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Alright. So, welcome back to lecture 9. Today we are going to sort of cover this lecture in the

third part, where I am going to talk about what is called Monte Carlo Simulations.

Monte Carlo simulations are a popular tool for attaining numerical solutions for problems

that might otherwise have analytical solutions. And, we are going to cover this topic on

Monte Carlo simulations for specifically assessing statistical inference under spatial

dependence.

So, that would mean that I am going to sort of specify or talk about a computational

algorithm or an experimental design that can be implemented on a personal computer which

can provide us you know the results that we have derived in the previous lecture for statistical

inference under spatial autocorrelation or a given spatial dependence structure alright.

So, a little bit of introduction on Monte Carlo simulations. So, Monte Carlo algorithms or

Monte Carlo experiments are computational algorithms that employ randomness and repeated

sampling to arrive at numerical solutions. So, critically I am pointing out that Monte Carlo

simulations will exploit stochasticity right. So, they will exploit randomness in terms of

designing and experimenting and they will then also rely on repeated sampling right? So, you

are going to be somehow sampling again and again from a parent distribution ok.

And, the example that we covered in the last lecture is of a circular city. We can establish

whether or not the mean estimator and the confidence bounds, the 95 percent confidence

bound are indeed consistent estimators in the presence of spatial dependence using

simulations right? So, that is the sort of power here. And, these methods provide an

alternative to the analytical framework that yields a deterministic solution right?

So, there you know we had a when we said that you know the mean of prices in a circular

city are n plus 1 over 2, we did not say that they could be n plus 1 over 2 plus minus

something right? So, we kind of had an analytical solution that the mean of prices for the



circular city is n plus 1 over 2, where n is simply the number of homes in this city right? So,

we are let us begin looking at the steps in Monte Carlo simulations.

Before we do that, you know I just want to sort of give you a very quick recap of this practice

problem, that we have worked with where we introduced the circularity. And, we solved for

the mean estimator, the variance estimator, the standard deviation estimator, and the 95

percent confidence bounds for home prices, you know spatially distributed on a circle with a

circumference of K units ok.

So, here you know if you just a quick reminder we are working with first-order neighbors on

a circle. So, we had you know entities P1, P2, P3, and P4 which are you know denoting both

prices as well as location. So, the index on the price P is the location. So, location 1 location

2 location 3, and the corresponding price P1, the corresponding price P2, and P3 respectively

on these locations; all the way till location n right.

And, we are given a specific spatial dependence structure, we talked about this in detail. You

can refer to the previous lecture for details of what this means.

And, for this particular scenario, we estimated you know population mean, what would be the

best guess of a population mean? We said it will be a P bar, we came up with an analytical

solution of a P bar that is n plus 1 over 2. We came up with an analytical solution of variance

of P bar which was sigma squared over n times 1 plus 2 lambda. Again, all of this was done

step by step in detail in the previous lecture.

And, then we had you know the estimator for a standard deviation of P bar, and then we had

the confidence bounds right. So, now, today’s lecture, in this lecture we are going to try and

you know arrive at these estimators using simulations rather than mathematical derivation or

analytical derivation. So, we are going to arrive at them numerically is what the agenda of

this lecture is ok.

So, let us go over the steps in Monte Carlo simulations and through this also learn what are

Monte Carlo simulations. So, step 1 says to start with a true model that employs a stochastic

component to specify the given spatial dependence structure. So, first of all, we say start with

a true model, a true model of what? Of the price process on this circular city right. So, the

true model for P is right, for each Pi we need a model that helps me arrive at this value of Pi.



This model should employ a stochastic component right? So, there will be some kind of

random number that will be used or a random variable that will be used to specify a Pi. So,

we can sort of you know say that let us say it is ui with you know PDF f of u right? So, when

we say stochastic component means a random variable right and I am just you know

specifying it to be u i. And, then it is supposed to be able to explain or encapsulate the given

spatial dependence structure.

So, when I say the given spatial dependence structure, what I am talking about is that prices

for first-order neighbors are correlated ok and the degree of correlation was specified with

this parameter lambda right? So, we need to parameter lambda right? So, this is the

variance-covariance matrix or the correlation Pi Pj structure, that was specified in the practice

problem earlier ok.

So, let us try to do that ok. So, we are going to say let Pi equals i plus ui. Now, i is simply the

index which is specifying the location as well as giving it a deterministic value. So, i by itself

is the systemic or deterministic component of price. What do we mean by deterministic

component? What it means is that if I am standing at location 1, I know that the level of price

that I am looking at will be closer to 1 plus a random variable right?

