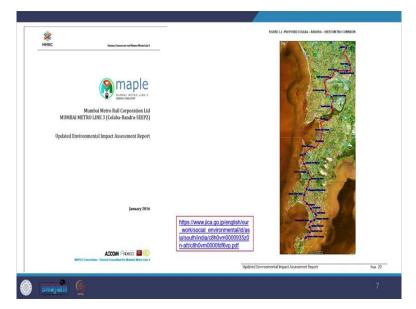
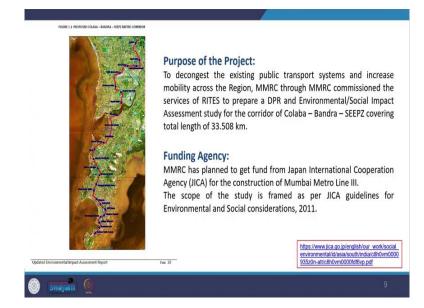

Environmental Impact Assessment Professor. Harshit Sosan Lakra Department of Architecture and Planning Indian Institute of Technology, Roorkee Lecture - 58 EIA Case Study – Mumbai Metro Line 3, Colaba - Bandra - SEEPZ

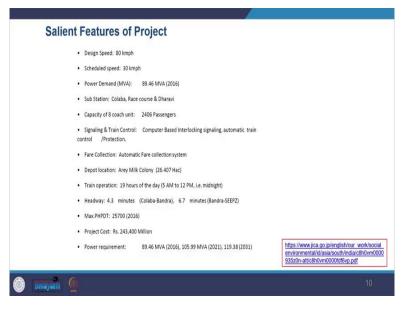
Welcome to the course Environmental Impact Assessment. And in today's session, we are going to look at the case study. In particular, we will look at a case study of Mumbai Metro line 3, which is proposed to run from Colaba Bandra to SEEPZ. When we do this case study will look at all the aspects that we have covered so far from the environmental concerns to legislation to different methods, public participation, and how we look at the alternatives and all that.


So, here you will see how whatever we have studied how that culminates into a case study. So, this is a very specific case study, but we will look at that and see how we are prepared and how does the case study looks like.

(Refer Slide Time: 01:13)


So, the coverage would include that will today in today's session, we will just look at the case study and the expected learning outcome is that you should be able to relate all the learnings from the environmental status to legislation, to different methods, to process, to public participation and alternatives. So, all the understanding you should be able to review from this particular case study.

(Refer Slide Time: 01:42)


So looking at this case, which is proposing to have Mumbai Metro line 3, you can see in the diagram as well. So, it is proposed to run from Colaba Bandra to the SEEPZ area. If you remember, we had seen the social impact assessment for this particular report itself.

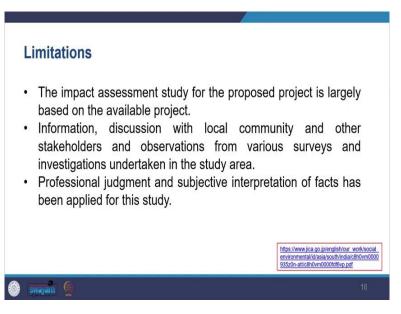
(Refer Slide Time: 02:06)

So, the looking at the purpose of this project, so, it is mainly for decongesting, the existing public transportation system and increasing the mobility across the region. So, through this project, they are trying to reduce the environmental impact which is happening. So, through this project, they are trying to do this. We see that it has been funded by JICA, which is the Japan International Corporation Agency. And they are funding it for the construction of Metro Line 3. And if you look at it, this particular document provides the environmental impact assessments.

```
(Refer Slide Time: 02:51)
```


So, looking at the salient feature of the project, we see that it has a design speed of 80 kilometers per hour and, a scheduled speed of 30 kilometers per hour. And the range of power demand, the substations which will be there, the capacity of 8 coach units. So, that is going to take 2406 passengers and signaling and train control which will be their, fare collection, deport location, which is at Arey Milk colony, which you must have heard in the news as well.

And then also train operation, what will be the hours of operation and what is the headway. And then other details of the project costs, you can see, it is in the range of 243,400 million Indian currency, so you can see and what would be the power requirement. So, that is the scale of the project we are looking at.


(Refer Slide Time: 03:51)

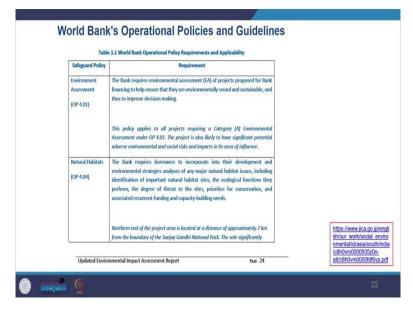
The objective of the study, if you will see these EIA documents is to facilitate MMRDA which MMRDA which is the Mumbai Metropolitan Regional Development Authority in preparation of the EIA report as per the requirement of regulatory and funding agency. So you see how every EIA is made within the regulatory or the funding agencies' requirements. So we see the scope of this EIA, which includes the impact resulting from all the phases of construction pre-construction, construction operation phases of this Metro corridor, and whatever ancillary functions deport and substations which will come up.

And since MMRC, has planned to get funding from the Japan International Cooperation Agency for the construction of the Mumbai Metro line, you will see that usually, Moe FCC does not require their, as per the list which we have studied it does not fall under environmental clearance, but since it is required by the funding agency, the environmental impact assessment report was prepared for this.

(Refer Slide Time: 05:07)

So, looking at this limitation of this particular EIA report, you will see that the impact assessment study for the project was prepared largely based on the available project information. So, information they had and also discussions with the local community and stakeholders, and observations from various studies and investigations they undertook. And a lot of professional judgment and subjective interpretation of facts have been applied to the study.

So, they are also giving their limitation and places and you will see that an impact assessment study has been undertaken for alignment that was approved. So, you see the design was already there by MMRCA, done in 2015. So, based on that, the impact assessment in been done. So, how clearly they are stating based on what has been done? And then you see that, since Japan International Cooperation Agency JICA, was involved, they required that the EIA has to be done as they are the lending agency here.

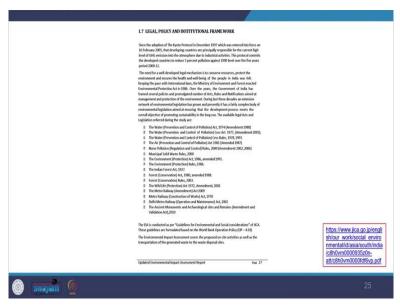

So, according to them, they required that there should be a transparent and accountable process, as well as the active participation of key stakeholders is required. So, we had discussed this, that even funding agencies have their requirements. So, according to that EIA was prepared for this and they aligned with the World Bank

operation policy 4.0, which also we have studied. So you see how each thing are aligning here and how that references have been made.

And even you will see that JICA recognizes certain principles, that one has to undertake, while they are dealing with projects relating to a wide range of environmental and social impact, which has to be addressed through the project, and then how different measurements of environmental and social considerations have to be taken at the early stage of the project and then how accountability and transparency have to be maintained.

And how stakeholders' opinions have to be incorporated what kind of disclosures have to be make made and then how one needs to look into the capacity of the organization and operations of the project and then also implementation of the projects while undertaking environmental and social considerations. So, how even the implementation have to be undertaken there?

(Refer Slide Time: 07:45)

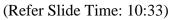


So, here you see the World Bank's operational policies and guidelines which are given in the EIA report itself. So which they have acknowledged and then they have identified what are the requirements. So, this also you have already seen, so, environmental assessment, operational policy 4.01 Environmental Assessment, then you see the natural habitats, how they have to be taken care of.

	large neural health which the particular wave is a part of the excessing of the MANN River, Days there with its summyone forces, while the remains force of the Sange Councils Manual and the All to avait significant network health in clause providing for the project series.	Physical Cultural Resources (OP 4.11)	and premission will be obtained from the district administration for the same. The borrower needs to addenses impacts on physical cultural resources in projects proposed for basis financing, as an integral part of the environmental ameniment (EA) process.	
Post Management (DP-4.09)	In a parsing a project that will include part management, the find an answer the appartsh of this cases projection of the second	encite i	The proposed silpument is possing classer to three following mousements, CFT Railway fraction (world theritage cultural property), BMC Railfag and Wetteren Railway Prodio Classins', Uttroso care world for tables as their on significant impact is anticipated on the historical structures due to project activities during constructions motivations.	
Involutary Resettlement (OP 4.12)	Ward Back inception that backetary methemot may cause server long from backbay, importednesse, and environmental damage selece separativite measures are caushaby planaet and carled cut.	Safety of Dams (GP 4.37)	When the Back finances a project that includes the construction of a new dum, it requires that the dambe designed and its construction supervised by experimental and competent professionals.	
	The land required for the project has been scapired by the state open-ement on per the amendment set justs in the Moley Rell Act and Land Acquisition Act. The project this setuals loads physical and scapitalism displacement, invest the requirements state this Poly and the applicable join the project. A detailed the project Rell Act and the applicable join the project. A detailed the state of the setual state of the state of the state of the state.	Project in Disputed Areas	This supposed will not be applicable to this project. Projects in Disputed Areas may affect the relations between the Bank and its becomers, and between the classifiest to the disputed area. Therefore, the Bank	
Indigenous People 109:4103	febblishing out frequency from his tens property to be implemented by the project proposes. The basis propulses that the kinetices and cultures of indepress. Propiles are instructively finish to be loads on which they live and the natural tensors on which they depend.	(09 2.60)	will only fasce projects indiputed areas when other there is no objection from the other claimant to the dispoted areas or when the special circumstances of the case support Basis financing, rotmithatanding the objection.	
	This subground will not be applicable to this project.		This sufequard will not be applicable to this project. The project will ensure that all land acquired is transferred in the some of project and no disputed land is involved.	
foreiti (0P.4.36)	If a pairs involves applicat common an objection of shored lymp, or induct another display that the field advectory on an Orbital, and the field determined these processing and the pairs of the pairs of the pairs interpretention angle downsetion that can avoid boost from the parient subplocation (charring the environmental data), the field and function that project provided that it is comparate appropriate melliphic measures.	Projects on International Waterways (OP 7 50)	The basic receptors that the cooperation and pools if of sparsan is essential for the efficient use and protection of the waterway. Deredors, it attackes grant importance to sparsary inside appropriate appreciation or availables. In these purposes for the entire waterway or any part thereof.	https://www.jica.go.j sh/our_work/social nmental/id/asia/sout
	The proposed project door not involve diversion of firest land, However the development will entitle carring of trees along the adaptment right of way. (2018)		This sofeguard will not be applicable to this project.	/c8h0vm0000935z0 att/c8h0vm0000fd6

Then how even the pest management involuntary resettlement, which also we have seen. Indigenous people's consideration has to be undertaken even that has been addressed, how the forest, physical cultural resources, the safety of dams, projects, and disputed areas project on international waterways. So, all these have been acknowledged and referred to in the EIA document, As you see, they have also addressed the equator principle 3, also that reference has been made. So, you have also gone through that while we studied the subject.

(Refer Slide Time: 08:47)

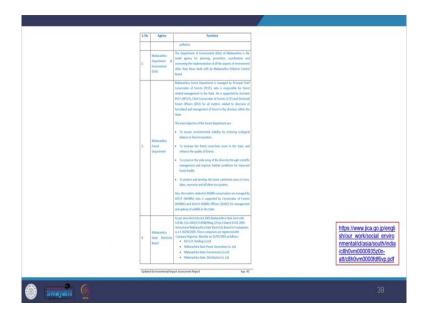


Thereafter, you see that they also address legal policy and institutional framework. So, within all the domains all the domain which you have studied, you can look at the list here, you can see the water-related domain, what kind of policies would be applicable, noise pollution related, what kind of laws will be applicable likewise municipal solid waste rules Environmental Protection Act, forest wildlife, Metro railway, Metro railway, Delhi

Metro railway and ancient monuments and archaeological sites and remain so, you see how legal policy and institutional framework has been addressed.

So, they have systematically they have looked at all the aspects, law, and regulation guidelines, and then what features they would adopt, will be applicable or not, and reasons for their applicability and whose responsibility will be, implementation responsible agencies, so, they have identified all the legal requirements here.

