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Hello friends, welcome back to this online certification course on Watershed Hydrology. I am 

Dr. Rajendra Singh, a professor in the Department of Agriculture and Food Engineering at the 

Indian Institute of Technology, Kharagpur and we are in Module 1. This is Lecture Number 3 

and the topic is Rainfall Data Analysis Part 1. In this lecture, we will talk about the presentation 

of rainfall data, the consistency of rainfall records and the estimation of mean rainfall. 

 

Now, coming to the presentation of rainfall data, if you remember from the previous lecture, 

we discussed the measurement of rainfall. We mentioned that the typical instrument used is 

called a rain gauge which comes in two types: recording and non-recording. The non-recording 

type includes Simon's rain gauge while the recording type includes float or siphon types as well 

as weighing bucket or tipping bucket rain gauges. These rain gauges along with radar and 

satellites are used for measuring rainfall. Once rainfall data is measured typically by institutions 

such as the India Meteorological Department the data must be preserved and presented in a 

certain form. 



 

Now, one of the most common ways of preserving or presenting rainfall data is in the form of 

a mass curve which is basically a plot of accumulated rainfall against time. Here, you can see 

this mass curve representing rainfall. As you can observe accumulated precipitation in 

millimeters is plotted against time in hours. This curve essentially indicates cumulative rainfall 

signifying instances of rainfall events. For instance, the initial spike indicates the first storm 

which had a rainfall of 16 mm. Subsequently, the flat horizontal line denotes a period with no 

rainfall occurrence between 20 and 40 hours. Following this dry spell a second rainfall event 

is depicted resulting in approximately 32 mm of rainfall. Then, once again the curve remains 

flat indicating no further rainfall. This method allows us to record data either on a daily or 

weekly basis. Interestingly, it's noteworthy that both the weighing bucket and siphon type rain 

gauges automatically generate mass curves. This automated process makes them commonly 

used for preserving rainfall data. 



 

Another method of preserving rainfall data is through hyetographs which are essentially bar 

charts representing rainfall intensity over time. In this representation rainfall intensities are 

plotted against time in hours depicted as bars on the chart. Consequently, we need to consider 

time intervals or slices. In this case 8-hour slices are utilized: 0 to 8 hours, 8 to 16 hours and so 

forth. Calculating the area under each bar reveals the amount of rainfall within that specific 

time slice providing a comprehensive view of rainfall distribution. Summing these areas over 

the entire period yields the total rainfall depth. For instance, over a 48-hour period the total 

rainfall amounts to 10.6 millimeters. 

Hyetographs are typically derived from mass curves which might seem complex at first glance. 

However, they play a crucial role in various applications including the analysis of infiltration 

rates. In future lectures, we will delve into the significance of hyetographs and their application 

alongside discussions on average infiltration rates. Another method of preserving rainfall data 

is through depth area duration curves which we will explore further in subsequent discussions. 



 

So, basically as you can see here the depth of rainfall versus the average rainfall depth is plotted 

for different durations of rainfall. These 2-hour storms, 3-hour storms simply indicate the 

duration of the storm. The aerial distribution characteristics of a storm of a given duration are 

reflected in its depth-area relationship. As you can see the depth area and storm duration are all 

shown here. Typically, when we discuss the depth-area relationship for a given duration of 

rainfall, the average depth decreases with the area in an exponential fashion as given by this 

formula where �̅� represents the average depth of rainfall over the area, 𝑝0 is the highest amount 

of rainfall at the storm centre and 𝑘, h and r are constants with a representing the area. Now, as 

you can see the average depth decreases with the area exponentially which we can also observe 

here. The average depth decreases as the area increases showing an exponential decrease. 

Following this relationship the average rainfall depth decreases exponentially with the area for 

rainfall of different durations. So, as you can see here for different durations of course when 

the duration of the rainfall is longer, the magnitude of total rainfall will be higher. However, in 

terms of depth versus area. It decreases exponentially. This is how the depth-area duration curve 

preserves the data. 



