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Lecture - 14B
Variogram Model Fitting

Welcome back, we are now going to study Variogram Model Fitting. So, the idea in
variogram model fitting is to search for a valid variogram that is closest to the spatial

dependence in a given sample data set.

So, what we have to start with is really a given sample data set. So, let us do that. So, we
represent our sample data as a vector Z which is equal to Z at location S,, Z at location S,
and Z at location S;, and keep going till location Z at location S, right. Where location you
know points S;, S,, till sn are my spatial entities at which I have sampled the data,

everywhere else I have not sampled the data.

So, now you know so, this vector is all these values contained in this row vector transposed;
that means, that Z by itself is a column vector. So, it is a vector of size n by 1 that is to say
that Z really looks like an Excel you know a column in an Excel sheet where you have values
spread out as you know along the cells in a column right? So, this is just to give you an idea

of vector notation which is not really very difficult right?

So, next, you know let us consider the family the family of isotropic linear variograms right?
So, we are working with isotropic linear variograms; that means, my lag vector h is diverse
only to the extent of distance that it represents, in each direction the data that I am working
with is going to exhibit the same spatial properties right. If the data were anisotropic then

direction too would have become as important as distance right?

So, then if I were to do a North-South lag of 100 meters it will not give me the same spatial
dependence structure as the East-West you know lag of 100 meters right? In our case when
we study isotropic, direction really becomes you know a uniform representation of the
process in all directions right? So, the direction is not really the entity of lag, it is really just a
distance just to make my own life easier and also to restrict ourselves to the scope of this

course right? We are not working with the isotropic data. So far this course is concerned.



So, we have seen this family previously it is called 2 gamma such that gamma h is equal to C
0 plus b h such that C 0 is greater than or equal to 0 and b is greater than equal to 0. With this
family of linear variograms, our aim is to choose from the above family or set of variograms,
the parametric model that is closest to the real-world situation or that is closest to the data
that we have, that is we want the set p of 2 gamma such that 2 gamma h equals 2 gamma h

and theta right?

And this theta lies in a definitive parametric space, it is just the space in which theta can
move right? Theta cannot be arbitrarily anywhere it is supposed to be lying within a given set

you know this capital theta ok.

So, for the linear variogram, this theta is really a vector by itself which contains C 0 and b,
and ultimately the problem boils down to choosing parameters C 0 and b C 0 and b such that
you know 2 gamma h theta fits right, fits well to the given sample data set ok. Now, you
know we need to understand what does it mean? and what will it take to fit a good model to

the given data set right?

So, for a fitting, the best model for fitting the best model on a variogram cloud, remember we
always have this cloud from the experimental variogram right and we are trying to fit a model
onto it, we will need an assumption on the distribution of spatial data right? So, as
statisticians we view the world as a sequence of random processes, as spatial statisticians, we

view the world as a sequence of random processes in space, right?

So, we need an assumption on the distribution right I mean. So, random processes will have
specific distributions and we need to specify a distribution. So, what we need is for these
values Z we need to be able to specify a CDF from which these values are being drawn, not
only that the CDF representation F of Z will also provide us a property of how the values are

connected in space right in a modeled sense.

Usually, F Z is assumed to be Gaussian, what does it mean when I say F is assumed to be
Gaussian that is it is usually assumed to be normally distributed you know random variable or
a random function, why? Well, because as we will see it, allows us to specify in nugget effect

right?

We have seen that you know the nugget effect is usually considered white noise and that is

why a Gaussian assumption on F of Z will allow us to specify a nugget effect, which is then



very important to estimate an unbiased variogram, which then allows us to estimate an
unbiased variogram ok. And the second thing that we will be needing to fit this best model is
a “goodness of fit” criteria, I need a judgment device to figure out what is the best model or

what is a better model relative to an alternative right? so, we need criteria.

In the case of regressions, I hope most of you have seen a regression model even if you have
not, [ am sure you must be aware of this statistic called R squared, R squared is a goodness of
fit criteria right? There are multiple alternative goodness of fit criteria out there we will need

such criteria to figure out what is the best model variogram for the real world ok.

So, we will now go over each algorithm that we have introduced. So, the first one was called
the maximum likelihood estimation ok. Maximum likelihood estimation relies crucially on
the Gaussian assumption on F of Z. Now, the process of maximum likelihood estimation aims
to recover a parametric variogram model by exploiting the variance-covariance matrix of you

know data in a spatial domain right?

So, let us write down the process of M.L.E, M.L.E which is an acronym for maximum
likelihood estimation the process of M.L.E aims to exploit or use you know recover a
variance-covariance matrix or structure of a spatial data set to provide an estimate of the

variogram ok.

Now, to see this process let us begin with a case where the data are independent. So, with a
no spatial dependence case right? So, we will start with the case which is simplistic and will
have no spatial dependence. So, we will conduct MLE on it and then we will introduce spatial
dependence to the structure. And then we will see how you know MLE will work to provide
MLE an estimate of the parameter vector theta and hence a parameter model, variogram

model you know 2 gamma h theta.