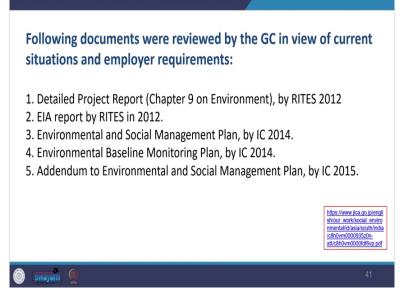
So, you have gone through all of these you can see all this air-related noise forest. So, we have done elaborate coverage of all the legislative parts. So, you see how that has to be addressed in an EIA report. So, you also see hazardous waste management, then motor vehicle development control regulation, then resettlement and rehabilitation. So, all these have been addressed here in the EIA report.



So, likewise, you also see applicable international conventions. So, we have also studied this. So, you see in the EIA report how they are also acknowledging international conventions. So, starting from the Montreal Protocol

to the Kyoto Protocol and all that has been listed here. Further, what kind of clearance requirements will be needed for the project has been also specified here in the table, you can see permission for the tree cutting, development permission near World Heritage structure, disposal permissions, resettlement permissions, consent to establish, consent to operate, permission to store hazardous material, explosive license and all certificates for use of vehicles for construction and so on. So, you see how all clearance requirements have been also notified here.

(Refer Slide Time: 11:18)



Then you see the institutional framework within which they are working. So, the key institution that is responsible is the Ministry of Environment and Forest, the nodal agency to which we have been referring all the time. So, you see, that is the key agency here, and the other agencies which you have also studied Central Pollution Control Board, as well as National Green Tribunal then you also have the central groundwater authority and then also the state-related Maharashtra Pollution Control Board and so on.

So, all that has been listed, you can have a look at this report. So, that was about the institutional framework. Now, moving ahead to approach and methodology, so, what approach did they adopt here, so, you see that as per the technical feasibility, the alignment was undertaken for the socio-economic acceptability and there were a lot of factors that guided how they would come up with the alignment for the metro rail.

So, based on the final alignment of the proposed alignment, then they worked out in different phases. So, impacts were assessed for various phases of the project cycle. So, we also try to see what project cycles are there. So, looking at the impact due to project location, impact due to project design, and impact due to product construction and project operation. So, based on that, they had done this plus, as we talked about like you also refer to a lot of other documents.

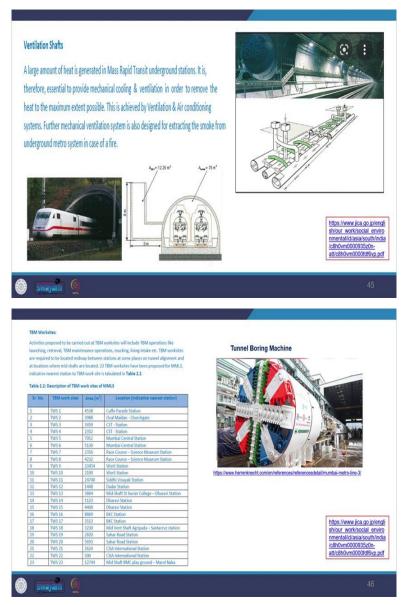
So, here they referred to the detailed project report DPR of the proposal. Plus EIA reports by rights and they also looked at the Environmental and Social Management Plan. And then they also looked at the Baseline Monitoring Plan and the Environment and Social Management Plan. So, all this was looked at.

(Refer Slide Time: 13:25)

Pollutant	Time Weighted Average	Industrial, Residential, Rural & Other Area	Ecologically Sensitive Area (notified by Central Government			
Sulphur Dioxide (SO2), µg/m ³	Annual 24 Hours**	50 80	20 80			
Nitrogen Dioxide as NO2, µg/m ³	Annual 24 Hours**	40 80	30 80			Appen
Particulate Matter (size less than 10µm) or PM ₁₀ µglm ³	Annual 24 Hours**	60 100	60 100	NATIONAL AMBIENT		
Particulate Matter (size less than 2.5µm) or PM2.5 µg/m ³	Annual * 24 Hours**	40	40	Category of Zones	Day *	rq in dB (A) Night
Ozone (O3) µg/m ²	8 hours**	100	100	Industrial	75	70
Ozone (O.ş) µgim	24 Hours**	180	180	Commercial Residential	65 55	55 45
Lead (Pb) µg/m ³	Annual * 24 Hours**	0.50	0.50	Silence Zone ** Source: Central Pollution Control Board	50	40
Carbon Monoxide (CO) mg/m ³	8 Hours** 1 Hour**	02 04	02 04	 Day Time is from 6.00 AM to 9.00 PM. Silence Zone is defined as an ar Educational Institutions and Courts. Use 	rea up to 100m ar	ound premises of Hospital
Ammonia (NH ₃) µg/m ³	Annual * 24 Hours**	100 400	100 400	crackers is banned in these zones.	or venicie nom, i	oudspeaker and bursting (
Benzene (C ₀ H ₆) µg/m ³	Annual *	05	05			
Benzo (a) pyrene (BaP) particulate phase only ng/m ³	Annual *	01	01			
Arsenic (AS) ng/m ³	Annual *	06	06			
Nickle (Ni) ng/m ³	Annual *	20	20		ſ	https://www.jica.go.jp/er
twice a week hourty a ** 24 hourty or 08 hourty o 98% of the time in a	of minimum 104 me t uniform intervals r 01 hourly monitore	asurements in a yea d values, as applicat	r at a particular site taken			sh/our work/social env nmental/id/asia/south/in /c8h0vm0000935z0n- att/c8h0vm0000fdfovp.p

So, here you see how they aligned with refer to different standards. So, we have also seen different standards, you see that they have looked at the drinking water quality standards, effluent discharge standards, and then tolerance limits for inland surface water quality. So, all these sources have been identified for you in previous lectures. So, you also see national ambient air quality standards and national ambient noise standards.

So, all these are addressed in the report, you can have a look. So now, the next part is what we see in the EIA report, as we also learned about the structure of the EIA report. So, you see there is a project description. So, I am not going to get into the complete details of the project description, but I will just tell you the key elements, so, that we understand the associated impacts.


(Refer Slide Time: 14:15)

	CHAPTE	22 PROJE	CT DESCE	IPTION 1		1	Colaba - Bandra	- 1	20.45	1	1	
2.	1EXISTING SYSTEMS					4	Charkop - Dahis	r (East)	7.5	1	2013-2016	
	transport needs of Mumbai M and Buses, MMR consists of Gr					5	Ghatkopar - Ma	bit	12.4	-		
Metro	and puses. White consists of the Rail project is in Greater Munit w, cars, taxis, buses, commerci	ai where veb	icular traffic i	onsists of two whe	elers, auto	6	BRC to Kanjurma	rg viş Airport	19.5			
	w, cars, taxis, buses, commerci s in Greater Mumbai for the ye				race of	7	Andheri (East) -	Duhisar (Emit)	18.0			
	Table 2.1 GROWTH #					1	Hutatma Chouk	- Ghatkopar	21.8		2016-2021	
St. NO.	VDOCLES	NO. OF VE		GROWTH RATE (%)		9.	Seori - Prabhad	ní	3.5			
		2005	2008	accede.					149.97			
1	Two Wheelers	647,892	865,466	11%						-		
2	Auto Rickshaw	104,104	106,812	2%			ive length of metro c d in Table 2.3.	orridor as per Mas	ster Plan and	to bet we	sendment is	
3	Car	409,120	507,408	85				2.3 LENGTHS OF N	MUMBA MET	TRO PHAS	985	
4	Tanis	58,049	58,813	0.4%		5.No.	Phase	Longth (km) as f	Master Plan	Lengt	h(Km) as per amendment	
5	Buses	12,290	13,239	2%		1	Phase1	67,27		79.36		
6	Commercial Webicles	56,345	71,329	9%		2	Phase 8	19.90		19.90		
!	Others	7,140,770	6,770	-2%		3	Phase II	62.8		41.1		
-	Total	1,294,940	1.631.837	100								
_			2,076,077	95			total	149:37		142.5	•	
There constru- Bandra accord Mumbi studies Versov in 2010	2 PROPOSED METRO SV is no enkilsing metro system in 1 ection. The Mambal Metro line Analishung in forelinged and co of for Dapose 1 negret the Mamia in Metro Considers in three pha for phase 1 negret contriders we a dether-Ghartingar, Unit 2 C MMRC also control out the D TABEE 2 2 N CORRECOR	Auribal, Line III operation struction will al Master Pla ses of execut re carried ou harkop-Bant Plas of four la tuMEAs MET	HUMBAI I from Verso al since IAW Ibe started a in prepared b ion which is si it during the p ica Manhung tes of Phase I Ico MASTER P	is to Chattopar Is 004. Line II (Chatto IIII Chattopar III) Inter OZ Clearance (DMIC, Table 2.2. heron is Figure 2.1. eriod 2005 - 2009 II and Line 3: Colaba & III.	p will be fepicts DPR dandra).	The pro- (SEEP2) via Mah such an SEEP2, o propose underge The anti- stations	Description pound NUVE) convect Metro Corridor will 1 on Bandra Karla Corr BIC, Mahanahtra In and Tamous landrach	ing Colubar Banchis collister the constru- later (DCC) III will a later fol Developmen such as Kalina UA 254 Jun, The entire rates the propose is divided into 7 p	a-Santa Cruz I nutero to trave also provide d unit Corporatio toisensity, Mal re Metro corri nd routing of 0	Destroyal d Horn ac level acce on (MDC balaces). 1 dor is pic MAC).	Export Processing Zone with Mumbal to Asport os to the economic fields) Industrial Exten- te statal length of the spored to be constructed	
There constru- Bandra accord Mumbi studies Versov in 2010	is no existing metro system in 1 action. The Mambai Metro line - Mankhurd) is finalised and cos of for Depot. As per the Mumit al Metro Corridors in three pha for phase I metro corridors w o Andheri Ghatkopar, Line 2: C 1, MMRC also cervied out the D TABGE 2:2 M	Aurebal, Line Like operation extruction will al Master Plu- ses of execut re carried on harkop-Band Plus of four like toMBAe MET LENG	HUMBAI I from Verso al since IAW Ibe started a in prepared b ion which is si it during the p ica Manhung tes of Phase I Ico MASTER P	is to Ghatlopar Is is 035. Line II (Charls the CR2 clearance (DMR), Table 2.2 hown in Figure 2.1 eriod 2005-2009 J and Line J: Calaba & III. LAN	p will be fepicts DPR dandra).	The pro- (SEEP2) via Mah- sach an SEEP2, a propose undergy The anti- stations Above 0 Above 9	Description pound NUML1 connect Matrix Corridor with mill Bandus Karls Cam BRC, Muhamathra kis and Famisa, landmash of metra corridor iz 1 sound. Figure 2.3 Bio sound. Figure 2.3 Bio sound. Figure 2.3 Bio sound Statuteut in Table 2 Second Structures proved station structures	ting Catalan Bandra colleate the cannot plea (BCC) In will a heatrial Developme cathers that action 154 Jan, That entire rates the propose is divided into 7 p 3.	a-tanta Cruz I natera to train also previde d ent Corporatio internity, Mall en Merro corri en Merro corri en Merro corri en Merro corri en Merro corri packages that	Dectrovel of topen ac inpet acco on (MECC balancel, 1 don in per MML), collection	Export Processing Zone with Mumbal to Asport os to the economic fields) Industrial Exten- te statal length of the spored to be constructed	
There constru- Bandra accord Mumb- studies Versov In 2010	In no existing metro system in 1 ection. The Mambal Metro Ling- eManihundi In Finalised and co of Corpoz, Juane the Mami al Metro Considers in three shall for phase I metro corridors use a cheffer CAMBAR, Line 2: C MARC also cerried out the D TABLE 2:2 M 0. CORREDOR	Numbal, Line III operation struction will al Master Po ses of execut re carried os harkop-Band Pis of four la totAble MET LENG per	RUMBAI I from Verso al since DAV The started a in prepared b ion which is s ion which is s ion startshare ion diates the ion diates the ION MASTER P THE (ION)	is to Ghatlopar Is is 035. Line II (Charlis the CR2 clearance (DMR), Table 2.2 hown in Figure 2.1 eriod 2005-2009 J and Line J: Calaba & III. LAN	p will be fepicts DPR dandra).	The pro- (SEEP2) via Mah- sach an UEEP2, o perspose undergy The set stations Above 0 Above 0 Above 0	Description pound NUML1 connect Matrix Corridor with mill Bandus Karls Cam BRC, Muhamathra kis and Famisa, landmash of metra corridor iz 1 sound. Figure 2.3 Bio sound. Figure 2.3 Bio sound. Figure 2.3 Bio sound Statuteut in Table 2 Second Structures proved station structures	ting Catalan Bandra colleate the cannot plea (BCC) In will a heatrial Developme cathers that action 154 Jan, That entire rates the propose is divided into 7 p 3.	a-tanta Cruz I natera to train also previde d ent Corporatio internity, Mall en Merro corri en Merro corri en Merro corri en Merro corri en Merro corri packages that	Dectrovel of topen ac inpet acco on (MECC balancel, 1 don in per MML), collection	Equat Processing Zone with Marchainto Argan cash to the encommic Balls 3 badestiral Estates, the standal length of the opposed to be constructed why comprises of 24	

So, here project description gives, like, what is the existing transportation scenario and why this particular metro line has been proposed. So, if you remember the need of the project has to be emphasized. So, and then the details of the project have to be given. So, you see there that they have talked about the existing system and

then the proposed metro system in Mumbai and what all will happen within that, so, they are giving the project description here. So, we are in this just to understand the nature of the project.