 

Then, we come to the consistency of rainfall records. Basically, the consistency of rainfall 

records is analysed using a double mass curve. The consistency in a station's record is checked 

by plotting the double mass curve. So, whenever we take the data of a particular station and as 

part of quality analysis, we want to determine whether the data of the station are consistent or 

not over a period of time over the period of the record. We can do this analysis by plotting the 

double mass curve. Here, the cumulative annual rainfall of the station is plotted against the 

average annual rainfall of neighbouring stations in reverse chronological order. 

So, as we've observed in a catchment, we can have several rain gauges installed. Typically, we 

design the gauge network accordingly. Suppose, for example we have a station here and we 

want to analyse the data from this particular station. Let's call it X. Obviously, to carry out a 

consistent analysis, we collect data from all neighbouring stations. 

To plot the double mass curve, we plot the cumulative annual rainfall of station X against the 

average annual rainfall of neighbouring stations. Therefore, we collect data from neighbouring 

stations to determine their average annual rainfall and then plot the cumulative average annual 

rainfall of these neighbouring stations against the cumulative annual rainfall of station X. This 

can be observed in the plot displayed. 



 

If the data are consistent, it is expected that they will follow a straight-line relationship akin to 

a 45-degree line. However, a change in slope of the line indicates inconsistency. If the slope of 

the line changes, it suggests that the data are not consistent. 

Examining the figure it's apparent that the station data is inconsistent. There's a noticeable 

change in the slope of the line specifically in 1995. This indicates the year in which the 

inconsistency occurred. Therefore data prior to 1995 and post-1995 follow different trends or 

patterns. 

Today, we're going to discuss why we plot data in reverse chronological order. Essentially, the 

reason behind this approach is quite significant. We opt for reverse chronological order wherein 

the latest data is plotted first and the oldest data comes last simply because it's anticipated that 

we will continue to utilize the same instruments, locations and observe consistent data trends 

in the future. 

In a double-mask curve when we correct data, our objective is to align inconsistent data with 

the current trend. Therefore, we plot the data in reverse chronological order and then analyse 

whether the data points are consistent or not. Inconsistencies in rainfall records can stem from 

various factors such as changes in instruments alterations in the rain gauge's location or shifts 

in the surrounding environment. 

For instance, let's consider a specific station where the rain gauge was initially functioning on 

one wall but later the instrument itself was replaced. Consequently, the recording pattern might 

have been altered due to the change in instruments. Similarly, in certain regions a slight 

relocation of the rain gauge can occur. This relocation can result in changes in the recorded 

rainfall patterns due to the shift in the gauge's location and its surrounding environment. 



 

Moreover, changes in the surrounding environment can also contribute to inconsistencies. For 

example, if a location with a rain gauge suddenly sees the construction of a tall building nearby 

or the growth of a new tree, it can affect the rainfall trend observed at that particular location. 

So, understanding these factors is crucial when analysing rainfall data as it helps us discern and 

account for any inconsistencies that may arise over time. 

So, due to changes in surrounding conditions, the data may become inconsistent. Essentially to 

correct the data we analyse the slope of the line OA which represents x divided by y. Similarly, 

we examine the slope of line AC which is A divided by B. Then we determine the correction 

factor SOA divided by SOV using the slopes of the two lines. This correction factor is crucial 

for adjusting the data. Rainfall data prior to 1995 needs to be multiplied by this correction 

factor. I believe clarity will emerge once we delve into an example. Let's consider one now. 

We'll analyse the annual rainfall at station M and the average rainfall at neighbouring stations 

near M as presented in Table 1. We'll employ the double mass curve to assess the consistency 

of rainfall data at station M and calculate the corrected rainfall if inconsistencies exist. 

Here's the table displaying rainfall data at station M (in millimeters) and the average rainfall at 

various neighbouring stations near M (also in millimeters). The data spans from 1993 to 2023. 

Notably, the data is already arranged in reverse chronological order as required for the double 

mass curve analysis. If the data were not in this order, we would have to rearrange it 

accordingly. 