And, you know if I am standing at location 10, then I have an index of what level of the price

I am looking at, if I am standing at location 100, at location 1000; I am giving a deterministic

level to prices through this systemic component i. And, then to this systemic component, I am

then adding this random component, a random or stochastic component of price right. And,

now next the final condition for this you know stochastic component is that it should specify

a given spatial dependence structure right?

So, we are going to write ui as lambda over 2 epsilon i minus 1 plus lambda over 2 epsilon i

plus 1 plus epsilon i such that epsilon i's are iid. So, independently and identically distributed

with you know according to a normal distribution with mean 0 and variance 1. So, epsilon i's

are you know iid random variables which are which behave according to a standard normal

distribution ok.

And, now we have to check you know we should validate or check that this indeed you know

specifies the given spatial dependence structure right? So, our model our true model is all

these equations combined right? So, we have Pi equals i plus ui, where ui equals lambda over



2 times epsilon i minus 1 plus lambda over 2 epsilon i plus 1 plus epsilon i right? So,

intuitively you can see that I am using these epsilon i's to sort of specify spatial dependence.

So, the error component or the stochastic component at location i depends on their

component at location i minus 1. And, on you know error component at location i plus 1

right? So, I am bringing in the spatial dependence through the stochastic term. But, I need to

now make sure or validate that this given structure is indeed enough or sufficient for me to

ensure that it follows first-order correlation with the degree of correlation being given by

parameter lambda.

To do that I am going to sort of say check that covariance of Pi and Pi plus 1 should equal

lambda and the covariance of Pi and Pi minus 1 should also equal lambda right? So, let us do

that ok. So, the covariance of Pi and Pi plus 1 I am going to expand this, I am going to say

covariance. So, Pi equals i plus lambda by 2 epsilon i minus 1 plus lambda over 2 epsilon i

plus 1 plus epsilon i comma. And, then Pi plus 1 is i plus 1 plus lambda over 2 epsilon i plus

lambda over 2 epsilon i plus 2 plus epsilon i plus 1 ok.

Now, i and i plus 1 are deterministic components. So, if I look at a deterministic component

and think about the covariance of this deterministic component with all the other you know

deterministic and random components, they are going to be 0 right? The covariance of

epsilon i minus 1 with i plus 1 is 0, epsilon i, it is going to be 0 because remember epsilon i’s

are iid right. So, they are independent, i minus 1’s are independently distributed of is right,

epsilon is right.

So, this covariance is going to be 0 with epsilon i plus 2 will again is going to be 0, and then

epsilon i plus 1, which is again going to be 0 right? For so, there is no contribution to the

covariance of P and Pi and Pi plus 1 from either the deterministic term i or this lagged

spatially lagged you know epsilon i minus 1 term. Now, let us come to the epsilon i plus 1

term. So, I am going to look at epsilon i plus 1 as going to have no correlation or no

covariance with the deterministic, you know they cannot co-vary because the deterministic

component does not vary at all, right?

And, then i plus 1 with epsilon i the covariance will be 0. Again, because i plus 1 is

independent of epsilon i. Second, i plus 1 with i plus 2 is again going to be 0 because they are

iid; finally, you have i plus 1 and i plus 1. So, I found my first you know component of



covariance that is indeed going to sort of contribute to the covariance of Pi and Pi plus 1. So,

that is the covariance of lambda epsilon i lambda over 2 i plus 1 i plus 1.

Now, I am going to come to the last term which is epsilon i. So, epsilon i with the

deterministic component has 0 contributions to the covariance. Epsilon i and epsilon i, yes we

will have you know a covariance contribution right? So, we can write covariance lambda

over 2 epsilon i comma epsilon i. And, then with epsilon i plus 2, I have 0 contributions

because they are iid, and with epsilon i plus 1 again 0 contributions because they are iid.

Now, if we come back to this right-hand side, we have a covariance of lambda over 2 with

epsilon i plus 1 and epsilon i plus 1. So, this here I can bring out this you know lambda over 2

which is a constant will just come out and I will have covariance epsilon i plus 1 comma

epsilon i plus 1 which is nothing but variance epsilon i plus 1. And, similarly, you will have

lambda over 2 variance epsilon i.

Now, looking at you know the fact that the variance of epsilon is simply you know 1 for all i.

So, we have the covariance between Pi and Pi plus 1 will simply sum to lambda. Similarly,

you can show, and you should at your time show that the covariance of Pi comma Pi minus 1

will also be equal to lambda. So, indeed what is going on now, what is happening now is that

we have a true model.