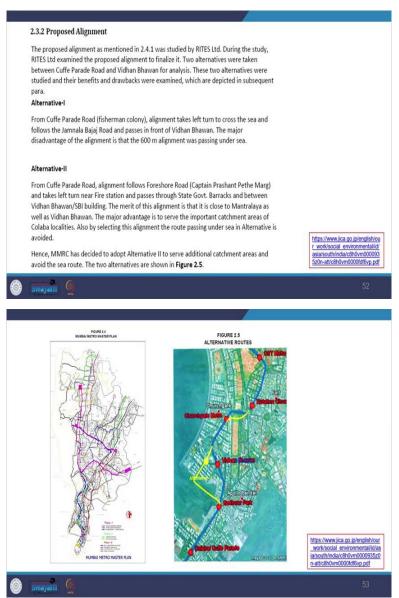
(Refer Slide Time: 14:50)

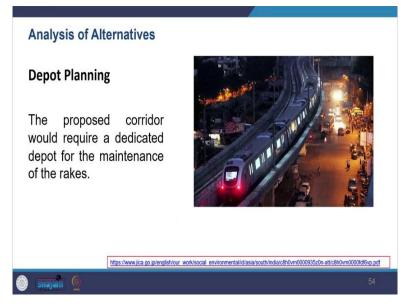
There might be ventilation shafts because there will be a lot of underground stations, that have a lot of ventilation requirements, and a lot of heat is generated in the process. So, those kinds of requirements would come, and then there would be tunnel boring machine work sites, so, which will create underground tunnels.


So, for that, you will see how much description of tunnel boring machine work sites would be the number of sites had been listed here in the report, and where it will be located during the construction of the project. So, all that has been identified, I have put the picture of just a tunnel boring machine so, that we understand what scale what kind of thing we are talking about.

(Refer Slide Time: 15:33)

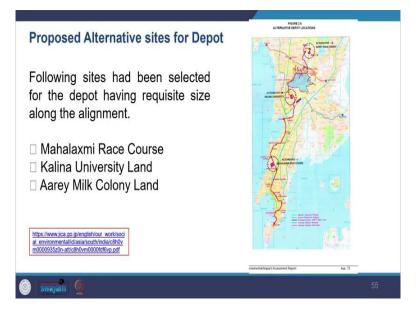
And then there might be, there will be also need for casting yards. So, all this will be pre-constructed and then would be taken to the construction site. So, you will see the details of tunnels and openings, station boxes, which would be there as the casting yards, and where all these from these casting yards would be and how much area they would take. So, I have put the picture also so, that we understand what the casting yard looks like.


(Refer Slide Time: 16:04)


And then also various locations where these casting yards would come and then, what are the details of different casting yards proposed here, so, you see the range of places which are proposed, and then they have also provided the drawings of casting yards. As you can see here in the drawing, so, they have explained the complete project details in detail, we are skipping those details here. Further, they have analyzed the alternatives we discussed, like to ensure that what has been proposed is the best available alternatives or optimum alternatives that have to be established.

So, here they have analyzed the alternatives and alternatives have been analyzed on the way off as they have looked at the different alignments for planning this plus alignment has been taken with due consideration of catchment area, integration with the other mass transit corridor like how it connects with the other corridor transit systems then what is the feasibility of construction and the environment and social aspects. So, keeping that in point they have designed the alignment and alternatives have been considered.

(Refer Slide Time: 17:23)



So, they have looked at certain alternatives. Alternative 1 deals with Cuffe Parade Road, which involves a fishermen's colony. Alternative 2 deals with the Cuffe Parade Road alignment follows the foreshore road. So, all these you can see in the map they have provided a map as well. So, that is the entire Mumbai master plan you can see, the Metro master plan and you can see in the red and yellow, the alternators which have been discussed here. So, yellow Alternative 1 and so on. So, what options do they have alternatives they are looking at.

So, another Alternative they tried on Depot planning, like where all the depot would come from. The project needed a dedicated depot for the maintenance of the rakes. So, you can see the picture of what rakes are like and they would need a depot for that.

(Refer Slide Time: 18:19)

So, you will see that they have proposed alternative sites for the depot, you can see on the map how they have these sites Mahalakshmi Race Course, then you can see in some central part, Kalina University land and then Aarey Milk Colony. So, finally, the project description tells that they are going to build it at the Aarey Milk colony.

The Airp MID	proposed Met ort via Mahim C Industrial Es	SECTION OF PROPOSED METI ro corridor will facilitate the commuter: -BKC. It will also provide direct access to tate, SEEPZ and famous landmarks such 33.51 km metro corridor has been divid	s to travel from South N o the economic hubs suc h as Kalina University, N	Aumbai to ch as BKC,
	epicted in Tabl			
	TA	BLE 2.7 MAJOR SECTIONS OF METRO C	ORRIDOR (PHASE III)	
	S.NO.	MAJOR SECTIONS	LENGTH IN KM	7
	1	Colaba/WTC/Cuffe Parade to CST	4.475	-
	2	CST to Science Museum	7.000	-
	3	Science Museum to Mahim	7.000	-
	4	Mahim to Airport	7.000	-
	5	Airport Region	5.000	-
	6	Airport to SEEPZ	3.033	-
		Total	33.508	-
		I		
				ia/south/india/c8h0vm0000935z0n-att/c8h0vm0000fdf6v

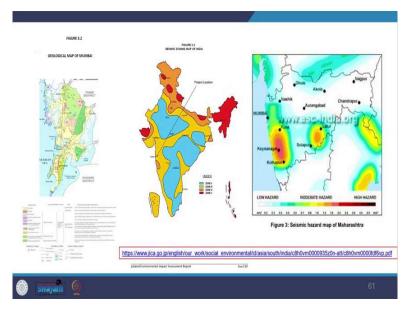
So, a major section of the proposed Metro corridor is also provided like at phase 3, where they will do it, then ridership on the proposed Metro corridor. So, that study is also undertaken, then, you also see, they have provided construction methodology. So, that is also with extensive detail has been provided. So, I am not getting into the details.

So, what kind of construction strategy they have adopted here has been well explained. So, as we had discussed before even the designs can change, even the layouts can change, and there can be many alternatives. So, now with the construction methodology, they are handling the environmental part.

(Refer Slide Time: 19:28)

	2.12.2 Genetration Period It is proposed to complete the project in a time period of 60 months.
	2.12.3 Updates on Construction Period
2.12 CONSTRUCTION METHODOLOGY	The construction period of all the 7 parkages are same XLBI days (around 4.5 years). The commercial date of operation is targeted at May 2020 for the entire consider.
Construction of the underground section shall be done by Cut and Cover, NATM and Tunnel Boring Machine (TBM). Station will be constructed either by Cut and Cover or NATM method depending upon the availability of space.	2.12.4 Constructions methodologies. Construction of attachmics by cirk & cover method Constructions of attachmics by New Audions Constitute (Montal)(NUTA) Constructions of Attachmics by New Audio: (2004) Constructions for Montal New Audio: (2004)
2.12.1 Construction Strategy	There are total twenty is undergoard stations planned for Maribal Metro Eva 3. Out of twenty is, indextex-stations are to be constructed by cut & cours nethod and seven will be baility hysRMM.
Design and build contacts will be adopted for proposed corridor. There will be three major contracts 1. Grill Works, 2. System Contract and 3 Depot Contract. Under civil contact, Architectural Binshe, firefighting and general electrification will be included along with the civil construction works. System contract will be on the basis of design, construct and installation which will include Traction and Power Supply. Signal and Telecommunication, Lifts, Escalators, Face Collection, Rolling Stock, Track and Signages. Layout, design and construction and general electrification comes under the Depot contract.	Sections to the hard by our & Same method C for an example of the fully any exames scalables to the hald by or & Samer 4. Out-An Baser 5. Out-An Baser 5. Out-An Baser 6. Underscalable 6. Underscalable 6. Underscalable 6. Underscalable 6. Underscalable 6. Underscalable 6. Underscalable 6. Underscalable 6. Underscalable 7.
Updated Environmental Impact Assessment Report Paur 93	a. Storage 1 a
i in the second se	58

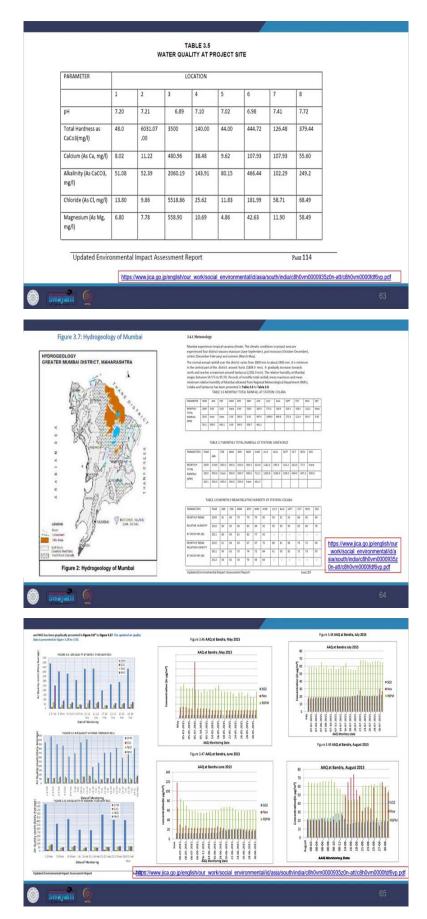
So, you can see the construction, they have also mentioned the construction period, the construction methodology, which they have used, and then all the details of different locations where they will undertake that. So, that was about the construction methodology.