 

Now, as we observed in the double mass curve, we need to plot the cumulative annual rainfall 

of the station against the cumulative rainfall of neighbouring stations. So, the first thing we 

have to do is to obtain the cumulative rainfall at station M. It is essentially the cumulative data 

of this column. The first value of course remains 612. The second value is the sum of these two 

values, which is 612 plus 426 resulting in 1038 and so forth. Similarly, the P sum P average 

millimeters which is the cumulative average rainfall of neighbouring stations is derived from 

summing up the cumulative values of this average rainfall value. 

The first value here is 588. The second value will be the sum of these two which is 998. The 

third value of course will again be a let 787 to 817, 85 and so on. Thus, cumulative values are 

calculated and then of course we plot the graph between the cumulative annual rainfall of 

station M and the cumulative mean rainfall value of neighbouring stations in reverse 

chronological order. This is how we generate the graph. Therefore, if we plot the graph between 

the cumulative annual rainfall of station M and the neighbouring station's mean rainfall then 

this is the graph we obtain referred to as the double mass curve. 



 

Now, we have to analyse whether the data are consistent or not. If the data are consistent, then 

all the data will follow the 45-degree line indicating no change in the slope of the line anywhere. 

However, as you can see here, there is a point where the slope of the line changes. This implies 

that between O and A and A and C, the slope of the line is not the same; it changes. 

So, from the year 2000 to 2011, specifically in 2011, there was a significant change observed 

in the slope of the line, indicating inconsistency in station data. Consequently, any data 

collected prior to 2011 needs correction. To achieve this correction, we must determine a 

correction factor which we've already identified as the ratio of the slopes of two lines. 

To calculate this, we've employed a method using Excel to fit straight lines resulting in the 

equations displayed here. For the segment OA, the equation yields a slope of 1.0171. Similarly, 

for the segment AC, the slope is 0.8774. Therefore, the slope of line SAC is 0.8774. The 

correction factor is then the ratio of these slopes resulting in 1.16. 

Hence, all data preceding 2011 must be multiplied by this correction factor to align with the 

current recording trend at this station. This instruction is indicated by 'rainfall data prior to 2000 

has to be multiplied by the correction factor. 



 

It's worth noting that while the figures I've presented illustrate a typical case. There are 

instances where the line might deviate. In such cases, we still need to calculate the slope and 

correction factor to adjust the data to align with line AB. 

So, this may not always be the case; it won't always fall below the 45-degree line. Therefore, 

for the final values if you observe the PM, it means that for the station prior to 2011, we will 

need to obtain fresh values. Prior to 2011, the data is multiplied by a factor of 1.16. In this table 

the PM value in 2010 is 998. 

This is the 9th, so it needs to be multiplied resulting in 1158.84. In fact, all data prior to 1993 

needs to be multiplied by 1.16 in order to obtain corrected data. This is the consistent data we 

will be using for further analysis. 

Now, let's discuss the estimation of mean rainfall which is essentially the rainfall measured by 

rain gauges in a catchment. We have multiple rain gauges and the recorded rainfall at these 

stations is referred to as point rainfall. So, the data we obtain from a specific station is known 

as point rainfall. However, to derive a representative value for the entire catchment, we need 

to convert the point rainfall from various stations into an average over the basin. 



 

The commonly used methods for this purpose include the arithmetic average method, Thiessen 

polygon method, isohyetal method and two-axis method. Let's delve into each of these methods 

one by one. 

 

Let's start with the arithmetic average method. As the name suggests, it's the simplest method 

where we calculate the arithmetic average of all the recorded points. However, there's a 

condition: this method is applicable when the area is hydrologically homogeneous and the rain 

gauges are uniformly distributed over the catchment. 

The first condition is that the hydrological behaviour of the catchment should be uniform 

throughout. So, there are ways to determine whether the area is hydrologically homogeneous. 

