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Hello everyone. Welcome back to this lecture series on Spatial Statistics and Spatial

Econometrics. Today we are going to be covering lecture 8 which is a shift from what we

have been doing till now. So, in the previous lecture or a couple of lectures, we have studied

this idea of entropy and how we interpret the entropy of a random process to a spatially

delineated random function space, right?

So, today we are going to sort of move slightly away from that you know that topic. And we

are going to look at spatial autocorrelation and its consequence for the estimation of the

sample mean. So, the first entity of discussion today is this idea of spatial autocorrelation. So,

what is spatial autocorrelation? Spatial autocorrelation is a measure of dependence among

random variables in space, ok.

So, you know till now we have talked about something like distance, we have talked about

spatial dependence with examples, right? Now we are coming to a point where we are

providing a measure for it, right? So, we are talking about a measure and this measure will

likely depend on or will be a function of the distance you know between random variables in

space.

Of course, spatial autocorrelation is what binds random variables in space and ultimately

lends them to become a random function, right? We said that a random function is nothing

but a collection of random variables which are jointly distributed. Now spatial autocorrelation

provides a specific mechanism for jointedness in the distribution of random variables in

space, right?

So, to make our you know understanding slightly more clear, we can sort of take a small

example, right? We can say let us say we have random variable realizations for 3 locations in

space. 3 locations in space are given as S1, S2, and S3, ok. Now, the random variable that is

realized let us say it is given by Z.



So, Z(S1) is the random variable realization at location S1, Z(S2) is the realization at location

S2, and Z(S3) is a similar realization at S3. We can also define these as simple indices Z1, Z2,

and Z3 where the index 1, 2, and 3 are delineating the location differentiation between these

random variable realizations, right?

Now the point is that when we talk about spatial autocorrelation the idea is that first of all

correlation between Z1 and Z2 correlation between Z1, and Z3, and a correlation between Z2

and Z3. These are the unique pairs in which theta occurs as in our example.

So, these correlation metrics are individually non-zero. So, there is a likelihood that either all

of them are non-zero or at least 1 of these pairs exhibits a non-zero correlation. Now, this

correlation is often you know a function of the distance between individual pairs, right?

So, if they are a function of distance that is why you know they are using an entity that is

defined over space between these variables. And hence these are measures of spatial

autocorrelation. Why autocorrelation? Because it is the same you know entity Z let us say its

groundwater level.

So, if the groundwater level at location S1, location S2, at location S3 are all groundwater

levels, they are correlated with each other. So, it is called autocorrelation. So, its Z

groundwater level at location S1 is correlated with itself at the location at S2 and the location

at S3, right? So, that is the point you know of spatial autocorrelation, right?

So, this is what provides you know a definition of spatial autocorrelation. So, it is a

correlation in the traditional sense, but then as a function of distance in space, right?

However, we define it can be Manhattan distance, it could be Euclidean distance, great arc

distance, or even more sophisticated distance metrics that we discussed in one of the earlier

lectures, right ok.

So, the next point is ok. So, let us say we are given these 3 data points. So, we are given these

3 beta points, right and we want to understand what is the mean, what is the mean, or the

sample mean of you know these data realizations. So, the sample mean is straightforward you

know all of you understand what I mean by that.

I am taking Z1, Z2, and Z3 and I am summing them with equal weights of one-third or I am

just summing them into by 3. Or you know I can simply say it is one-third times Z1 plus



one-third times Z2 plus one-third times Z3, right? So, we are applying these equal weights

because you know any of these values could occur you know when I am talking about the

best guess of what the mean value would be, right?

So, any of these values are equally likely to occur in space. So, they are all realizations of you

know they are all realizations of a random process. So, we say that the best guess offered the

mean of this you know random process would be given the sample data set I have is simply

add them with equal weights of one-third each, right? So, Z1 plus Z2 plus Z3 by 3, ok.

This is what we call a Z bar and if we go and revisit the title of today’s lecture, it says spatial

autocorrelation and its consequence for estimation of mean. So, you know our aim going

forward in this lecture is to evaluate the role of spatial autocorrelation in on Z bar. Spatial

autocorrelation is nothing but a non-zero correlation among random variables in space, right?

So, we want to see if you have this correlation to this dependence metric you know how it

affects the mean, right? Where does it affect, I mean at the mean? Does it at all affect it or

not, right and. So, what we will do is to proceed we will first consider the case we are where

they are independent, right? So, we will first consider the let us say consider the iid case.

What is the iid case? Which iid means independently and identically distributed or vice versa,

ok. You can say identically and independently distributed random variables distributed, ok.

So, independently and identically distributed random variables or vice versa identically and

independently distributed variables, ok. So, let us begin our evaluation of that case, ok.