1150	VIRONMENT	M SCOPING					900	ECONOMIC		
This chap objective	pter describes the e of Environments	e existing environmental set al impact Assessment (EA) is and then assess the impacts	to accertain the	baseline	. *	Socio- economic aspects	Socio-economic	Once	Field Studies, Uterature review.	
		he project cycle. Data on land blished sources and field foco			_			lookigy		
mvirone primarily collected	ment like air, wate orthrough field stu d from field. Info	rr, soil, and noise quality in th clies, and by undertaking mo remation about geology, hy a been collected from literat.	ve surrounding a nitoring and ana drology, prevail	rea were assessed, Aysis of samples ing notural hazards	10	frees.	Number/species	Once	Filed Studies	
oformat collected collected	tion made availab 6 from Indian Met in is highlighted is 1 for data collectio	le by government departm recrological Department. The herever recessary. A scoping in for environmental attributo TABLE 3.1	ents. Climatolog methodology ac pratrix along wi es is summarized	gical data www dopted for data th the firequency I in Table 3.1	The Pro of Mary Arabiet	bal plains is \$4 cost of India In	NMENT ted in Mambai, the commu- n above the sea level (a M m 18' 53' north to 19' 16' noilend in land environmen	2), Mumbal is loc sorth futitude and	ated along western Hrom 72° East to 72° 59'	
5.ND	ENVIRONMENT ATTRIBUTE	ALATTRIBUTES AND FREQUE	ENCY OF MONIT	oking source	selumici	ty. These are di	curved in the following par	agraphi.	of heads are start and	
2.140	ATTAILOR	Concernant Concernant	0.000	NOTE A	3.2.1 P	ingedenties				
		LAND ENVIRONMENT			The phy	iographic feats	re of the Manhai district is	broad and flat to	main flanked by north -	
1	Sol	Soil Characteristics	Once	Field studies and Detailed project report	western eastern	part of the area and central part	rs. The hill ranges from alm . The Powel – Kanheri hill o running NNE – SSH. The o	arges are the othe aximum elevation	er hill extending in the n of the area is 450 m.	
2.	Geology	Geological Status	-	Literature review	south re	noing hils with	mil) at some of the peaks o maximum elevation of 300	m above mean se	a level (artsl): Malbar,	
3.	Seismology	Seismic Hazard	-	Literature review	part of t	he district. The	ilis are the isolated small ri Possai – Kanheri Nills form t	he largest hilly ter	rain in the central part of	
-		WATER ENVIRONMENT	1		There as	e a number of s	re the feeder socie for the reeks, dissecting the area.	irrorg there, That	ne is the longest creek.	
4.	Water Quality	Physical, Chemical and Biological parameters	One Season	Field studies/literature review	rise to rivers. T	nud flangs and s hese small river	Masori, Malad and Mahim namps. The area is drained a near the coast, form smal mud flats in the loss long o	by Mahim, Mithi, rivulets which in	Dahisar and Polisar	
-		AIR, NOISE AND	METEOROLOGY							
5	Ambient Air Quality	PM2.5 , PM30, SO2, NON, CO, HC	Teo Season	Field Studies/literature review		rology and Sol	ls doi area is occupied by De	can basalt flows a	and the associated	
6	Meteorology	Temperature, Relative humidity, Rainfall, wind direction and speed	Data	India Meteorological Department/literature review	pyroclai of Mum anound intertra	tics and the plu bal bland is con Mumbal indicat spean beds, agg	tonic rocks of upper cretao idered to be the youngest to presence of advabasic, b lomesates and tuffs. The ul clude rhysilite and quarty to	out to palaeoger basalt of Eocene i nic and acid diffe tabasic differenti	e age. The Deccan basalt opn Overall the geology restilates with ates are of limited	https://www.jica.go.jp/english/our_work/soc
7	Noise	Noise levels in dS (A)	One Season	Field monitoring	revorks	d material as in	dcated by current bedding ped into compound flows	and graded hedd	ng. The banalt form of	al environmental/id/asia/south/india/c8h0v
1	Vibration	Vibrations in VdB	5//	Field monitoring & modeling	which di flows an	e not fail in the e typically of qu	above categories and hence arts and hypersthanes nore	termed ac unclar active with minor	villed flows. The basaltic amount of alivine	m0000935z0n-att/c8h0vm0000fdf6vp.pdf
Jodated	f Environmental b	report Assessment Report	A	Pari 101	Update	t (rv/connerta	Impact Assessment Report		Feet 202	

Now, coming on to the baseline data. So, that is the key part of the environmental impact assessment. So, where they are establishing baseline data. So, here you see that they use mostly secondary data as well as references from the other studies and they have also conducted studies. So, just to look at we have already covered baseline data, and how to undertake it domain-wise in detail, so, we are just going to skim through and then see how how it comes in the report.

So, you will see here that they have provided environmental attributes and frequency of monitoring, and then they have identified how it is impacting the land environment.

S.No.	PARAMETER		IL TEST RE	LOCATI	N			$ContractID\to$	UGC-01	UGC-02	UGC-03	UGC-04	UGC-05	UGC-	UGC
		Cuffe Parade	Jacob Circle	Worli	International Airport	SEEPZ	Aarey Colony	Number of Boreholes at Stations	20	16	22	11	20	11	1
1	pН	7.10	7.60	7.87	7.19	6.80	6.28	Number of	-	-	-	-	-	-	-
2	Conductivity (mS/cm)	0.80	0.85	0.53	1.46	0.19	0.18	Boreholes along Bored	-11	12	11	20	12	14	1
3	Sodium (As Na,	22.61	21.02	35.59	18.34	7.62	3.45	Tunnels							
	mg/100gm)			_				Depth of Boreholes (m)	5.5 m to	10.5 m	Sm to	7.5m to	6m to	6.5m to	11m
4	Organic Matter (% By Mass)	1.80	1.48	1.37	0.90	1.15	1.53	below ground	30m	to 28.5m	28m	27m	29m	25m	251
5	Nitrogen (N, Kg/hectare) Calcium(AsCa.mg/100g	121.99	33.77	28.81	10.09	32.72	41.57	Average Depth of Ground Water Table (m) below	3.2m	4.3m	5.1m	4.1m	3.5m	3.3m	3.60
0	m)	323.34	648.09	710.94	467.05	203.10	141.40	ground					_		
7	Chloride(AsCl,mg/100g m)	450.63	404.54	289.29	262.86	299.22	208.55	Depth of Rock head (m) below ground	2.5m to 11m	5m to 12.3m	2m to 18m	4m to 14m	2m·12m	1.5m- 8m	Imi
8	Magnesium	85.80	81.03	126.32	162.07	135.85	102.48	Types of Rocks Observed	Basalt, Breccia	Basalt, Breccia	Basalt, Breccia,	Basalt, Breccia,	Basalt, Breccia,	Basalt, Brecci	Basi Brec
Updat	ed Environmental Impac	t Assessm	ent Repo	rt			Page 103	0			Shale, Tuff	Tuff	Tuff	a, Tuff	
			https	://www.ji	ca.go.jp/englis	sh/our w	ork/social e	nvironmental/id/a	isia/south	india/c8h	10vm000)935z0n-a	att/c8h0v	m0000	fdf6v


(Refer Slide Time: 20:32)

Then you can see how they have presented all the tables related to soil test results, then you can see all the data which was available with the ground investigation data which was already there, and you can see a geological map of Mumbai, then you can see the Seismic zone map and then Seismic hazard map of Maharashtra.

<section-header><section-header><section-header><section-header><section-header><section-header><image><image><image>

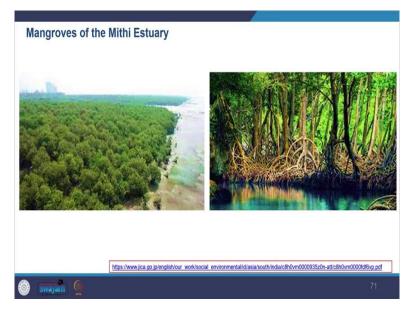
(Refer Slide Time: 20:52)

So, they have studied all that, water level trend they have studied in this place, water quality at the project site, the hydrology of Mumbai they have studied and the metrology data they have gathered here, and then a very

intensive study of air quality data and for different, different you can see for different months they have collected the data here. So, I have just snipped some of this elaborate data there.

(Refer Slide Time: 21:22)