So, we are given a sequence of data, what is the sequence of data? It is Z,, Z,, Z;, keep going
all the way till Z, ok. We define this as a vector Z ok again the data vector is a column vector.
So, it is a n by 1 vector right? So, it is like you can imagine an Excel sheet and a column of

cells where these data are recorded.

Now, remember we are given a sequence of data we have said that to do any analysis in
maximum likelihood we need the Gaussian assumption right. So, it is the first crucial

assumption that I must take that is we are going to say Z; are iid that is independently and



identically distributed as normal mu comma sigma squared. So, they are normally distributed

with mean mu and variance sigma squared right.

Now, in this formulation I am going to do a little aside you know I could set if I set mu as let
us say X; beta where X is a vector of size 1 by k and beta is a vector of parameter k by 1
right? That is all I am writing here beta 1 x 1 1 plus beta 2 x 2 i plus beta k x k; then I am
basically providing a setting that looks like a regression model right? So, then this setting
would resemble the MLE or the maximum likelihood estimation of the following regression

model which is Z; equals beta 1 x 1 1 beta 2 x 2 1 beta 3 x 3 1 plus u;.

So, in this regression model, I have a systemic portion a systemic component, the systemic
component is the one which can provide you a systematic you know how is the variation in Z;
explained by systematic factors x, till x,. If Z; were groundwater data x; might be rainfall, x,
might be the amount of discharge, x; might be something like industrial demand, you know x,
might be something like groundwater management policy which restricts the let us say

number of electricity hours on a farm which draws groundwater and so on and so forth.

It could be the price of water, it could be alternative sources of water, it could be aquifer
properties and so on and so forth. These are observed physical and social and economic
factors around us that can explain how groundwater values would actually evolve over time
or space right? These systemic components provide me a portion of the variation in Z; that [
as an analyst can explain by choosing Xx;, and then estimating betas in a linear coefficient
form attached to each xi right? However, groundwater values are likely to be more complex

in the way they evolve over space that is how the change by 1.

The fact portion of the variation in Z;; over space that I cannot explain is captured in this
residual or error component. This is the component of groundwater variation that I as an
analyst cannot explain through this model right? The model is linear, it is restrictive, it could
be highly non-linear right, one of the x;; x,, could be squared or I could include them in
square root. I could even multiply x, and x; and include that as a separate variable, I do not

do any of that it is a simplistic model.

Again it is a model, it is an imperfect representation of the real world, but it provides me with
a lot of information that is generalizable across space right. Because it is an imperfect
representation there is a component, which remains you know as an error component and

rather it is a random error component ok.



If I were to instead of mu if I were to say Z; is iid N; beta I am basically talking about a
regression model right? So, we will work with the sequence such that its mean is just mu, but
you should be aware that we could just simply extend this formulation to a regression

framework.

So, given coming back to our problem that Z; is iid N mu comma sigma squared. The
likelihood or probability likelihood of observing Z; in the given sample is given as f which is
the PDF of Z; this is the continuous PDF representation and the parameters mu and sigma
squared this f value is given as 1 over square root 2 pi sigma squared exponential minus half

Z; minus mu over sigma the whole squared.

The right-hand side mathematical formulation comes from the specification of a normal
distribution, it represents a normal distribution, but given the value of Z; once I know my Z;
value I can actually back out the probability or the propensity of observing this value in my
sample what is the chance that I will observe let us say Z; equals 5 given parameters mu and

sigma squared right, this functional form will provide me that chance of observing each Z; ok.

Now, after having learned the probability of observing a particular Z;, I want to now figure
out the likelihood or probability of observing the entire sample. So, if I have the probability
of observing one Z; one of the Z;, what is the probability of observing all the Z;,, at once, the
sequence Z,, Z, through Z,. Remember each Z; that is Z,, Z, is simply a random draw from

this normal distribution.

So, the fact that I have a particular sequence of n values itself is an instance of chance right
and I am trying to figure out what is the probability of observing the sample itself given that
each Z; is iid normal mu sigma squared. So, what I am after is f of Z,, Z,, Z; all the way till

Z., I am looking for the probability of the sequence of data given mu and sigma squared right.

Remember I had said that these Z values put in a column vector can be defined as a vector Z
of size N by 1. This Z is going to be distributed according to a multivariate normal of size mu
and sigma squared, now because I have a Z vector of different Z;,, each Z; has an attached

mean mu to it.

So, an N by 1 vector of Z., will have a mean N by 1 attached to it, for variance a N by 1
vector will have a variance-covariance matrix of size n by n right. So, then sigma squared

which is a scalar is not enough I need an identity matrix to be attached to it which is let us say



sigma squared I n, I should be working with smaller you know n values. So, let me just make
that correction in a minute n by 1 n by 1, and then n by n by multiplying sigma squared pi an

identity matrix.

By doing that what I have really done is what [ am saying is that the column vector Z,, Z,, Z;
all the way to Z, is distributed normally according to you know with a mean vector of mu mu
mu of size n by 1 and a matrix n by n matrix having the diagonal values being sigma squared
and off-diagonal values being 0 suggesting that the covariance between any of the Z; is 0,
which makes sense because you are working with no spatial dependence in data we are

working with identically and independently observed data.

