was non zero all of that impact will be captured by beta

0, right?

If indeed this was in the non-negative number you know you could simply think of beta 0 as

beta 0 plus a and then, you can write expectation of ui equals 0, right? So, then you know any

and all of its impact will be captured by beta 0, even if it were you know even a bar was

non-zero. Hence, the expectation of ui equals 0 is known as a without loss of generality

assumption, ok.



Now, you know we can represent this assumption in vector format. So, we can see that now

so, A 1 in vector form is written as an expectation of u equals 0. So, u is now a vector which

is n by 1 size, because we have ui’s going from u1 to un. So, this is a column vector just like an

Excel sheet column going from u1 u2 all the way till un. Similarly, the 0s are also n by 1.

Now, I can rewrite this as an expectation of u1, u2, and u3 all the way till un equals 0 0 0.

Now, the expectation is a linear operator just like, just enters the vector as if it were a

multiple lambda right? it is just like if it were a constant lambda. It would simply enter and

what will happen, will apply to each element of this vector.

So, this means I am talking, what I am saying here is an expectation of u1 and expectation of

u2 to keep going till expectation of un all of these will be 0s, right? So, all I am saying is that

expectation ui equals 0 for all I going from 1 to n ok, now that is it. So, from here to here

what I am using is that expectation is a linear operator we have used this property earlier in

this course as well, but I hope this will make things very very clear.

So, this is a first crucial assumption of a linear regression model. Thankfully when the

intercept is included this assumption is a without-loss of generality assumption.

So, let us move on to the 2nd and perhaps the most crucial assumption of the regression

model, right? I am going to call it the most crucial assumption and we will see why in a

minute. I am going to write down this assumption as the expectation ui has given xi is 0. What

this means is that not only overall the error should you know the sum to be 0, but for every

given xi the errors must sum to 0, right?

If I go back to my scatter plot between Pi and Ri right? if I go back to my scatter plot let us

say I have again 1000 homes, I have my data you know and I am simply going to now draw a

regression line. I know this regression line is on the expectation of Pi given Ri which is

nothing but beta 0 hat beta 1 hat Ri, right?

Now, obviously, for every value of Ri, the model is suggesting that there is a level of you

know Pi, but this is nothing but the expectation of Pi given Ri you know let us say Ri equals R

tilde; now this will be R tilde, right?

But for every Ri, you have to understand that there is a predicted value and there is truth; now

the truth can be different. So for example, the truth is here and the predictive value is given



by the green dot. The distance between the 2 is the error of the model it is that model error,

right? So, every data point and it is the distance from the regression line actually represents

an error.

Now, this error is sometimes positive, it is sometimes negative. The assumption that

expectation ui is 0 is basically saying that when I sum these errors throughout my sample, my

scatter plot will sum to 0, that is A 1, which is assumption 1. Assumption 2 is a bit more

restrictive. Assumption 2 is saying that for every value of Ri that I can find my data for there

is we can we will have the expectation ui equals 0.

That is to say, there is going to be an error, where the predicted value is an underestimate of

the truth, but there is also an equivalent value of the truth where the predictive value is an

overestimate of the truth. In a way that this underestimation over estimation they actually

cancel each other, ok. That is what this second assumption is trying to you know trying to tell

you.

Now, you know what it means? well before I go on to what it means mathematically let me

just say that this is a crucial assumption for causal inference. So, the impact you know just

because I have written yi equals beta 0 plus beta 1 Ri plus ui just because as an analyst I have

decided to put y Pi on the left-hand side and Ri on the right-hand side does not mean that you

know the directional relationship is from Ri to Pi, right?

Equivalently I could have just flipped the model and put Ri on the left-hand side and Pi on the

right-hand side. Does that mean that you know the price impacts the number of rooms, did

the market price come before the number of rooms well no it did not, right? Now, how do you

decide the directionality, you know how you decide the impact that you are seeing is indeed

from Ri to Pi, right?

To be able to say that the assumption in front of your screen is needed, right? If the

expectation ui given Ri is not equal to 0 beta 1 is not providing a causal impact of Ri on Pi it is

merely a correlation or association between Pi and Ri, ok. So, if I were to just look at a

correlation metric and not even specify a regression I would have been fine, right? The pain

that I am taking to come to the regression analysis or regression modelling is to be able to

work with this assumption which is expectation ui given Ri equals 0, ok.



Now, let us see how this assumption you know mobilizes causation. Now, so, let us write

down our model of interest Pi equals beta 0 plus beta 1Ri plus ui. Now, beta 1, beta 1 is

nothing but del Pi by del Ri. As an interpretation beta 1 as an English interpretation beta 1

provides a measure of an increase in Pi upon a marginal change.

Remember marginal change means, the delta change in Ri in Ri right? That is Ri goes by a

unit 1 well we are talking about the number of rooms. So, you know you cannot have half a

room or a 1 4th of a room or 1 8th or 3 8ths of a room. If you have another room you have

another room, right? And this relationship will hold at all levels of Ri, right?

It does not differentiate if I am going from a single-bedroom apartment to a double bedroom

or 3 bedroom or a four-bedroom and so on and so forth. This specification Pi equals beta 0

plus beta 1 Ri provides me with a beta 1 change in Pi upon a 1 unit change in Ri. Now see that

the above interpretation crucially relies on the assumption that expectation ui given Ri is equal

to 0, right?

To be able to see that let us say you have Pi equals beta 0 plus beta 1 Ri plus ui and Pi tilde

when Ri goes from Ri to Ri plus 1 and I have a new error variable ui tilde, right? Then, Pi tilde

minus Pi is attributable, this change is attributable only to Ri delta Ri equals 1 if ui tilde minus

ui is equal to 0. That is to say that the error term is the change in error when we move on from

a smaller house to a bigger house nothing changes in ui.

Nothing changes in this unobserved uncaptured error term of the regression model. If indeed

you know, if you had a situation where ui minus u tilde is not equal to 0, then we cannot say

that this change in Pi tilde minus Pi is not attributable solely to delta Ri.

Rather it will be confusing where is it coming from, is it coming from a change in rooms or is

it coming from that unobserved factor sitting in ui. Now, the question is what would be that

unobserved factor? Let us continue that in the next part of this lecture.

Thank you.