Location: Mahim Time MIDNIGHT 1:00 AM 2 3 4 4 5 5 6 7 7 8 9 10 10 11 12 NOON 13	12 to 11/01/2012 m Hourly Leq dB (A) 52.8 50.2 49.5 52.9 59.7 63.3 65.1 66.4 68.2 69.4	Result (B) (A) Log(24brs.) Li0 Li0 Ling(24brs.) Ling(24brs.)	CATIONS 67.0 72.7 69.5 69.5 69.4 74.1 49.3		Location: BKC Time MIDNIGHT 1:00 AM 2 3 4 5 6 7 7 8 9 10	Hourly Leq dB (A) 51.2 49.4 48.3 47.1 49.6 52.4 58.9 61.3	Result dB (A) Leq(24hrs.) L10 L50 L90 Lday	68.6 73.4 71.4	
Location: Mahim Time MIDNIGHT 1:00 AM 2 3 4 5 5 6 6 7 7 8 9 9 10 11 12 NOON 13	12 to 11/01/2012 m Hourly Leq dB (A) 52.8 50.2 49.5 52.9 59.7 63.3 65.1 66.4 68.2 69.4	2 Result dB (A) Leq(24hrs.) L50 L50 L50 L50 L50 L50 L50 L50 L50 L50	67.0 72.7 69.5 67.5 68.3 60.9 69.4 74.1		Time MIDNIGHT 1:00 AM 2 3 4 5 6 7 7 8 9 10	Hourly Leq dB (A) 51.2 49.4 48.3 47.1 49.6 52.4 58.9	Leq(24hrs.) L10 L50 L90 Lday	73.4 71.4	
Location: Mahim Time MIDNIGHT 1:00 AM 2 3 4 4 5 5 6 7 7 8 9 10 10 11 12 NOON 13	n Hourly Leq dB(A) 52.8 50.2 49.5 52.9 49.3 55.9 55.9 55.9 55.9 55.7 63.3 65.1 66.4 66.4 68.2 69.4	Result dB (A) Leq(24hrs.) L10 L50 L90 Lday Lright Ldan Lfmax	72.7 69.5 67.5 68.3 60.9 69.4 74.1		MIDNIGHT 1:00 AM 2 3 4 5 6 7 8 9 10	dB (A) 51.2 49.4 48.3 47.1 49.6 52.4 58.9	Leq(24hrs.) L10 L50 L90 Lday	73.4 71.4	
Location: Mahim Time MIDNIGHT 1:00 AM 2 3 4 5 5 6 6 7 7 8 9 9 10 11 12 NOON 13	n Hourly Leq dB(A) 52.8 50.2 49.5 52.9 49.3 55.9 55.9 55.9 55.9 55.7 63.3 65.1 66.4 66.4 68.2 69.4	Result dB (A) Leq(24hrs.) L10 L50 L90 Lday Lright Ldan Lfmax	72.7 69.5 67.5 68.3 60.9 69.4 74.1		1:00 AM 2 3 4 5 6 7 8 9 10	51.2 49.4 48.3 47.1 49.6 52.4 58.9	L10 L50 L90 Lday	73.4 71.4	
Time MIDNIGHT 1:00 AM 2 3 4 4 5 5 6 6 7 8 9 9 10 11 11 12 NOON 13	Hourly Leq dB (A) 52.8 50.2 49.5 55.9 55.9 55.9 55.9 55.9 63.3 65.1 66.4 66.2 69.4	Leg(24hrs.) L10 L50 L90 Lday Lright Ldn Ldn Lmax	72.7 69.5 67.5 68.3 60.9 69.4 74.1		1:00 AM 2 3 4 5 6 7 8 9 10	49.4 48.3 47.1 49.6 52.4 58.9	L10 L50 L90 Lday	73.4 71.4	
MIDNIGHT 1:00 AM 2 3 4 5 6 7 8 9 10 11 12 NOON 13	d8 (A) 52.8 50.2 49.5 52.9 49.3 55.9 59.7 63.3 65.1 66.4 66.4 68.2 69.4	Leg(24hrs.) L10 L50 L90 Lday Lright Ldn Ldn Lmax	72.7 69.5 67.5 68.3 60.9 69.4 74.1		3 4 5 6 7 8 9 10	47.1 49.6 52.4 58.9	L90 Lday		
1:00 AM 2 3 4 5 6 7 8 9 10 11 12 NOON 13	52.8 50.2 49.5 52.9 49.3 55.9 59.7 63.3 65.1 66.4 66.4 66.4 66.4 66.4 66.4 66.4	L10 L50 L90 Lday Lnight Ldn Lmax	72.7 69.5 67.5 68.3 60.9 69.4 74.1		4 5 6 7 8 9 10	49.6 52.4 58.9	Lday		
1:00 AM 2 3 4 5 6 7 8 9 10 11 12 NOON 13	50.2 49.5 52.9 49.3 55.9 59.7 63.3 65.1 66.4 66.4 66.4 66.4 66.2 69.4	L10 L50 L90 Lday Lnight Ldn Lmax	72.7 69.5 67.5 68.3 60.9 69.4 74.1		5 6 7 8 9 10	52.4 58.9		69.2	
3 4 5 6 7 8 9 10 11 12 NOON 13	52.9 49.3 55.9 59.7 63.3 65.1 66.4 68.2 69.4	L90 Lday Lnight Ldn Lmax	67.5 68.3 60.9 69.4 74.1		6 7 8 9 10	58.9		70.3	
4 5 6 7 8 9 10 11 12 NOON 13	49.3 55.9 59.7 63.3 65.1 66.4 68.2 69.4	Lday Lnight Ldn Lmax	68.3 60.9 69.4 74.1		7 8 9 10		Lnight	53.0	
5 6 6 7 7 8 9 9 10 11 12 NOON 13	55.9 59.7 63.3 65.1 66.4 68.2 69.4	Lnight Ldn Lmax	60.9 69.4 74.1		8 9 10		Ldn	68.9 74.3	
7 8 9 10 11 12 NOON 13	63.3 65.1 66.4 68.2 69.4	Lmax	74.1		9 10	65.3	Lmin	47.1	
8 9 10 11 12 NOON 13	65.1 66.4 68.2 69.4					68.2			
9 10 11 12 NOON 13	66.4 68.2 69.4		42.5			72.4	-		
11 12 NOON 13	69.4	-			11 12 NOON	69.7 74.3	-		
12 NOON 13					12 NOON 13	72.6	-		
13		-			14	73.1			
	73.2 74.1	1			15	68.3	-		
14	68.3				16	72.8	-		
	67.4	_			18	70.1	-		
	68.7				19	69.9	_		
18	65.3				20	68.6 59.3	htt	ps://www.jica.go	jp/english/our work/soi
	64.2 63.4	-			21	59.3			asia/south/india/c8h0vn
		Assessment Report			23	50.8			0vm0000fdf6vp.pdf
	iyan 🧐	ant.		Page 142	23				
	iyanı y	TABLE 3.15 VIBRATION MONITO	TORING	Pade 142		_	FIGUR LOCATION OF VIBRA		
		VIBRATION MONITO	1						
Si 1 Lady W	LOCA	VIBRATION MONITO LOCATION		LONGITUDE					M. I
1 Lady Wi Metro C	LOCA Illingdon Buildir Cenima. Mahap	VIBRATION MONITO LOCATION ATION Ing, Dhobi Talao, near palka Road.	LATITUDE 18 [°] 56' 34.64" N	LONGITUDE 72 49'46.57' E					
1 Lady Wi Metro C 2 Narutan Vertak	LOCA Illingdon Buldir Jenima. Mahap ndas Bhau Chowk, Lamin,	VIBRATION MONITO LOCATION ATION ing, Dhobi Talao, near palika Road. Jewelers, K. Gajanan ngton Road.	LATITUDE 18 [°] 56'34.64'N 18 [°] 57'24.59'N	LONGITUDE 72 [°] 49' 46.57' E 72 [°] 49' 59.59' E					
1 Lady Wi Metro C 2 Narutan Vertak 3 Mittal To Press J	LOCA filingdon Buldir enima. Mahaga mdas Bhau Chowk, Lamin owers, Maharst Journal Marg.	VIBRATION MONITO LOCATION ATION ing. Dhobi Talao, near palika Road. Jewelers, K.Gajanan ington Road. hi Valmiki Chowk.	LATITUDE 18 [°] 56' 34.64' N 18 [°] 57' 24.59' N 18 [°] 55' 30.94' N	LONGITUDE 72 [°] 49′ 46 57″ E 72 [°] 49′ 558″ E 72 [°] 49′ 30 37″ E					
1 Lady Wi Metro C 2 Narutan Vertak 3 Mittal To Press J 4 Central	LOCA Illingdon Buldir Senima. Mahap das Bhau Chowk, Lamin Owers, Naharst Journal Marg. Assurance	VIBRATION MONITO LOCATION ATION ing. Dhobi Talao, near palika Road. Jewelers, K.Gajanan ington Road. hi Valmiki Chowk.	LATITUDE 18 [°] 56' 34.64' N 18 [°] 57' 24.59' N 18 [°] 55' 30.94' N 19 [°] 55' 30.94' N	LONGITUDE 72 [°] 49' 46.57' E 72 [°] 49' 59.59' E			LCCATION OF VIBRA		
1 Lady Wi Metro C 2 Narutan Vertak 0 3 Mittal Tc Press J 4 Central Commis Road. 5 Bhikha, Chowk.	LOCA Illingdon Buldir enima. Mahap mdas Bhau Chowk, Lamin Owers, Maharsi Journal Marg. Assurance ssariat Building Behram, Parse	VIBRATION MONITO LOCATION ATION ing, Dhobi Taiao, near alkik Road Jewelers, K.Gajanan ngton Road. Jewelers, K.Gajanan ngton Road. Jewelers, K.Gajanan ngton Road. Jewelers, M.G. Santan Building, opp to g, Dr. Dadabhai Naoroji Jees Well, Hutatma	LATITUDE 18 [°] 56' 34.64' N 18 [°] 57' 24.59' N 18 [°] 55' 30.94' N 19 [°] 55' 30.94' N	LONGITUDE 72 [°] 49′ 46 57″ E 72 [°] 49′ 558″ E 72 [°] 49′ 30 37″ E			LCCATION OF VIBRA		Anna .
	iyanı y		TORING	Past 142		_			
1 Lady Wi Metro C 2 Narutan Vertak	LOCA Illingdon Buldir Jenima. Mahap ndas Bhau Chowk, Lamin,	VIBRATION MONITO LOCATION ATION ing, Dhobi Talao, near palika Road. Jewelers, K. Gajanan ngton Road.	LATITUDE 18 [°] 56' 34.64" N	LONGITUDE 72 49'46.57' E					
1 Lady Wi Metro C 2 Narutan Vertak	LOC# Ilingdon Buldir Zenima. Mahap ndas Bhau Chowk, Lamin Owers. Maharti	VIBRATION MONITO LOCATION ATION ing, Dhobi Talao, near palika Road. Jewelers, K. Gajanan ngton Road.	LATITUDE 18 [°] 56'34.64'N 18 [°] 57'24.59'N	LONGITUDE 72 [°] 49' 46.57' E 72 [°] 49' 59.59' E		Ø			
1 Lady Wi Metro C 2 Narutan Vertak 3 Mittal To	LOC# Ilingdon Buldir Zenima. Mahap ndas Bhau Chowk, Lamin Owers. Maharti	VIBRATION MONITO LOCATION ATION ing, Dhobi Talao, near palika Road. Jewelers, K. Gajanan ngton Road.	LATITUDE 18 [°] 56'34.64'N 18 [°] 57'24.59'N	LONGITUDE 72 [°] 49' 46.57' E 72 [°] 49' 59.59' E					
1 Lady Wi Metro C 2 Narutan Vertak 3 Mittal To Press J	LOCA filingdon Buldir enima. Mahaga mdas Bhau Chowk, Lamin owers, Maharst Journal Marg.	VIBRATION MONITO LOCATION ATION ing. Dhobi Talao, near palika Road. Jewelers, K.Gajanan ington Road. hi Valmiki Chowk.	LATITUDE 18 [°] 56' 34.64" N 18 [°] 57' 24.59" N 18 [°] 55' 30.94" N	LONGITUDE 72 [°] 49' 46.57' E 72 [°] 49' 59.59' E		Ø			
1 Lady Wi Metro C 2 Narutan Vertak 3 Mittal To Press J 4 Central Commis	LOCA Illingdon Buldir Senima. Mahap das Bhau Chowk, Lamin Owers, Naharst Journal Marg. Assurance	VIBRATION MONITO LOCATION ATION ing, Dhobi Talao, near palika Road. Jewelers, K Gajanan gion Road. biti Valmiki Chowk. Building, opp to	LATITUDE 18 [°] 56' 34.64' N 18 [°] 57' 24.59' N 18 [°] 55' 30.94' N 19 [°] 55' 30.94' N	LONGITUDE 72 [°] 49′ 46 57″ E 72 [°] 49′ 558″ E 72 [°] 49′ 30 37″ E		Ø	LCCATION OF VIBRA		
1 Lady Wi Metro C 2 Narutan Vertak 3 Mittal Tc Press J 4 Central Commis Road. 5 Bhikha,	LOCA Villingdon Buldir Senima. Mahap das Bhau Chowk, Lamin overs, Maharst Journal Marg Assurance ssariat Building	VIBRATION MONITO LOCATION ATION ing. Dhobi Talao, near palika Road. Jeweiers, K.Gajanan ngion Road. hi Valmiki Chowk. Building, opp to g, Dr. Dadabhai Naoroji	LATITUDE 18 [°] 56' 34.64' N 18 [°] 55' 30.94' N 18 [°] 55' 30.94' N 18 [°] 56' 9.74' N	LONGITUDE 72 [°] 49° 46:57° E 72 [°] 49° 46:57° E 72 [°] 49° 59:59° E 72 [°] 49° 39:59° E 72 [°] 49° 39:59° E 72 [°] 50° 124° E			LCCATION OF VIBRA		Anna .
1 Lady Wi Metro C 2 Narutan Vertak 3 Mittal TC Press J 4 Central Commis Road. 5 Bhikha, Chowk.	LOCA Illingdon Buldir enima. Mahap mdas Bhau Chowk, Lamin Owers, Maharsi Journal Marg. Assurance ssariat Building Behram, Parse	VIBRATION MONITO LOCATION ATION ing, Dhobi Taiao, near alkik Road Jewelers, K.Gajanan ngton Road. Jewelers, K.Gajanan ngton Road. Jewelers, K.Gajanan ngton Road. Jewelers, M.G. Santan Building, opp to g, Dr. Dadabhai Naoroji Jees Well, Hutatma	LATITUDE 18 [°] 56' 34.64' N 18 [°] 55' 30.94' N 18 [°] 55' 30.94' N 18 [°] 56' 9.74' N	LONGITUDE 72 [°] 49° 46:57° E 72 [°] 49° 46:57° E 72 [°] 49° 59:59° E 72 [°] 49° 39:59° E 72 [°] 49° 39:59° E 72 [°] 50° 124° E			LCCATION OF VIBRA		Anna .


And they have also connected collected data on the noise environment. Also, vibration data has been collected on the map they have also shown from where all which places they have collected this data. So, you can see how they have put the pictures and also evidence of how and when they are collecting that data.

So, you can also see the dates, the equipment's coming, and the location coming in the picture. And then how they are preparing the drafts related to that. So, other you see here they are also talking about the National Park, then also land use pattern from where the depot is coming, and then what all area Mahim nature park which is coming here.

Sr.	Scientific Name	Zoological	IUCN	WPA	19	Aythya nyroca	Aves	NT	-
No.		Group	Status*	Schedule	20	Mycteria leucocephala Threskiornis leucocephala	Aves	NT	-
1	Loris lyddekerianus	Mammalia	LC	1	22	Platalea leucorodía	Aves	LC	1
2	Macaca radiata	Mammalia	LC		23	Falco chicquera	Aves	NT	1
3	Semnopithecus entellus	Mammalia	LC	11	24	Falco jugger	Aves	NT	1
4	Moschiola meminna	Mammalia	LC	1	25	Falco peregrinus	Aves	LC	1
5	Conis aureus	Mammalia	LC	11	26	Pandion haliaetus	Aves	LC	i.
6	Vulpes benghalensis	Mammalia	LC	11	27	Haliaeetus leucogaster	Aves	LC	1
7	Panthera pardus	Mammalia	LC	1	28	Neophron perchopterus	Aves	EN	1
8	Felis chaus	Mammalia	LC		29	Gyps bengalensis	Aves	CR	1
		Mammalia	LC	1	30	Gyps indicus	Aves	CR	1
9	Prionailurus bengalensis				31	Sarcogyps calvus	Aves	CR	N.
10	Prionailurus rubiginosus	Mammalia	VU	1	32	Accipiter bodius	Aves	LC	1.
11	Prionailurus viverrinus	Mammalia	EN	1	33	Limosa limosa	Aves	NT	
12	Viverricula indica	Mammalia	LC	U.	34	Python molurus	Reptilia	VU	1
13	Paradoxurus hermaphroditus	Mammalia	LC	11	35	Atretium schistosum	Reptilia	LC	1
14	Herpestes edwardsii	Mammalia	LC	1	36	Ptyas mucosa	Reptilia	NA	1
15	Herpestes smithii	Mammalia	LC	11	37	Xenochrophis piscotor	Reptilia	NA	1
16	Manis crassicaudata	Mammalia	EN	1	38	Naja naja	Reptilia	NA	
17	Pavo cristatus	Aves	LC	1	39	Daboia russelii	Reptilia	LC	1
18	Dendrocygna bicolor	Aves	LC	1	40	Chamaeleo zeylanicus	Reptilia Reptilia	LC	1
						Varanus bengalensis	Reputa	100	10.2
						ental/id/asia/south/india/c8h0vi	and the second second second		

So, they have identified all the legally protected species. So, we have studied how we need to identify that is the basics that you identify in every context in every country, what is the protected list, so they have taken it as for the Mumbai region, so you can see an elaborate list coming here. Even this list goes very long; I have just taken one snap.

