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Hello, friends! Welcome back to the online certification course on Watershed Hydrology. I am 

Rajendra Singh, a professor in the Department of Agriculture and Food Engineering at the 

Indian Institute of Technology, Kharagpur. We are currently in Module 1, Lecture 4, focusing 

on rainfall data analysis part 2. 

 

 

In today's lecture, we will continue our discussion on the estimation of mean aerial rainfall 

and then delve into the estimation of missing rainfall data. 

 



To recap from our previous lecture, we discussed the importance of estimating mean aerial 

rainfall, considering that within a catchment, multiple rain gauges provide point rainfall data. 

To derive a representative value for the entire catchment, we explored four significant methods: 

the arithmetic average method, the region polygon method, and the isohyetal method. 

Today, we will commence our exploration of the two-axis method, another approach to 

determining the mean aerial rainfall of a basin. This method, developed by Bethlahmy in 1976, 

requires the delineation of the watershed catchment area and the identification of its outlet. 

These prerequisites are typically available data. 

Here is how the two-axis method works: 

1. First, we identify the watershed outlet and locate the farthest point on the boundary of 

the watershed, denoted as point "t". 

2. We then draw a straight line, line "O t", joining the outlet to this farthest point. 

3. Next, we draw a perpendicular bisector to the line "O t", represented as line "A B" in 

the figure. This line is termed the minor axis. 

4. Finally, we draw a perpendicular bisector to the minor axis, forming line "CD" in the 

figure. This line represents the major axis. 

PiWi  

To summarize, the procedure involves locating the farthest point on the basin boundary from 

the outlet, drawing a straight line to connect them, establishing the minor axis perpendicular to 

this line, and then determining the major axis perpendicular to the minor axis. 

This method provides a systematic approach to estimating mean aerial rainfall, crucial for 

watershed management and hydrological studies. 

Let us proceed with our exploration into the intricacies of the two-axis method. 

 



So, basically, in this method, our first step is to locate the major and minor axes, which serve 

as the main axes of the watershed. Then, the next procedure involves determining the angle Ɵ 

for each station by referencing its position to the two axes. 

For instance, let us consider station P1, which has recorded rainfall from a point rain gauge 

installed in the basin. We draw straight lines joining this station to the farthest points of the two 

axes. 

If we take P1 and the minor axis AB and compare the distances P1A and P1B, we find that P1A 

is greater than P1B. Therefore, we draw a line joining P1 to point A on the minor axis. Similarly, 

we determine the farthest point on the major axis concerning station P1. In this case, point C is 

further away than point D. 

Thus, we draw a line joining P1 to C. The acute angle between the lines joining P1 to the farthest 

ends of the two axes, namely P1A and P1C in this case, is the angle of interest for us. 

 

 

We can determine this angle Ɵ either mechanically using a protractor or by using mathematical 

equations. Since we have located points A, B, and C, and we know their coordinates, we can 

find out the distances between them using this relationship: the length (L) joining any two 

points with coordinates (x1, y1) and (x2, y2) is given by a certain formula. 

So, we can calculate these lengths, and once these lengths are known, the angle Ɵ at point A 

can be determined using the relationship: Ɵ = cos-1((B2 + C2 - A2) / (2ABC)), where A, B, and 

C are the lengths of the sides opposite angles A, B, and C, respectively. Since we know the 

values of A, B, and C, we can find the angle Ɵ at point A accordingly. Similarly, we can find 

out all three angles using this relationship. 

Therefore, in this figure, if we revisit it with point A where we joined P1 to A and P1 to C, we 

know the lengths P1A, P1C, and AC. These lengths can be determined because we know the 

coordinates. Then, the Ɵ at point P1 can be found using the formula: Ɵ = cos-1 ((P1A2 + P1C2 - 

AC2) / (2 * P1A * P1C)). The quantity in parentheses represents the length of the line, as we 

have already shown. P1A is the length of the line joining these two points, corresponding to 

this figure, where ABC has already been defined. 



An important point here is that Ɵ is obtained in radians, and to convert it to degrees, we must 

multiply it by 180/𝜋. This conversion is crucial to remember. 