We have a true model, a true model of home prices that exhibit the spatial dependence

structure on a circular city right? So, this spatial dependence structure is the given spatial

dependence structure right? We should be able to sort of you know follow or specify the

structure that we are working with right? So, we are indeed able to work with. So, thumbs up

to step 1 ok.

So, let us move on to step 2. Now, it says drawing random components of the size of the

circular city is n ok. So, for example, for this example, I am simply going to say n equals 100.

So, what I am saying is that there are 100 homes located in this circular city right? For the

purpose of understanding, there are 100 homes you know located in the city. So, this is P1, P2,

P3, P4, P5, P6, P7, P8, keep going till P100 and just before P100 we will have P99 ok.

It says to draw the random components of the size of the circular city; that means, I have to

go back to the model that I specified earlier. So, I am going to do that, I am going to write

down the model at the top of your slide here. So, I have Pi equals i plus ui, where ui equals



epsilon i plus lambda over 2 epsilon i minus 1 lambda over 2 epsilon i plus 1 such that

epsilon is are simply iid normal 0 comma 1 for every i ok.

So, what am I doing now? Ok. So, now, what I am doing is I am generating or constructing

my own data. I am simulating a data set of prices of these 100 homes located in the given

circular city. What that would mean is that I can just go to an Excel sheet right and start

populating it as follows. So, I have my rows ok. The first row is i, that is the id, the home id; I

have 1st, 2nd, 3rd, 4th, 5th, 6th keep going 99 100.

Then, I have you know epsilon i minus 1 epsilon i, and epsilon i plus 1. Each epsilon i’s that

is epsilon i minus 1 epsilon i and epsilon i plus 1, are simply normally distributed with 0

mean and variance 1. So, I can simply apply you know a random draw from a standard

normal distribution in an Excel sheet which is a coded exercise, it's already canned in the

Excel sheet. So, you can go ahead and do that.

But, you will what you are going to expect is you are going to have these you know 0.01 0.03

minus 0.9 you know and so on and so forth. So, you are going to have these random entities

generated individually one by one. So, there is no relationship between epsilon i minus 1

epsilon i and epsilon i plus 1. You are simply drawing from a standard normal distribution 3

times right? The first time you know you are doing it for epsilon i minus 1.

The second time you are doing it for epsilon i and the third time you are going to do it for

epsilon you know i plus 1 right? So, let us say I get minus 0.23 here as the first row, then I

have 0.56 and I have 0.8 and so on and so forth till 100 values. Let us say here I have 0.9 0.8

0.7 and so on and so forth right? So, these are random entities being generated. Of course,

when you will take the mean of any of these random entities, they will turn out to be 0

because you are drawing from that distribution right? very very close to 0 right? that is what

we should expect.

Finally, once you have done that you have created data; so, basically you have 4 columns that

you have generated one. So, the first one is a deterministic column. It is simply you know the

value of the id itself, right? So, it is just deterministic you know, when I say i equals 1; I do

not mean i is 1 and minus something. I mean i equals 1, it's deterministic right?

And, then I have three different normally distributed independent random variables being

drawn which I denote to be epsilon i minus 1, epsilon i, and epsilon i plus 1 ok. Of course,



when you know when i is 1 epsilon i minus 1 means 100; here I am looking at the 100th

home. And, epsilon i plus 1 means that I am looking at the second home, you know assuming

I am going clockwise on the circle. So, using these I can then define Pi as i plus lambda over

2 right epsilon i minus 1 plus lambda over 2 epsilon i plus 1 plus epsilon i ok.

Now, to populate Pi the column of Pi, data in the column of Pi, I must also specify lambda ok.

So, in the true model, I will go back to my true model and I am going to specify, I am going

to say let lambda equals 0.4 for the Monte Carlo simulations ok. And, then once I have my

you know the specification, I am basically saying lambda by 2 is 0.2 and I have data on these

values. So, Pi is nothing but 1 minus 0.2 multiplied by minus 0.01 plus 0.2 multiplied by 0.9

plus minus 0.23 which will turn out to be some numerical value right?

So, you have created this data set of P is ok. So, you have created you have simulated. These

are simulated data for Pi’s. The beauty of these data is that they follow the same first-order

spatial order correlation structure that the practice problem provided us in the previous

lecture right? So, now, we have actual values to work with that behave according to the

analytical problem that you were solving in the previous lecture.