(Refer to Slide Time: 22:39)

Sanjay Gandhi National Park

swayam (

Modified Habitats

3.7.3.4 Mahim Nature Park, Dharavi The Maharashtra Nature Park (MNP), popularly known as Mahim Nature Park (approximate location: $19^{\circ}03^{\circ}00^{\circ}$ N, $72^{\circ}51^{\circ}42^{\circ}$ E), situated on the southern bank de MAthi River in the Dharavi area, is a planted woodland covering approximately 35 acres of land and serving as one of the larger green spaces of Mumbai city.

The proposed underground alignment of the MML3 between the Dharavi and BKC stations spanning a length of approximately 1 km, passes within a distance of 0.5 km to the west and northwest of the MNP. The proposed Dharavi station box is located at a distance of less than 1 km to the west of the MNP, while the proposed BKC station box is located less than 1 km to the northwest of the MNP.

BPT Garden, Colaba

agar Upavan, also known as BPT Garden or Mumbai Port Trust Garden (approxi 18°54' 37" N, 72°49' 25" E), situated in the Sassoon Docks area of Colaba, is a botanical garden covering approximately 50,000 square metres and serving as one of the green spaces of the area. The proposed Cuffe Parade station of MML3 is situated less than 350 metres to the west of the garden.

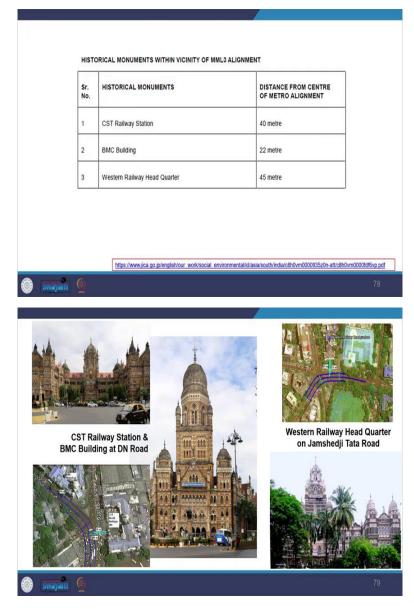
3.7.3.5 Colaba Woods Garden, Colaba Colaba Woods, (approximate location: 18*54*45* 14, 72*49' 08* E), situated in the Cuffe Parade area of Colaba, is a garden covering approximately 30,000 square metres and serving as one of the green space of the area. Some of the accessory areas associated with the garden, comprising mainly a termis court, a basket ball court, a children's plarground, a plant-mursey and public vallenzys, fail within the proposed project areas of the Cutle Parade station of MML3, while the main garden area is shatted within 50 metres of R.

There are few more gardens which are within 500 m of the proposed alignment. The names of these gardens are as given below in Table 3,18: https://www.jica.go.jp/english/our_work/social_environmental/id/asia/south/india/c8h0vm0000935z0n-att/c8h0vm0000fdf6vp.pdf

So, here you can see the also mangroves of the Mithi estuary. So, which is identified as a sensitive area. Then you can see Sanjay Gandhi National Park also which falls within the zone and then common plant species of the

Sanjay Gandhi National Park has been identified. An elaborate list has been created. Then we also learned about modified habitat. So, there is also a modified habitat in this area which is Mahim Nature Park, Dharavi, then you also see Colaba Woods garden here.

So, you can see in the picture these areas. So, you see that the identified potential ecological impact of the project, so, it would lead to the removal of trees it would lead to loss and degradation of biodiversity and it would lead to loss and degradation of soil. So, that was identified in the project, then further they looked into socio-economic conditions.


So, for this, they prepared a separate report Social Impact Assessment for the Mumbai Metro corridor. So, we have already seen that briefly when we were covering socio-economic impact assessment. However, I have given the link again if you wish to see the report again from this perspective, so, you can see it.

maple	S. NO.	IMPACT	MAGNITUDE
HUMBAL HETRO LINE-3	1	Acquisition of Land (in Ha)	77.86
	2	Impact on Structure (No.)	2575
ed Social Impact Assessment Report (Volume – I)			
	2.1	Impact on PAPs	5886
MARLE Concortium - General Consultant for Municel Metro Line 3	2.2	Total PAFs (No.)	2471
MANEA METROLINE 3	2.3	Surveyed PAFs	1847 (624 Locked)
	2.4	Surveyed PAPs	5886
	3	Titleholder (No.)	937
December - 2020	4	Non-Titleholder (No.)	1534
	5	Loss of Residence	1673
	6	Loss of Business	798
AICOM PROKO	7	Vulnerable PAFs	196
	8	Impact on Community Resources	104
ACCOM FRANCO 🕲 📀	7	Vulnerable PAFs	196

(Refer Slide Time: 24:01)

So, we see here that overall project impact, how much land would be acquired, how much impact it would have on the structure, how many project-affected people would be there, and total project-affected people and surveys people and so on all those details have been given.

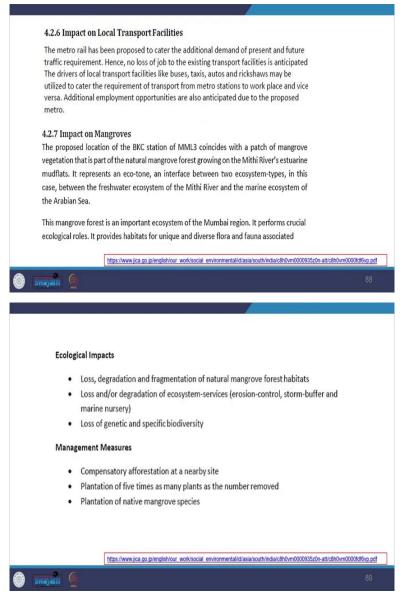
(Refer Slide Time: 24:20)

And then other how it is going to influence all the historical sites. So, that is also given here. So, you see that they have identified CST railway station which is like of distance from the center of the Metro alignment, it is just 40 meters away, then you can see the BMC building which is 22 meters away, and Western Railway headquarters, which is 45 meters away. So, you can see all these CST, BMC, and Western Railway headquarters, and how they look like just so, that you can visualize them. And then also relate to the alignment. So, you can see in the map also, how it is.

(Refer Slide Time: 25:03)

Sr.	Description	Within 100 m on Either
No.		side
1	Education Institutions(Schools and Colleges)	13
2	Hospital	22
3	Temple	21
4	Mosque	05
5	Church	06
6	Monuments/Statue	08
7	Nature Park	01
	Total	76
	https://www.jca.go.jo/english/our_work/social_environmental/k/a	sia/south/india/c8h0vm0000935z0n-atti/c8h0vm0000fdf6

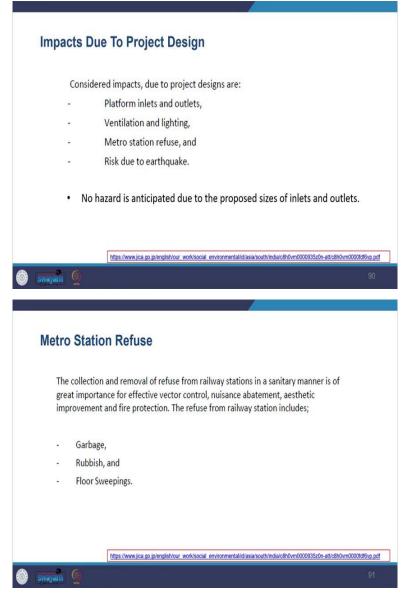
Then, they have also identified the sensitive receptors. So, we have understood the concept of sensitive receptors. So, they have identified, so, you can see the educational institutions hospitals temples, mosques, and so on. They have identified how far it is. And then you can also see a tree inventory which they have done for each station along the Mumbai Metro line 3. So, the list almost goes 200 pages and we are talking about 500 Plus pages page of the EIA report.


So, the list of documentation goes on nearly 200 pages. So, you can see in which zone it is coming and how they have grouped it and which station it is, trees to be retained and trees to be removed all those numbers have been quite quantified here and trees to be planted. So, that is how they have undertaken intensive documentation they have undertaken. So, now looking at the negative environmental impact.

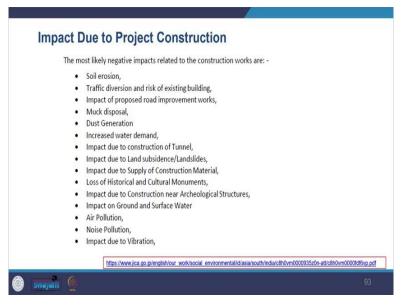
So, the negative environmental impact is like you have, they have identified as likely on the land Environment, Water, Air, Noise, biological environment, and socio-economic environments. So, they have identified all that and there are impacts due to the project locations, and then they are like you have project-affected people who will be dis effected economically or physically.

Then there will be also a change of land use then there will be also loss of trees and forests. Then also there will be a problem with utility drainage problems, and then there will be problems with the historical and cultural monuments and there has been an anticipated impact on the local transport facilities. So, you have already seen how one undertakes all these things. So, these are all covered in this particular report.