So, we say consider a sequence of iid random variables Z1, Z2, Z3 go all the way till Zn, right?

Now here the indices 1, 2 till n represent location just like we saw in the previous you know

slide, right? With the pointer that the random variable realizations at these locations are

completely random, right? So, in the case of iid, you know with the condition that random

variable realizations at these locations are completely random, ok.

What does it mean that means the value of value realized at location 1 that is Z1 has got

nothing to do with the realizations at locations 2 till n; that is Z2, Z3 till Zn? Whatever those

values or realizations are they have no bearing on what we realize on location 1 which is the

value Z 1.



Similarly, what we realize on location n that is Zn has had no bearing from what we had

realized on location 1 that is Z1 or Z2 or Z3 till Z n minus 1, right? So, that would mean that

they are completely random and that there is no relationship or dependence spatially or

otherwise, right?

So, we can say that is no relation or dependence especially. I am just going to focus on

spatially speaking because that is what the scope of this course is, but otherwise what I am

saying is they are completely random, right? So, where there is no other kind of you know

grouping clustering going on in this data pattern.

So, mathematically we say we have a sequence Z1, Z2 till Zn such that we say Zi is distributed

iid normal mean mu variance sigma square. So, now, there is a new piece of information that

these are not only independently and identically distributed. But they are distributed

according to the normal distribution with mean mu and variance sigma squared.

So, we know from here we know that mu hat is nothing but the sample estimate of the mean

mu, right? So, mu hat is nothing but the sample estimate of mu is nothing but summation i

equals 1 to n Zi divided by n, ok. Which is also notated as denoted as Z bar, right? So, in the

previous case, we had 3 you know realizations there we had Z1 plus Z2 plus Z3 by 3 because

their n was equal to 3, right?

Here we have a more general case, but the definition remains the same. We also know that

sigma hat squared is the sample variance, you know representative of sigma squared which is

the distribution population variance is equal to summation i equals one to n Zi minus Z bar

the whole square divided by n minus 1, ok. Now I want you to sort of ask yourselves or you

know try and answer in the next 30 seconds where this minus 1 comes from in the

denominator, ok.

So, I am asking why, minus 1 is the denominator. Ok. So, to be able to understand why we

have minus 1 in the denominator well, we must recall the concept of degrees of freedom.

What is the concept of degrees of freedom? Well, the degrees of freedom provide us an

understanding or a measure of the net variation in data that we are using to define sigma hat

squared, ok.

Now, when we write down when we define sigma hat squared we are indeed summing n

entities, right? So, we are summing n entities, right, distinct n entities which are distinct due



to unique, ok unique Zi’s, right? Now the point is, but we are also using Z bar you know, but

ok. So, we have unique Zi.

So, we have Z1 which is different from Z2 which is different from Z3 which is different from

Z4 through Zn. Note that there can be similar values as far as realization it is possible that you

know when they are realized as random entities. So, happens randomly that Z1 is exactly

equal to Z5.

But they are still distinct entities that are drawn at distinct locations they are drawn

independently they are drawn identically. So, they are distinct entities, right? So, they are not

supposed to be the same if they appear to be randomly the same numbers, right? So, the

sequence can have the same values at different locations, but they are still distinct entities by

the virtue of location.

And the fact that they have been independently drawn you know at that location. So, we are

summing n entities in the numerator which are distinct due to these unique Zi’s, right indexed

by location i. But we also use Z bar in the definition and if you realize Z bar is nothing but a

function of n Zi’s, right? So, here is the Z bar and it is a function of you know a Zi’s.

So, if the Z bar is a function of you know these Zi’s what it means is that you can give me any

n minus 1 Zi’s and I will back out the nth Zi, right? Because I know the Z bar in the definition

of sigma hat squared, right? You can give me Z1 till Zn minus 1 and Z bar and I will back out

Zn. Or you can give me Z1 to Zn minus 2 and Zn and not give me Zn minus 1 and give me Z

bar, I will back out Zn minus to the missing value.

You can drop out any 1 you know Zi in the sequence of Z1 to Zn. And allow me to use the Z

bar I can back out the remaining you know Zi. So, what happens is due to this way that we

have defined you know sigma hat squared where we use all i Zi’s, distinct Zi’s and we use Z

bar. In the net what we are saying is we are only exploiting the variation of you know n minus

1 Zi’s, right?

We can live with just n minus 1 Zi’s and Z bar that is all the information that I need, right? So,

the net variation that is being derived from the given sample to calculate the sigma hat

squared just comes from n minus 1 Zi values, right? So, I am going to just write here that one

degree of freedom was lost due to the use of the Z bar in the definition of sigma hat squared,

right?