Step 3: So, evaluate Pi’s along with mean value, its mean value, variance, standard deviation,

and 5th and 95th percentiles. So, we have already in step 2, we collected this data on Pi. So,

now, I have i which goes from 1, 2, 3, 4, 5, 6, all the way to 99 and 100. I will also have these

values of Pi’s which I have created in step 2. So, I have constructed data on P1, P2, P3, P4, P5,

P6 so on and so forth till P99 and P100.

Once I have this data, I can calculate the mean, which is simple. So, I can just say the P bar

equals summation i equals 1 to 100 Pi, remember this P bar is a function of lambda and is set

as 0.4. It is also a function of n being set as 100 right? So, it is for 100 homes, you could be

working with 1000 homes. You could set n equal to 1000, it is not going to be a very difficult

exercise to do that, right you can see that right?

So, what I am saying is that my Pi itself is a function of setting lambda equals 0.4 and n

equals 100 and this is what it will look like. Similarly, I have sorry it is not Pi, it is P bar.

Similarly, I have a variance of Pi variance of you know Pi or P bar that will you know the

variance of Pi will be summation i equals 1 to n which is 100, Pi minus P bar the whole

square divided by n minus 1 which is 99 right.



Now, this I can call as sigma hat squared P. With that, we know the variance of the P bar will

be just sigma hat squared P divided by n is 100 right. The standard deviation of the P bar will

be sigma hat squared P by 100 square root. And the 95th confidence bound is nothing but that

I order these data order P is in you know descending right, with in descending values.

So, basically, you have the highest value as the first topmost value and then it just keeps

going down to the minimum value. So, descending from the max of Pi to the min of Pi. And,

then you pick from the bottom you pick the 5th value, the 5th value from min Pi will be the

95th percentile of the prices. And, the 95th value from the bottom is the minima of Pi will be

denoted as sorry.

So, I made a typing error here. So, the top one will be P5, the 5th percentile and this will be

the 95th percentile. And, the confidence bound for P is will be P 5th to P 95th alright. So, this is

a simulated mean, a simulated variance, a simulated standard deviation, and a simulated

bound right; that is very important ok. You could, I mean this is for Pi; if you wanted the

confidence bound for P bar, I mean you could sort of you know we will see how to do that

now next.

So, step 4 is replicate steps 2 and 3 500 times. So, now, we are going to replicate the

simulated prices and their averages ok. So, let us see. So, step 2 was that we first construct

data on Pi, step 3 was we collect these statistics on Pi ok, and then finally, we create these

replicas of Pi right? So, we basically have you know; so, you know the first time we did that

we can say that was replica 1. For that replica, we got P bar m, right? we got the variance of P

bar m equals 1 sorry.

So, at P bar m equals 1, the standard deviation of P bar for m equals 1 ok. So, we got these

values. And, then you know we can create the 2nd replica. The 2nd replica will be we start the

process all over again. We have our i’s, we draw you know we create this random draw for

epsilon i minus 1 for epsilon i, epsilon i plus 1, again construct data on P is and then get our P

bar right. So, I am going to get a P bar for the 2nd replica, and for the 3rd replica.

Remember, in each replica n is fixed as at constant 100, and lambda is kept at 0.4. So, we do

not change those parameters. All the P bars are simply because we are drawing from the

normal distribution with 0 means and variance 1 for the second time, for the third time, for

the fourth time and we keep doing it 500 times right. So, we are going to keep doing it 500

times and we are going to collect our data right.



So, we are going to store these P bars for till m equals 500; sorry about that right? So, we

have these replicas of the P bar going from the 1st replication, the 1st replica to the 500

replica. The only very very important thing to keep in mind is that for all these replications

right? So, throughout all these replications, we fix n equals 100 and lambda equals 0.4. So,

this is step 4.

Let us go to step 5. Step 5 says to contrast the numerical estimators with their analytical

counterparts. So, now, we have you know the numerical estimators in the sense that if you go

back, we have P bars which we have 500 values of P bars right? So, we have an Excel

column of m’s that goes from 1 to 500. And, then we have P bars which you know go from

which are different values of average prices through each iteration of simulated construction

of mean.

Once I have 500 means, I can take a meta to mean or some kind of a P bar which is nothing

but summation m equals 1 to 500; P bar m over 500 right? So, I can get my P double bar.

Similarly, I can get my variance of P bar as nothing but summation m equals 1 to 500 P bar

minus P double bar the whole squared divided by n minus 1 which is here, which will be m

minus 1 here which is 500 minus 1 that is 499 right.