 

 

Next, we determine the weight for each rain gauge station, which is the ratio of the station 

angle to the sum of all station angles. For a particular station, Ɵi, and the sum of all thetas, we 

calculate the weighting factor or weight assigned based on the weight of a particular angle 

compared to the total weight. The mean rainfall is then computed using this relationship: r bar 

equals the summation from i equals 1 to “n” of Wi * Pi, where Wi is the weight assigned to that 

station, and Pi is the recorded rainfall at that station. 

 

 

Based on this, there are certain features of this method. It assumes that all rain gauges are not 

equally significant regarding mean rainfall. A rain gauge located near the center of the 

watershed should be weighted more than one located farther out, and the weight of the rain 

gauge depends on its location with respect to the two axes of the watershed. 



This simply means that if we have a watershed and there are two, suppose we have located the 

major and minor axes, and suppose we have a rain gauge station at point A at the center, and a 

station at point X. Obviously, if we must join the farthest points, this is the farthest point and 

this is the farthest point. So, the angle Ɵ for station A, where in this case the farthest point is 

this one, and the farthest point on D1. This is Ɵ of X. 

You can see that the weight assigned to Ɵ A will be much larger compared to Ɵ X. That is how 

a rain gauge located in the center is more representative of the mean aerial rainfall, and that is 

why it is given more weight. This is a feature of this method, and this method is fast, efficient, 

and easily amenable to computer programming. You can easily write a computer program and 

use it to measure rainfall using this method. 

Now, let us consider an example. There are three rain gauge stations available to characterize 

the rainfall of a catchment, whose shapes can be approximated by straight lines joining the 

coordinates. 

These are the coordinates provided for the boundary of the catchment, and the location of the 

catchment outlet is given as one of these points. Additionally, the coordinates of the rain gauge 

stations and the annual precipitation recorded in 2023 are tabulated below. Our task is to 

determine the mean rainfall of the catchment using the two-axis method. 

 

Now, applying the two-axis method to this problem, we start by joining the given coordinates 

of the catchment boundary with straight lines, as we approximate their shape. These various 

coordinates are connected by straight lines, and the rain gauge stations, P1, P2, and P3, are 

located using their given coordinates. 

The procedure begins by determining or locating the two axes: the minor and major axes. First, 

we join the watershed outlet to the farthest point on the boundary with a straight line. This 

outlet serves as our reference point. Then, we find the farthest point on the boundary, denoted 

as point Y in this case. By drawing a straight-line connecting points X and Y, we establish the 

minor axis, represented by line AB. Next, we draw a perpendicular bisector of this minor axis 

AB, resulting in line CD, which represents the major axis. 



 

With the major and minor axes located, the next step is to draw straight lines from the gauge 

stations to the farthest ends of the two axes. For example, for station P1, considering the minor 

axis, point B is the farthest, and for the major axis, point D is the farthest. Hence, we join lines 

P1D and P1B. Similarly, for station P2, we join lines P2B and P2D, and for station P3, we join 

lines P3C and P3A. The coordinates of these points can be determined once the minor and major 

axes are drawn. 

For station P1, the relevant distances are P1D, P1B, and the distance between PD. Knowing 

these coordinates, we can calculate the value ofƟ1 using the relationship we previously 

discussed: Ɵ1 = cos-1((P1D2 + P1B2 - BD2) / (2 * P1D*P1B)). The obtained value forƟ1 is 71 

degrees. Similar calculations are performed for stations P2 and P3, yielding Ɵ2 as 101 degrees 

and Ɵ3 as 71 degrees. 

 

Next, we calculate the weights for the different stations. The weight (Wi) for each station (i) is 

determined by dividing Ɵ(i) by the sum of all thetas. The mean rainfall (r bar) is then calculated 

using the formula: r bar = Σ (Wi * Pi) / ΣWi, where Pi represents the recorded rainfall at station 

i. 

These calculations are shown below: 



So, we have determined thatƟ1, Ɵ2, andƟ3 for stations P1, P2, and P3 are 71, 101, and 71, 

respectively. The total angle, Ɵ, is 243 degrees. The weights for each station will be Ɵ1/243, 

Ɵ2/243, and Ɵ3/243. Therefore, for station P1, the weight is 71/243, for station P2 it is 101/243, 

and for station P3 it is 71/243. Multiplying each weight by the corresponding rainfall value 

from the table, we get the products: 71/243 * P1, 101/243 * P2, and 71/243 * P3. The sum of 

these products yields 1102.32. 