S.NO	PARTICULARS	PERMANEN REQUIREN		TEMPORAR' REQUIREN	
		GOVERNMENT	PRIVATE	GOVERNMENT	PRIVATE
1	Depot	26.407		-	
2	Stations	1.49	3.23	2	-
3	TSS	0.4	0.2	-	
4	Cut & Cover Station		-	1.84	0.067
5	Construction Depot	•	-	10.95	1.23
	Total	28.297	3.43	12.79	1.29
roposed Hence	Trees/Forests alignment of metro rail	ipated. The trees are g	nd not passing etting affected	through any only at stations	35z0n-att/c8h0vr
Loss of roposed :. Hence t depot I the align e the tota urvey (U below 1 cut. With fected a	Trees/Forests alignment of metro rail	is in urban/ city area a ipated. The trees are g alignment is undergro ns and 1652 trees are e rved on project site ar hapter 3) that, out of t splanted and remainin sthe process of CO2 at ed in TABLE 4.2. The	nd not passing etting affected und. There are at depot (Refer ea is 2241. It is otal 70% (i.e 15 g 30% (i.e 673) sorption and C loss of tree v	through any only at stations 589 trees observed Section 3.7.1). observed from the 68) of the tree has 10 f the trees needs 12 production will <i>v</i> ill have short	35z0n-atticehűvr
Loss of roposed Hence t depot I the align e the tota urvey (U below 1 fected a Heat-Isla estation.	Trees/Forests alignment of metro rail no loss of forest is antic ocation since proposed ument at station locatio al number of trees obse pdated table given in CI metre which will be trai n removal of these trees nd the losses are report	is in urban/ city area a ipated. The trees are g alignment is undergro ns and 1652 trees are a roed on project site ar hapter 3) that, out of to splanted and remainin s the process of CO2 aud be mitigated after te short term heat-islar	nd not passing etting affected und. There are at depot (Refer ea is 2241. It is stal 70% (i.e 15 330% (i.e 45 330% (i.e 45 3000 sof tire e er construction of	through any only at stations 589 trees observed Section 3.7.1). observed from the 68) of the tree has of the trees needs of the trees needs 20 production will vill have short due to	35z0n-attic8h0vr
Loss of roposed Hence t depot I the align e the tota urvey (U below 1 fected a Heat-Isla estation.	Trees/Forests alignment of metro rail no loss of forest is antic ocation since proposed iment at station locatio a number of trees obse pdated table given in Cl metre which will be trai n removal of these trees nd the losses are report nd Phenomenon and w The loss of tree will hav r construction due to al	is in urban/ city area a ipated. The trees are g alignment is undergron ns and 1652 trees are a roed on project site ar hapter 3) that, out of to splanted and remain is the process of CO2 duil be mitigated after re short term heat-islar forestation.	nd not passing etting affected und. There are at depot (Refer ea is 2241. Itis sotal 70% (i.e 15 is 30% (i.e 673) sorption and C loss of tree v r construction of d phenomenoi	through any only at stations 589 trees observed Section 3.7.1). observed from the 68) of the tree has of the trees needs of the trees needs 20 production will vill have short due to	3520n-attic8h0vr
Loss of roposed Hence t depot I the align e the tota urvey (U below 1 fected a Heat-Isla estation.	Trees/Forests alignment of metro rail no loss of forest is antic ocation since proposed iment at station locatio a number of trees obse pdated table given in Cl metre which will be trai n removal of these trees nd the losses are report nd Phenomenon and w The loss of tree will hav r construction due to al	is in urban/ city area a ipated. The trees are g alignment is undergroo ns and 1652 trees are a rved on project site ar hapter 3) that, out of tt splanted and remainin s the process of CO2 at ed in TABLE 4.2. The ould be mitigated after e short term heat-islar forestation. TABLE 4.2	nd not passing etting affected und. There are at depot (Refer ea is 2241. Itis sotal 70% (i.e 15 is 30% (i.e 673) sorption and C loss of tree v r construction of d phenomenoi	through any only at stations 589 trees observed Section 3.7.1). observed from the 68) of the tree has of the trees needs of the trees needs 20 production will vill have short due to	35z0n-atticBhÖvr
Loss of roposed Hence t depot I the align e the tot: urvey (U below 1 fected a Heat-Isla estation. ated afte	Trees/Forests alignment of metro rail no loss of forest is antic iocation since proposed ment at station locatio al number of trees obse pdated table given in Cl metre which will be tran n removal of these tree nd the losses are report nd Phenomenon and w The loss of tree will hav r construction due to af OXYGEN DEI	is in urban/ city area a ipated. The trees are g alignment is undergron ns and 1652 trees are a rved on project site ar hapter 3) that, out of to splanted and remainin s the process of CO2 at ed in TABLE 4.2. The ould be mitigated after e short term heat-islar forestation. TABLE 4.2 FICIT DUE TO TREE LOS	nd not passing etting affected und. There are at depot (Refer ea is 2241. Itis sotal 70% (i.e 15 is 30% (i.e 673) sorption and C loss of tree v r construction of d phenomenoi	through any only at stations 589 trees observed Section 3.7.1, observed from the 68) of the tree has 10 f the trees needs 12 production will will have short jue to n and would be	https://www.jica.
Loss of roposed . Hence I the align e the toti urvey (U urvey (U urvey (U urvey (U urvey (U urvey (U urvey (U the align e the toti fected a Heat-Isla estation. ated afte	Trees/Forests alignment of metro rail no loss of forest is antic ocation since proposed ment at station locatio al number of trees obse pdated table given in Cl metre which will be tran h removal of these trees th removal of these trees duthe losses are report nd Phenomenon and w The loss of tree will hav r construction due to al OXYGEN DEI	is in urban/ city area a ipated. The trees are g alignment is undergro ns and 1652 trees are i rved on project site arr hapter 3) that, out of t haplanted and remainin s the process of CO2 at ed in TABLE 4.2. The ould be mitigated after e short term heat-islar forestation. TABLE 4.2 FICIT DUE TO TREE LO2 be cut	nd not passing etting affected und. There are at depot (Refer ea is 2241. Itis sotal 70% (i.e 15 is 30% (i.e 673) sorption and C loss of tree v r construction of d phenomenoi	through any only at stations 589 trees observed Section 3.7.1). observed from the 68) of the tree has of the trees needs 12 production will ill have short due to n and would be QUANTITY	

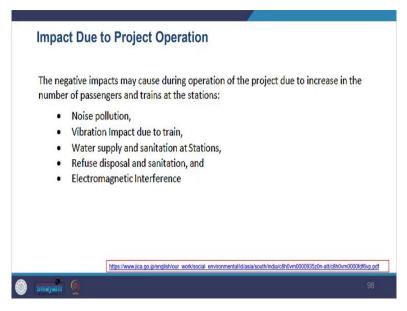

Here you can quickly see how they have identified the land requirement for this particular project for all the components of the project. So, also the loss of trees and forests. So, the total number of trees to be cut is 673. What kind of increase will be there in carbon dioxide and what is the formula they have used for calculation and then decrease in oxygen production? So, that kind of calculation they have made.

All these are related to drainage and also historical and cultural monuments and the impact on local transportation facilities on mangroves and then they have identified the ecological impact so, which is like loss, degradation, and fragmentation of natural mangrove forest habitat.


So, we have studied what fragmentation means, what degradation and loss mean, and then the loss and degradation of ecosystem services we have already studied the loss of genetic and specific biodiversity, and we are familiar with that. Then, they took management measures like compensatory afforestation at the nearby site, the plantation of 5 times as many plants as the number removed, and the plantation of native mangrove species. So, that is what management measures they are going to adopt.

(Refer Slide Time: 28:26)

And then now, we see impacts due to project design. So, project design part they have platform inlet and outlet ventilation and lighting, Metro Station refuse, and risks due to earthquakes. So, most of it by the design, no hazard was anticipated to the proposed sizes of the inlet and outlet. And then they also studied how they are going to manage the garbage, rubbish, and floor-sweeping. So, that would be taken care of, and the risk due to the earthquake has been already taken care of within the design elements of the project.


(Refer Slide Time: 28:59)

Now looking at the impact due to the project construction. So, they have identified environmental hazards that will occur due to the construction work related to the soil they would be as soil erosion, traffic diversion, the impact of the proposed road improvement work, Muck disposal, dust generation, increased water demand impact due to the construction of the tunnel, impact due to land subsidence, landslides, supply of construction material, and then what kind of loss will happen to historic and cultural monuments and so on.

So, all that has been identified is what will happen during the construction of the project. So, you see how massive the project is. So, it will have an impact on several aspects just during its construction phase. Further, they have also looked into the health risks at the construction sites, we have also studied how to undertake health risks and we see the impact on sensitive receptors has been also studied here.

And then what kind of impact it will have due to the labor camp. So, they are going to have a labor camp with all the people working so, what kind of possibilities are there concerning health? So, there are construction workers are more prone to infectious diseases like HIV, AIDS, and so on. So, how those things will be taken care of, and then also impact due to blasting, and then also the ground vibration those calculations have been made.

Now, so, that is about the construction phase. Now, we will look at the impact due to project operations. So, how they have looked into it, they have identified that there will be the impact on noise, and vibration impact due to trains, there would be the impact on water supply and sanitation at stations and refuse disposal and sanitation and Electromagnetic interference which can happen.

(Refer Slide Time: 31:06)

	Math Math Math Math <t< th=""><th></th><th>bornoverse services and se</th></t<>		bornoverse services and se
--	--	--	---

OVERALL RESULT OF VIBRATION IMPACT

SI	Location	Field Measured vertical vibration (VdB)	Vibration due to TBM Operation(VdB)	Vibration due to Metro Train Operation (VdB)	Standards of Vibration in (VdB)
1	Lady Willingdon Building.	113.9	144	85 to 90	65-83
2	Narutamdas Bhau Jewelers, Lamington Road.	123.5	147.8	70 to 75	65- 83
3	Mittal Towers, Maharshi Valmiki Chowk	126	143	65 to 70	65- 83
4	Central Assurance Building, Dr. Dadabhai Naoroji Road.	124	147.8	65 to 70	65- 83
5	Bhikha, Behram, Parsees Well, Hutatma Chowk	113.9	143	68 to 70	65- 83
6	Chhatrapati Shivaji Terminus	110-126	147.3	90-95	65-83

https://www.jica.go.jp/english/our_work/social_environmental/id/asia/south/india/c8h0vm0000935z0n-att/c8h0vm0000/df6vp.pdf

ññ

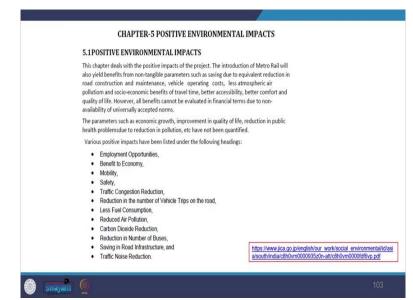
Water Supply and Sanitation

SWalyam (

SWAYANTI (

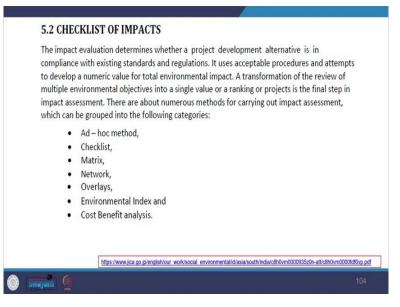
Public Health facilities such as water supply and sanitation are very much needed at the stations. The water demands will be for drinking, toilet, cleaning and also for other purpose like AC, chiller etc. The demand is presented in Table **4.9**. It is assumed that there would be similar water requirements in Mumbai Metro corridors also. The Water Demand of existing Delhi Metro is corridors considered for requirement of Mumbai metro. Water should be treated before use upto WHO drinking water standards. Municipal supply/Ground water shall be used for this purpose.

S.No.	Particular	Water Demand at Each Station (KLD)	Total Water Demand (KLD)
1	At Stations for Drinking Purpose	6	162
2	For AC, cleaning, chiller and other purposes	240-250	6750
		Total	6912


https://www.jica.go.jp/english/our_work/social_environmental/id/asia/south/india/c8h0vm0000935z0n-att/c8h0vm0000/df6vp.pdf

mpac	ts Due to Depot	
26.40	lepot at Araey colony is planned for metro corrido)7 hectares. The area at depot is vegetated with no ving facilities:	
	Washing Lines,	
	Operation and Maintenance Lines,	
	Workshop, and	
	Offices.	
cut a	se facilities could generate water and noise issues and fill method within the depot and additional ea e the ground level. Problems anticipated at depot s	rth will be taken from tunnelling to
	Water supply,	
	Effluent Treatment,	
	Oil Pollution	
	Noise Pollution,	
	Surface drainage,	
	Solid Waste,	
	Cutting of trees.	https://www.jica.go.jp/english/our_work/social_environmen sia/south/india/c8h0vm000093520n-att/c8h0vm0000ldf6vp

So, you see all that has been calculated here. You can see where all the locations they have been documenting and water supply and sanitation, how they have been recording the requirements. And then they also looked at the impact due to the depot. So, not just the real track, but also because of the operation of the depot.


So, where the cleaning would take place, so, washing lines operations, and maintenance workshop in an office, will have an impact on water supply, effluent treatment, oil pollution, noise surface drainage, solid waste, and cutting of trees would happen there. So, that was about the impact. Now looking at the positive environmental impacts, they looked at the negative looking at the positive environmental impact.

(Refer Slide Time: 31:57)

So, positive environmental impact was identified as employment, benefits to the economy, mobility, safety, traffic congestion reduction, reduction in the number of vehicle trips, less fuel consumption, reduced air pollution, carbon dioxide reduction in number of buses, saving and road infrastructure, traffic noise reduction. So, you see the initial argument, what we have been talking about environmental status, and then how we are looking at the sustainable way of approaching it.