So, off-diagonal elements will be 0, when we introduce spatial dependence to the data we are
exactly going to change the fact that the variance-covariance you know that is the

off-diagonal elements of this covariance matrix is no longer going to be 0.

So, I have a n by 1 vector normally distributed iid with n by 1 mean vector and a n by n
variance-covariance matrix, where the off-diagonal elements are 0 because I am working with
the iid which is independently drawn distributions from the same you know which is the

same distribution normal with the same mean and variance sigma squared across all Z;,.

Now, when I write this when I get back to the problem that I am trying to solve is that [ have
to figure out what is the, I know f Z;, I want f of Z vector which is all the values in my data
sequence. This is going to be given as mu comma sigma squared I, is equal to f of observing
the first Z, times observing Z, conditional on sorry observing Z, condition on the fact that I
have observed Z, times, I have the probability of observing Z; conditional on the fact that I
have observed Z, and Z, keep going all the way till observing Z, condition on the fact that I

have observed Z, minus 1, Z, minus 2, all the way till Z, ok.

Now, the fact that we have an iid assumption, so, given the iid assumption what happens is
that the conditional density is equal to the marginal density. That is the probability of
observing Z, does not depend on what Z, was or the probability of observing Z, does not
depend on what happened earlier in when we draw you know Z,, Z, all the way till Z, minus
1. It is independent of what is happening before or after it that is not going to be the case if

we had spatial dependence in data.



But with the iid assumption we can write f of Z mu comma sigma squared In equals f of Z,
times f of Z, times f of Z; times f of Z, times keep going till f of Z,. That is we have a
multiplicative representation i that goes from 1 to n f of Z; which is to say we have a
multiplication of 1 that goes from 1 to nl over square root 2 pi sigma squared exponential

minus half Z; minus mu over sigma the whole squared.

And this f of Z;, I am sourcing directly from what I have you know presented earlier. If [ were
to solve this, I am simply going to get, I am going to multiply each component n times. So, I
am going to get 1 over 2 pi sigma square to the power n over 2 times exponential. So, you
have exponentials e to the power you know this stuff is multiplied for each Z;. So, I am going
to write this is going to be minus half summation, I go 1 to n Z; minus mu by sigma the whole

squared.

Let us take it to the next page. So, we have the likelihood of observing our sample given Z;
are iid normal 0 sigma squared being given as of f of Z vector which is a n by 1 vector given
mu and sigma squared equal to 1 over 2 pi sigma square to the power n by 2 exponential

summations minus, half'i equals 1 to n Z; minus mu sigma the whole squared alright.

Now, with that you know we take a log of this and that is called the log-likelihood. So, the
log-likelihood of observing the given sample so, I can call this f, I can define this as | of you
know mu and sigma squared the 2 parameters that I am after log-likelihood of this is going to
be 1 n | mu comma sigma squared equals minus n by 2 log of 2 pi minus n by 2 log of sigma
squared minus 1 over 2 sigma squared summation 1 equals 1 to n Z; minus mu the whole

squared.

Now, my objective is to maximize. So, my algorithm is called maximum likelihood
estimation I have the likelihood of observing the sample. The next step is to maximize the
likelihood of observing this sample. So, I am just going by the nomenclature I am going to
maximize this, and when I maximize this my choice variables are mu and sigma square. So,
these are the variables that I can choose, I have a degree of freedom about what mu and

sigma squared values could be right?

So, I could choose mu and sigma squared such that the likelihood of observing this given
sample the sequence Z, till Z, is maximized given that Z,, are iid normally distributed with
parameters mu and sigma squared. So, this is an optimization problem and when we face

such an optimization problem we write our first-order conditions. So, our first order



conditions will be del I n I by del mu which is the first partial differential by our first choice
variable this will be set equal to 0, then del I n 1 by del sigma squared which is our second

choice variable this will be set equal to 0.

Overall I have 2 equations and 2 unknowns ok. So, I can solve this. When I actually solve
this we will find that mu hat ML is the maximum likelihood estimator for mu will come out
to be Z bar which is nothing but the sample mean of all the Z;, whereas, sigma hat squared
ML which is where the hat means it is a data-driven estimate and ML means it is a maximum
likelihood data-driven estimate, that is going to come out to be summation 1 equals 1 to n Z;

minus mu hat ML which is nothing but the Z bar value divided by n ok.

Now, these are my maximum likelihood estimator’s maximum likelihood estimators without
spatial dependence ok. So, as a next natural step, what we are going to do is that we are going
to add spatial dependence to these data and see how what happens and how these parameter
estimates change what changes when we add spatial dependence to the data. The first thing
that is going to happen is that I am not going to have sigma squared I, as my

variance-covariance matrix.

My variance-covariance matrix will be more complicated because my off-diagonal elements
are going to be non-zero. So, the first change that you are going to observe is at the
off-diagonal elements of the variance-covariance matrix of this vector. So, let us move

forward and do that.