This implies we are using the net variation in sample equivalent to n minus 1 distinct entity,

ok. So, we are just on the net and variation is coming from n minus 1 entity, right? The net

variation is coming from n minus 1 entity this is important. And you must go back and

re-take relook at the idea of degrees of freedom, right?

But, it is really important to realize that you know there is an n minus 1 and y does this minus

1 appear, this concept will appear again and again in any statistics course, not just this one.

So, this knowledge is kind of general, ok. So, the next important issue is the variance of the Z

bar. So, now why do we have a variance of Z bar? Well, what is Z bar?

So, note that the Z bar is nothing but a best guess of the mean mu from sample information

from what we know in the sample, right? So, Z bar itself is the best guess, right? It is only the

best guess of what the population means mu is of mu given sample information, right? So,

when I am given the sample all I know is that you know we have entities Z1 till Zn.

What would be what would the sample mean be? Well, it would be it could be equally likely

that mu will appear to be any one of these entities, right? So, what do we do? We give each

entity an equal weight. So, we equally weigh each Zi that is with the weight 1 over n and then

we simply sum them, right? So, we weigh each Zi we get Zi by n and we simply sum them

and we get our Z bar.

That is our best guess that is our expectation of what mu will be, right given sample

information. And that Z bar is also a random variable, ok. Why? Well, it is composed of

random variable Zi till Z1 till Zn, right? So, if you have a Z bar which is just a linear function

of n random variables then of course, it is a random variable. So, the Z bar is also a random

variable because it is a sum of n random variables, right?

So, it must also have a variance just like random variable Zi have a variance therefore, the Z

bar should also have a variable. So, therefore, the Z bar must also have a variance. So, till

now we have just resolved that the Z bar will have a variance.

Now, we will go next to the next step and ask what will that what is that variance you know

values. So, we will now next you know what we will do is we will derive this variance of Z

bar.



So, the variance of the Z bar is nothing but the variance of 1 over n summation i equals one to

n Zi. Now, i will 1 over n it is a constant it will come out of the variance operator as 1 by n

squared and I have a variance of Z1 plus Z2 plus Z3 plus dot dot dot plus Zn, ok. Now in

evaluating the variance of the sum of n random variables, you know let us recall that the

variance of 2 random variables x, the sum of random variables x and y is the variance of x

plus y.

Is nothing but the variance of x plus the variance of y plus 2 covariances of x and y, ok. So,

this is the covariance this is the variance of a sum of 2 random variables. So, let us extend

that to the variance of n random variable. So, it will be 1 over n square times the variance of

Z1 plus the variance of Z2 plus the variance of Z3 plus dot dot dot variance of Zn plus 2

covariances of each pair Z1 and Z2 plus 2 covariance of Z1 and Z3 plus.

And you will keep going and get all the distinct pairs with you know to get a covariance

twice the covariance. And finally, you will likely have Zn minus 1 and Zn, right? Now,

interestingly all of these covariance terms are equal to 0 individually, and obviously, when

summed together they are all 0. Because, because why? Well because Zi’s are independently

distributed that is iid one of the is.

Says that Zi’s are independently distributed. So, what does independently distributed imply?

Well independently distributed or this term independently the consequence is that the

covariance of any pair Zi and Zj will be 0 if i is not equal to j, right? So, that is great. So, our

problem is much more simplified.

So, the variance of Z bar is 1 over n squared variance of Z1 plus the variance of Z2 plus the

variance of Z3 plus dot dot dot plus the variance of Zn, right? Which can be now written even

more simply as summation i equals 1 to n variance of Zi. Why can I write why can I sort of

use this index? Because you know I am just summing the look the variance of you know

random variable realizations at the location is.

And this can be further simplified as 1 over n squared summation i equals 1 to n sigma

squared. Why could I do that? Because they are also all identically distributed, right? So, this

is because you have identically distributed Zi’s with normal mean mu and variance sigma

squared. So, all these you know Zi’s have the same variance sigma squared, right?



So, if I am summing sigma squared n times all I am going to have is n sigma squared over n

squared. And finally, the variance of the Z bar is going to be sigma squared by n, ok. So, the

variance of let us write it again.

So, the variance of the Z bar we have figured out is nothing but sigma squared by n, ok. So,

now, the fact is that the sample estimate. We know the sample estimate of sigma squared is

equal to sigma hat squared. So, the sample estimate of the variance of the Z bar from

information that we have from the sample is given as sigma hat squared divided by n.

Where sigma hat squared was defined previously where we sort of had a little discussion on

the degrees of freedom idea as well, ok. So, now, having sort of you know understood that we

can write the standard deviation of you know we can write standard deviation of Z bar.