Another condition is that rainfall should be uniformly distributed over the catchment to 



represent the data from all parts of the catchment. If these conditions are met, then simply 

taking the arithmetic average of the values recorded at various stations gives the mean rainfall 

of the basin. 

The mean rainfall (�̅�) is calculated as the sum of all the station values divided by the number 

of rain gauge stations. In essence, in the arithmetic average method each station is given equal 

weight which is n where n is the number of stations. So, in this method each station contributes 

equally to the final average. 

 

Let's illustrate this with an example: In a year, the annual rainfall at different stations in an area 

is given below. We need to determine the mean annual rainfall of the area. 

So, there are 4 stations: 𝑟1, 𝑟2, 𝑟3 and 𝑟4 and the recorded rainfalls in the year are 800, 2009, 

1806 and 1103 respectively. Obviously, we presume or assume that the area is hydrologically 

homogeneous and the rain gauges are uniformly distributed. In that case, we can simply take 

an arithmetic average of the values. So, the sum of the values divided by the number of rain 

gauge stations will give us the average value which is 1180 millimeters. Thus, the mean annual 

rainfall using the arithmetic average method comes out to be 1180 mm. 



 

Now, the next method is the Thiessen polygon method which is one of the most popular 

methods for estimating the mean aerial rainfall. In fact, most computer software also uses this 

method. Here, polygons defining the area represented by various rain gauge stations are created 

by drawing perpendicular bisectors to the lines joining the rain gauge stations. We will see the 

detailed procedure in the next slide. 

Then, the mean annual rainfall is estimated using the following equation: 

∑ 𝑖𝑛
1  = 𝑎𝑖𝑟𝑖 

Where 𝑟𝑖 is the rainfall at station 𝑎𝑖 is the area represented by station 𝑖 and n is the number of 

rain gauge stations. In this case, 𝑎𝑖 divided by the sum of all 𝑎𝑖 's gives the weighing factor for 

the particular station. 

Today, we'll delve into how weights are assigned based on the area of the polygon represented 

within a particular catchment. First, let's outline the procedure. We start by drawing the 

catchment area to scale and marking the rain gauge stations on it. Here, we have six rain gauge 

stations labelled from 'a' to 'f'. It's worth noting that some stations may lie outside the catchment 

boundary. 

Next, we connect each station with straight lines forming a triangular network. This network is 

depicted by solid lines on the diagram. 

Moving forward, we draw perpendicular bisectors within each triangle represented by blue 

dashed lines. These bisectors are extended to intersect with each other and with the catchment 

boundary. This process is repeated for each triangle within the network. 

The resulting bisectors enclose polygons around each station, defining the area represented by 

that station. For instance, the polygon around station 'a' represents its area within the catchment. 



To calculate the area of each polygon one can use a planimeter or convert the area into a smaller 

unit. Alternatively, the entire network can be plotted on a graph sheet to obtain representative 

values. 

For stations located near the catchment boundary, the boundary lines serve as the closing limit 

of the polygon. This aspect is crucial, as demonstrated by station 'e' which lies outside the 

catchment boundary. 

 

In summary, this method allows us to assign weights based on the area represented by each 

station within the catchment, facilitating accurate analysis and prediction of rainfall patterns. 

That means the weights are assigned based on the area of the polygon represented within the 

particular catchment. Now, coming to the procedure, what we do is draw the catchment area to 

scale and mark the rain gauge stations on it. So, you can see here we have 6 rain gauge stations 

from 'a' to 'f' and some stations may be marked outside the catchment boundary. Now, what we 

do is join each station by a straight line (shown here as a solid line) to create a triangular 

network. So, as you can see, a triangular network is created. 

Next, what we do is draw perpendicular bisectors (shown here in blue dashed lines) on each 

triangle and extend the bisectors to meet other bisectors and the catchment boundary. So, we 

draw these perpendicular bisectors like this and also extend them so that they intersect each 

other and the catchment boundary, here and here and so on. That is the procedure followed in 

each case. Now, these bisectors form a polygon around each station. So, as you can see for 

station 'a' here this is the polygon. 