Thus, the mean aerial rainfall of the catchment is 1102.32 millimetres using the two-axis 

method. Although this process may seem lengthy, it can be easily programmed and is a popular 

method for determining mean aerial rainfall. 

 

Now, let us discuss the estimation of missing data. 

In the previous lecture, I mentioned the sources of rainfall data, with one major source in India 

being the India Meteorological Department (IMD). Data can be obtained from their website or 

through CDs they typically provide. However, it's common to encounter incomplete records at 

rainfall stations. For instance, in a one-year dataset, there might be missing data for 10 days in 

May or 5 days in December. 

Missing data is a prevalent issue, often resulting in incomplete records. In such cases, it 

becomes necessary to estimate the missing data to utilize these partial records, especially in 

areas with limited data availability. While discarding incomplete records might be feasible with 

abundant data, it's essential to estimate missing data when dealing with limited datasets. 

To estimate missing rainfall data, we typically rely on data from neighboring stations. Various 

methods can be employed for this purpose, including the arithmetic average method, normal 

ratio method, and inverse distance method. We will explore these methods one by one. 



 

The first method is the arithmetic average method. If the normal annual rainfall of the 

surrounding stations is within 10 percent of the normal rainfall at station x, which has missing 

rainfall data, we can proceed with this method. Essentially, in a catchment where we're 

analyzing rainfall data and find a missing record, we gather corresponding data from 

neighboring stations. The initial analysis involves examining the normal annual rainfall of these 

stations. 

Normal rainfall represents the average rainfall over a long period, typically using 30 years of 

record. By comparing the normal rainfall of station x with that of neighboring stations, we 

assess whether the variation falls within 10 percent. If the normal rainfall of station x is within 

this threshold of the normal rainfall of surrounding stations, we can simply compute a simple 

arithmetic average of the recorded data from the neighboring stations to fill the missing record 

at station x. Mathematically, this involves summing the rainfall values from neighboring 

stations (R1, R2, ..., Rn) and dividing by the number of neighboring stations. 

The next method is the normal ratio method. In this approach, the normal rainfall of station x 

and the surrounding stations are utilized to determine the weights for the surrounding stations. 

Unlike the arithmetic average method where equal weight is assigned (1/n), in the normal ratio 

method, the weight assigned is the ratio of the normal rainfall of station x to that of the 

neighboring station. 

So, basically, in this case, R̄ represents the normal rainfall. R̄x and R̄a or R̄x, R̄b, R̄c assign the 

weights. In this method, the normal rainfall of station x and surrounding stations are used to 

determine the weights for surrounding stations, and then the missing rainfall record is 

calculated using this relationship. Essentially, it involves multiplying the weight assigned by 

the rainfall at that particular station and dividing by the total number of stations. 



 

Let's consider an example of the estimation of missing rainfall: 

Rain gauge x was not operational during a storm. The rainfall amounts at three adjusted 

stations, A, B, and C, during the storm were 32, 42, and 49 millimetres, respectively. The 

normal rainfall for the gauges is tabulated below. Estimate the amount of rainfall at station x 

during the storm. 

 

To determine the missing rainfall data, we first need to identify the appropriate method for 

estimating the missing data by assessing the variation of normal rainfall of neighboring stations 

with respect to station x. The normal rainfall of station x is given as 694, and we consider a 10 

percent variation. So, 10 percent of this value is 69.4, yielding a range of 624.6 to 763.4. 

Therefore, the normal rainfall of neighboring stations should fall within this range to use the 

arithmetic average method; otherwise, we must use the normal ratio method. 

Since the normal rainfalls of the neighboring stations (726, 754, and 760) are within this range, 

we can use the arithmetic average method. In this case, as we saw, equal weights are assigned. 

Therefore, the average rainfall will be the sum of the rainfalls at neighboring stations divided 

by the number of stations, resulting in (32 + 42 + 49) / 3 = 41 millimeters. Thus, the missing 

rainfall at station x during the storm is 41 millimeters. 



 

 

For another example, let's consider that one of the four monthly rain gauges in a catchment 

developed a fault in a month when the other three gauges recorded rainfall of 48, 458, and 69 

millimeters, respectively. If the normal rainfall of the broken gauge is 707 millimeters, and that 

of the three surrounding gauges is 741, 769, and 855 millimeters, respectively, estimate the 

missing monthly rainfall for the broken gauge. 

In this case, the normal rainfall for station x, for which we need to find the missing data, is 

given as 707, with a 10 percent range of 70. 