Similarly, it will be sigma over root n and you know this will imply this and the variance of Z

bar will imply standard deviation of Z bar to be given as sigma hat by root n, ok.

So, with that understanding now we will move to the next step which is called statistical

variance. The statistical sorry, the statistical inference not statistical variance I am sorry about

that. So, we have the next topic being statistical inference. So, the idea is that you know we

are trying to get at the sample you know estimates of mu and sample estimate of you know

sigma squared. Now the sample estimate of mu which is the Z bar itself is a random variable.

So, it is going to be it is our best guess, but there can be some errors, right there can be some

errors. The idea is that I have data that is all distributed according to the same distribution

which is normal with mean mu and you know variance sigma squared, ok. Now you have

data sequenced such that you let us say you have Z10 here you had Z1 here Z3 you know Z4

you had Z5 here you had Z51 here and Z6 and Z you know Z8 here and so on.

So, have the sequence of values which you know play somewhere on the real number line.

And the idea is that you have a normal distribution with mean mu and you know variance

sigma squared. So, the best guess of mu that we have is the mean of these values which is

likely to be somewhere here, which is the value Z bar. Now, this Z bar as we said is the best

guess of all the different realizations of Zi’s that I have in my sample, right?

The idea of the Z bar is that it can take any value with an equal weight between the in this set

of Z1 to Zm, right? So, the idea is that the Z bar itself is a representation of what we expect the

mean to be, right and there could be some error. So, we are aware you know of a strategy to



articulate this error or possibility of error in my best guess of mu and the way I write it is that

you know that we can say that mean value lies in the following interval with 95 percent

confidence, ok.

What is the idea of 95 percent confidence? The idea is that look I mean I am going to give

you a best guess based on what my sample information is, but it comes with some error. So, I

am not going to restrict myself to just Z bar. I am going to give you an interval within which

you can understand the meaning of life, right?

So, the Z bar value itself for a different random sample with the same distribution you know

understanding might have slightly different values, right? Depending on what sample

information appears, we can get a sense of what that value will be with 95 percent

confidence.

And we know you know if you have studied basic statistics you would recognize that you

will you can write this value as Z bar minus 1.96 Z hat by root n and Z bar plus 1.96 sigma

hat by root n, ok. So, what I am saying is that, ok you know this is the standard deviation of

the Z bar.

So, what I do is I go from Z bar 1.96 sigma hat by root n on the left. I go the same distance on

the right and I say that the Z bar is going to be lying in this interval with 95 percent

probability, ok. So, now, I do not provide you a point estimate I provide you an interval

estimate, ok.

So, values that are outside of this bound. So, let us say you know you had valued at 10 and

you ask ok do you think Z bar could be equal to Z10 you would say no it's outside the 95

percent you know confidence interval. So, I guess that the Z bar will not be equal to Zn. So,

that is the statistical inference we are using the idea of errors to get at statistical inference.

So, this 1.96 times sigma hat by root n is called an error in our best guess, ok. And where

does 1.96 come from? Well, you should be there I will say recall the t statistic, ok. The

students, t-test, the t statistic and I encourage you to go back and read about it if you want to

understand where the where does 1.96 come from.

If you go to a t table on the back of any statistics book and you look for you know the critical

value of t for 95 percent confidence or 5 percent error, that is a 2-sided 5 percent error. You



will you know see that for very large degrees of freedom, the critical value turns out to be

1.96. So, you can locate this on a t table go and locate it go and read about t statistic it will

become clearer.

Another interpretation of this idea of this range is that 95 percent. So, alternative

interpretation, and then we will move to the next step, ok. So, what is the alternative

interpretation? The alternative interpretation is that 90 percent of the data in sequence Z1, Z2,

Z3 till Zn lies in the interval, lies in the interval the same interval Z bar minus 1.96 sigma hat

by n root n and Z bar plus 1.96 sigma hat by root n, ok.

So, just like in the previous example on the previous I mean the example on the previous

page you saw that Z10, and Z1 are outside of the confidence bound. That is Z bar minus 1.96

root sigma hat by root n and Z bar plus 1.96 times sigma hat by root n. So, there are 2 values

there will be about 5 percent data in the sequence that we have which will be outside these

bounds those are data points we will say that is probably not going to be the values of Z bar,

right?

So, the Z bar will not take those values in all likelihood even if you gave me a different

random sample which was iid n with the same mu and same sigma squared, ok. So, this is

statistical inference and now having understood this idea, we will next what we will do is the

next step that we will take is that, we will introduce spatial autocorrelation to this to our

example.

That is an example sequence Z1, Z2 till Zn and evaluate. And evaluate the impacts on mean

and statistical inference based on the mean on it on the mean itself, right? So, let us do that in

the next you know in the next module.

Thank you.