The standard deviation of the P bar is basically the square root of the variance of the P bar

calculated just now. And, the 95th and the 5th percentile will nothing, but I will simply take

these values that I have generated from 500 replicas. I am going to order them from the

smallest value or to the largest value or the other way around from the largest to the smallest.

Let us work from the smallest value to the largest value right? The value that I am looking at

which is at the 95th percentile is the 25th value starting from the smallest value, all the way up

to the 25th value that I find will give me P bar 5th percentile, right? And, the 475th value

starting from the minima all the way up to the maxima 475th value in this simulation will be

my P bar 95th ok.

Now, realize that these estimators, the P double bar, a variance of P bar, a standard deviation

of the P bar, and the 5th and the 95th percentiles are nothing but you know they are numerical

solutions of you know the mean estimator for you know prices that are spatially

autocorrelated. And, all other statistics; the second moment as well as the 5th percentile and

the 95th percentile right.



So, these percentiles are simulated confidence bounds for the P bar right. So, as a next step

what we are going to do is we are going to contrast them, we can then contrast them with the

analytical solutions that we spent a full lecture previously to arrive at right. For example, now

I have my numerical solution, I have my numerical solution where P bar P double bar is

nothing but summation m equals 1 to 500 P bar indexed with replication m divided by 500.

Against the analytical solution, where I calculated this P bar to be n plus 1 over 2, n being

100; you know I basically have 101 over 2. So, I can contrast whether or not they are closed.

And if you conduct this exercise, you will find that they are going to be indeed very very

close right and which makes sense. But, one thing that we have to understand is that for both

these cases n is fixed at 100 and lambda at 0.4, ok.

Similarly, the variance in case you know the simulated solution variance of P bar is

summation m equals 1 to 100 P bar m minus P double bar whole square divided by 499 right?

And, in the other case you know it was P bar equals sigma squared by n 1 plus 2 lambda.

Remember, sigma squared in our case has been you know fixed to we will have to figure out

the variance of P which will be you know the variance of Pi from where Pi equals i plus ui.

Remember, ui is a function of 3 epsilon i right which is i plus epsilon i by you know 2 into

lambda i minus 1 plus epsilon i plus 1 into lambda over 2 plus epsilon i. So, the variance of Pi

which I am going to just quickly calculate here is going to be lambda squared over 4 plus

lambda squared over 4 plus 1 which is nothing but 1 plus lambda square over 2. So, the

variance of Pi is 1 plus lambda square over 2 lambda is 0.4 right? So, lambda square is going

to be 0.0016 right? So, 1 plus 0.0016 divided by 2 which is nothing but 0.0008. So, this is

1.0008 right?

So, I am going to now change this to my analytical solution will be 1.0008. You guys should

check my calculations divided by 101 plus twice of 0.4. So, in black we have an analytical

solution, in green, we have a simulated solution, right? They should be very close right? If

our simulations are correct, they are going to be very close right?

Then, you know I can similarly I can sort of do the same thing for you know the standard

deviation of P bar. And, the standard deviation of you knows P bar which is nothing but the

variance of the P bar from the analytical solution. And then finally, my confidence bounds are

P 5th P bar 5th, and P bar 95th that we calculated previously right. We calculated on the

previous slide, right?



And, in the analytical case, this was given by. So, the confidence bounds just a second the

confidence bounds, but given by n plus 1 over 2 minus 1.96 into sigma over root n 1 plus 2

lambda to the square root comma n plus 1 over 2 plus 1.96 sigma over root n 1 plus 2 lambda

square root right. So, these were my confidence bounds and you know they should match the

ones on the left-hand side in green ok.

Finally, we can check for the consistency of our estimators. And, what does it mean to check

for consistency? That would simply mean that as n approaches infinity, practically it would

mean as I increase the value of n, the size of the circular city or the number of homes and the

density of the city; what I should find is that the simulated mean, variance, standard

deviation, confidence bounds should you know should become closer and closer to their

analytical counterparts ok.

So, we have gone through a full-blown you know simulation exercise to arrive at numerical

solutions for estimators of mean-variance. So, the first moment, the second moment, the

confidence interval; so, to conduct statistical inference, in case we did not want to go through

all that math right. So, we can use computational algorithms, and computational simulations

to get there.

So, Monte Carlo simulations are very important; you know they are used widely. So, this is a

very important topic and I urge all of you to sort of go over it one more time. And, I hope you

had fun learning Monte Carlo simulations. See you next time.