So, basically, in this case, the 10 percent range for 𝑅𝑥Rx is 636.3 mm and 777.7 mm. That 

means, this is the cutoff to decide the method as far as the normal rainfall at neighboring 

stations is concerned. Now, if we look at the values of normal interval rainfall at the 

neighboring stations, we find that a value of 855 is beyond this range. So, that means, the 

normal interval rainfalls are not within the range. Therefore, we cannot use the arithmetic 

average method and need to resort to the normal ratio method, which is what we will use here. 

 

 



In this case, the formula is given, but we can also calculate the weights individually for each 

station. That is, by the normal range rainfalls of station 𝑥 and 𝑎𝑏, 𝑐a, bc, combined, you can 

use the formula like this, where the values of 𝑟𝑎, 𝑟𝑏, 𝑟𝑐,  are the recorded rainfalls, 𝑟ˉrˉ represents 

the normal rainfalls, and the number of stations is 3. By inputting the values here, we get an 𝑟𝑥 
value of 52 mm. That means, the missing monthly rainfall at the broken gauge is 52 mm. So, 

this data, as I already mentioned, will be filled in the record, and then subsequent analysis using 

the other data will be done. 

 

 

Now, we come to the next method, which is the inverse distance method. In this method, the 

distance between station 𝑥 and the surrounding stations is used to determine the weights for the 

surrounding stations. So, that simply means we must rely on the weights, and the weight 

assigned to a particular station is given by 1/𝑑𝑖2, where these are the distances between station 

𝑥 and the neighboring stations. 

In this case, what happens is that suppose this is the problem station 𝑥x and these are our 

neighboring stations. So, the first thing we have to do is measure the distances by knowing the 

coordinates. We already know we can easily calculate the distances between two points. These 

distances d1 to d5 are estimated, and once the distances are known, then we can find out the 

weights assigned to different stations. And then using this equation where the numerator is the 

sum of PiWi and the denominator is the sum of the weights assigned to different stations, and 

using this, we can find out the missing rainfall at station 𝑥. 



 

 

Let us take an example based on this method. Rainfall recorded at different rain gauges during 

an event is tabulated below for rain gauges A, B, C, D, and E. The coordinates are given as 2, 

3, 2, 8, and so on, and the rainfalls recorded at these stations are also provided. It was noticed 

that rain gauge 𝑥, located at 5, 5.5, was not operational during the event. Determine the missing 

rainfall at station 𝑥 using the inverse distance method. So, that is the method we must use in 

this case. 

 

 

Now, we know these stations, we know their coordinates, and we have been given the rainfall 

values. So, obviously, we know most of the things. The rain gauge stations are plotted using 

the given coordinates, and we can find the distance between the rain gauges by this formula. 

We already have used this. For example, the distance of rain gauge station A, which has a 

coordinate of 2, 3, and station 𝑥, which has a coordinate of 5, 5.5, can be calculated by this 

relationship using this 𝐷1 as √ ((5−2)2+(5.5−3)2, which comes out to be 3.91 kilometers. And 

we know that the weight is 1/𝐷𝑖
2. So, the weight for station A will be 1/𝐷1

2, which comes out 

to be 0.066. That is how we can assign the obtained weight to this particular station. 



 

 

Using a similar procedure, we can determine the distance and the weights for different rain 

gauge stations B, C, D, and E as well. And then, obviously, we need to calculate PiWi. So, the 

distances shown here, station A we already calculated, and these are the distances for other 

stations B, C, D, and E. So, this is station A which we already calculated, and this is for B, C, 

D, and E. So, these are the distances, these are the weights we calculated, and this is the PiWi, 

and the sum of 𝑊𝑖 is this, the sum of  PiWi is this. We know that the ratio of these two, that is, 

missing rainfall at station 𝑥, can be obtained by finding out the ratio of these two. So, (25.350 

/ 0.365) gives us a value of 69.5. So, missing rainfall at station 𝑥 is 69.5 mm using the inverse 

distance method. 

With this, we come to the end of this chapter, where we saw the two-axis method for 

determining the mean annual rainfall. Then, we saw the three different methods of estimating 

the missing rainfall record. I hope you got the points. In case of any doubt, please raise 

questions on the forum, and, please give your feedback so that we can improve things. Thank 

you very much. 

 

 



 