So, that is the area being represented by Station A. These bisectors form polygons around each 

station. The area of each polygon gives the area represented by the station and it may be 

calculated using a planimeter or by converting the area into small units. Alternatively, you can 

use a graph sheet to plot this entire thing and obtain the representative value. For stations close 

to the catchment boundary, the boundary lines form the closing limit of the polygon. This is 



important because, for Station E in this case, although it is outside the catchment boundary, it 

still holds significance. 

So, basically, this is the area. The catchment boundary forms the limit for this area. The area 

within the polygon, but bounded by the catchment boundary on one side represents Station E. 

Let's take an example to estimate the average precipitation using the Thiessen polygon method. 

These are the stations with recorded rainfall. As discussed, we will create the Thiessen polygon 

network, extend it, find the representative area of different stations, and then determine the 

catchment area. 

 

So, for example, let's consider station A, where the area represented by the station is 72 square 

kilometers. Then, of course we multiply the area by the catchment rainfall to get the total 

rainfall for that area. To calculate the average precipitation, we know that it's the summation of 



the product of area and rainfall divided by the total area. So, when we sum these values, we get 

2572.6 and when we sum the areas, we get a value of 344 square kilometers. 

Thus, the average precipitation comes out to be 7.47 millimeters using this method. Now, let's 

move on to the last method which is the isohyetal method - the third method. in fact, isohyets 

are the lines joining points of equal rainfall magnitudes and they are drawn by interpolating 

point rainfall data. So, essentially isohyets represent areas of consistent rainfall magnitude. 

The mean annual rainfall is estimated using the following equation: the area included between 

two isohyets is determined and the average of the two stations within that area is taken into 

account. The sum of these values divided by the total area provides us with the average rainfall. 

This method is particularly useful in hilly terrains. 

 

Let's consider an example here. The first step is to draw the catchment area to scale and mark 

the rain gauge stations on it. This is precisely what we have done here; we've marked the 

catchment area and the rain gauge stations, indicating the recorded rainfall values. Record the 

rainfall values at each station for the period of interest. In this case, we are dealing with daily 

rainfall data. Next, draw the isohyets of various values by utilizing the point rainfall data and 

interpolation. 

For instance, to draw the 3 mm isohyet we require surrounding data points. If, for example, we 

aim to depict 4 mm we already have the recorded value. However, to establish where 4 mm 

lies between 3 and 5 we employ interpolation. Similarly, we interpolate to determine the 

position of 4 mm between 3 and 5.5 and between 3 and 6. By utilizing data points such as 3 

and 6.5, we can accurately interpolate the location of 4 mm. Through this interpolation process, 

we obtain sufficient points to delineate the isohyet of a known value. 



 

So, that is what we have done here. Similarly, we will draw 5, 6, 7, 8 and so on. That is how, 

for the given area, we will draw the isohyetes of different values. Then, we determine the area 

between each pair of isohyetes. That means between 6 and 7 for example we will find out the 

area between 6 and 7 and so on. This can be done either by planimeter by converting the areas 

into smaller geometrical shapes or even by using a large-sized graph sheet. 

Now, let's take an example or problem on the isohyetal method. We will use the isohyetal 

method to determine the average precipitation depth within the basin for the given storm for 

which the isohyetes are already provided. The isohyet interval is also given. The average 

rainfall values between the isohyetes such as between 10 and 20, 15, 20 and 30 will be 25 and 

so on. Then, we have to find out the catchment area. For example, for 𝐴2 which lies between 

20 and 30, we need to find the area within the basin. 

𝐴1, 𝐴2 and so on, will measure this area. Then, we multiply the area by the average rainfall to 

obtain the sum of the values. The sum of these values is 16,800 and the total area of the 

catchment is provided. Dividing the sum by the total area, we get the average aerial rainfall of 

the basin which comes out to be 15,800 mm. 



 

With this, we close today's lecture. Thank you very much for listening, and please feel free to 

give your feedback and raise questions on the forum so that we can address them. Thank you 

very much. 

 