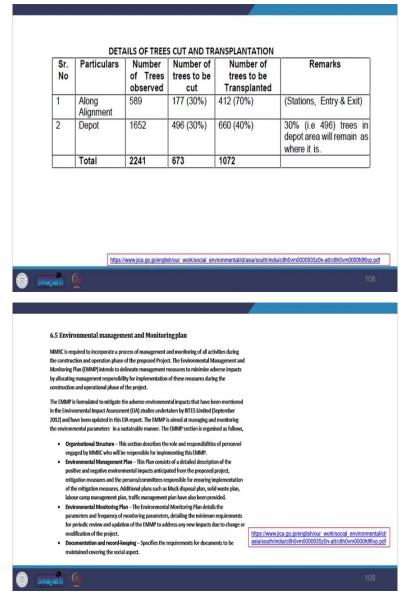
(Refer Slide Time: 32:35)

So, they have in the end also used the checklist of impact. So, how they are summarizing it, how they are looking at it. So, you look there are various methods of carrying out impact assessments. So, you see the Adhoc method, checklist method, Matrix, network, Overlays, Environmental Index, and Cost-benefit analysis.

(Refer Slide Time: 32:53)

So, here you see they have adopted the checklist of impact and all these impacts have been identified where it is a negative impact, no impact, and positive impact. So, you can look at this checklist of impacts. So, impact due to project location. So, here they are summarizing everything. Impact due to project location, you can see the impact due to project design, project construction project operation, and all the parameters that they have looked into.

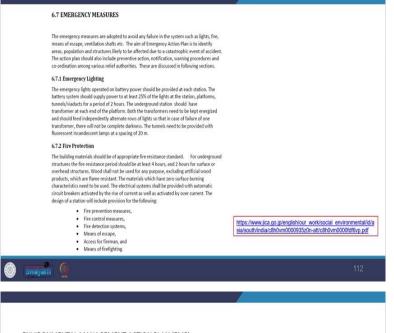
CHA	FIER-OENV	IKOAPIENI	AL MANAGEMENT I	LAN	
6.1 APPROVALS	CLEARANCES	REQUIREM	ENT		
On the basis of base	line study and iden	tified negative in	npacts, issues like tree cutti	n£.	
approvals/clearance approvals/clearance	from the relevant s are in place befor	concerned authors implementation	disposal etc needs necessa prities. PMU will ensure that on. Before commencement project is given in Table 6.1	all necessary of the	
issues	Laws & Regulations		Required Documentation	Approval Authority	
Pernisson for Tree Cutting	Muharashira Protection & Preservation of Trees Act, 1975, as modified up to 3 rd Nev 2006.	67 days before the construction	Application Format encount of the present of the Address of Sile, Plans & drawings of the present construction approved by competent authority, Plan showing indication of trees required to be field.	The Tree Authority MCGM Mumbai	
Development permission near World Heritage Structures	Development Control Regulations, 1991, Under MCGM Act, 1988.	Before Construction	Format of submession for MHICC NOC. Detailed Address of Site, Location of Heritage structure w.r.t. Metro Alignment. Plans& drawings of the proposed construction activates.	1968)	
Muck disposal permission	Environment Protection Act	Before Construction	Dumping Site	State Polution Control Board MoEF(Govt Of India)	
Resetberient Permission	Resettement & Rehabilitation Policy for Mumbal Utban Transport Project (MUTP), 1997 Amended in Dec 2007	Defore Construction	Social impact Assessment & RAP Report	State Government, Maharashira	
Consent for Establishment	Environment Protection Act	Before Construction	Site plan, sources of effluent dischargeremissions, Detaits of Water Pollution Control/Air Pollution Control/Air Pollution Control, Answert Air Guality Report, Consent Fries,	Control Board (Maharashtra Pollution Control Board)	https://www.ijca.go.jp/english/our_work/social_environment asia/south/india/c8h0vm0000935z0n-ati/c8h0vm0000fdfevp
Consent to Operate	Environment Protection Act	After Construction	Site plan, Latest analysis report of effluent	State Pollution Control Board	


Further, they have prepared an environmental management plan. So, how they are looking at it and then they have prepared a Tabular form, all these issues which they have to take care of, which laws and regulations they would adhere to, by when they have to do it, what kind of documentation would be required and which will be the authority with which they will be dealing with.

(Refer Slide Time: 33:43)

6.3 MITIGA	ATION MEASURES
	of mitigation measures is to protect and enhance the existing environment
of the project.	This section includes measures for:
0	Compensatory Afforestation,
0	Construction Material Management,
0	Safety Management Measures during the construction period
0	Labour Camp,
0	Energy Management,
0	Hazardous Waste Management,
0	Environmental Sanitation,
0	Utility Plan,
0	Archaeological and Historical Preservation,
0	Air Pollution Control Measures,
0	Noise Control Measures,
0	Vibration Control Measures,
0	Traffic Diversion/Management,
0	Soil Erosion Control,
0	Muck Disposal,
0	Draining of Water from Tunnel,
0	Water Supply, Sanitation and Solid Waste Management,
0	Sensitive Receptors
0	Electromagnetic Interference
0	Management Plans for Depot,
0	Training and Extension, and
0	Environmental Enhancement Measures.
	https://www.jjca.go.jp/english/our_work/social_environmental/id/asia/south/india/c8h0vm0000935z0n-att/c8h0vm0000fdf6vp.pd

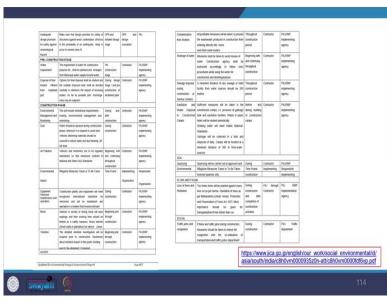
And then the range of mitigation measures, you can see a range of mitigation measures here, compensatory Afforestation, construction material Management, Safety management, labor camp, energy management, and hazardous waste management. So, all these range of mitigation measures will be taken.


(Refer Slide Time: 34:02)

And what kind of plantations they are going to do here and then also environmental management and monitoring plan. So, what kind of organizational structure would be there, what is the environmental management plan, how are they going to monitor the plan, and then how they are going to maintain the documentation and record-keeping so that all has been discussed here?

	MANAGEMENT	
	xpected event due to sudden failure of the system, external threats, internal hquakes, fire and accidents. The first step is to identify the	
construction. The	elop/ pose unexpected danger to the structural integrity due to potential causes are excessive load, cracks, failure and malfunctioning of nts, accident, etc. These need to be looked into with care.	
6.6.1 Preventive	e Action	
Engineers respons	od of a disaster is suspected, action has to be initiated to prevent a failure. sible for preventive action should be aware of availability of repair fails, labour and expertise for use during emergency.	
6.6.2 Reporting	Procedures	
the stage at which	h a situation will be termed a disaster shall be specified. This shall include the surveillance requirements should be increased both in frequency and eer-in-Chief should notify the officer for the following information:	
8	Exit points for the public, Safety areas in the tunnel, and Nearest medical facilities.	
	https://www.jica.go.jp/english/our_work/social_environmental/id/asia/south/india/c8h0vm0000935z0n-att	/c8b0vm0000fdf6vp.pdf
-	https://www.jca.go.prengilsirour_work/social_environmentandrasia/social/incla/conovinoodo/social/environmentandrasia/social/incla/conovinoodo/social/environmentandrasia/social/incla/conovinoodo/social/environmentandrasia/social/incla/conovinoodo/social/environmentandrasia/social/incla/conovinoodo/social/environmentandrasia/social/environmenta	Contra Millococicio (p. par
swayam	Q	110
6.6.3 Co An effici manager often, th damage	emmunication System ent communication system is absolutely essential for the success of any disaster mert plan. This has to be vorhed out in consultation with local authorities. More en entire communication system give disaspted when a disaster occurs. The areas need to be devide voltem forcage and will planof	218 m
6.6.3 Co An effici manager often, th damage	mmunication System ent communication system is absolutely essential for the success of any disaster meet plan. This has to be worked out in consultation with local authorities. More tentic communication system at disaster due at a daster course. The	218 m
6.6.3 Co An effici manager often, th damage commun 6.6.4 En	emmunication System ent communication system is absolutely essential for the success of any disaster ment plan. This has to be worked out in consultation with local authorities. More be entire communication system etit disagred when a disaster course. The areas need to be clearly identified and provided with temporary and full proof incidion system. mergency Action Committee	218 m
6.63 Co An effici manager often, th damage commun 6.64 En To ensur	emmunication System ent communication system is absolutely essential for the success of any disaster ment plan. This has be vorked out in consultation with local authorities. More the entire communication system gets disrupted when a disaster occurs. The areas need to be clearly identified and provided with temporary and full proof inclution system.	218 m
6.6-3 Co An effici manager often, th damage commun 6.6-4 En To ensur	emunication System ent communication system is absolutely essential for the success of any disaster mener plan. This has to be worked out in consultation with local authorities. More terric communication system est disagregative when a disaster course. The areas need to be clearly identified and provided with temporary and full proof nication system. mergency Action Committee re constituted action, an imegregory Action Committee should be constituted. MD will be the Chairman of this Committee. The committee may comprise of: 1 Head of operations,	218 m
6.63 Co An effici manager often, th damage commun 6.64 En To ensur	emmunication System entrommunication system ient communication system is absolutely essential for the success of any disaster ment plan. This has be worked out in consultation with local authorities. More en entire communication system gets disrupted when a disaster occurs. The areas need to be dealwy identified and provided with temporary and full proof incidion system. mergency Action Committee re coordinated action, an in mergency Action Committee should be constituted. MD will be the Chairman of this Committee. The committee may comprise of:	218 m
6.63 Co An effici manager often, th damage commun 6.64 En To ensur	emmunication System encoded action system is absolutely essential for the success of any disaster ment plan. This has to be worked out in consultation with local authorities. More en enfor communication system gets disapted when a disaster occurs. The assess need to be dealy identified and provided with temporary and full proof incidion system. mergency Action Committee re coordinated action, an Energency Action Committee should be constituted. MD ail be the claiman of this Committee. The committee may comprise of:	218 m
6.63 Co An effici manager often, th damage commun 6.64 En To ensur	emmunication System ent communication system is absolutely essential for the success of any disaster ment plan. This has to be worked out in consultation with local authorities. More tentic communication system esti disayted when a disaster course. The arease need to be clearly identified and provided with temporary and full proof nication system. mergency Action Committee mergency Action Committee The committee may comprise of: Head of operations, Head of technical service, Head of operations, Head of servite,	218 m
6.6.3 Co An effici manager commun 6.6.4 En MMEC w	emmunication System ent communication system is absolutely essential for the success of any disaster meet plan. This has to be worked out in consultation with local authorities. More enter communication system as disayted when a disaster course. The arrans need to be clearly identified and provided with temporary and full proof incation system. mergency Action Committee re coordinated action, an Emergency Action Committee should be constituted. MD if be the claiman of this Committee. The committee may comprise of: Head of operations, Head of scoring, Head of scoring.	218 m
6.6.3 Co An effici manager commun 6.6.4 En MMEC w	emmunication System ent communication system is absolutely essential for the success of any disaster meet plan. This has to be worked out in consultation with local authorities. More enter iconominutation system est disayted when a disaster cours. The arrans need to be clearly identified and provided with temporary and full proof incation system. mergency Action Committee re coordinated action, an Emergency Action Committee should be constituted. MD if be the claiman of this Committee. The committee may comprise of: Head of operations, Head of clarinoid service, Head of scoring, Head of scori	218 m
6.6.3 Co An effici manager commun 6.6.4 En MMEC w		218 m
6.6.3 Co An effici manager commun 6.6.4 En MMEC w	emmunication System ent communication system is absolutely essential for the success of any disaster meet plan. This has to be worked out in consultation with local authorities. More enter iconominutation system est disayted when a disaster cours. The arrans need to be clearly identified and provided with temporary and full proof incation system. mergency Action Committee re coordinated action, an Emergency Action Committee should be constituted. MD if be the claiman of this Committee. The committee may comprise of: Head of operations, Head of clarinoid service, Head of servi	218 m
6.6.3 Co An effici manager commun 6.6.4 En MMEC w	emmunication System ent communication system is absolutely essential for the success of any disaster ment plan. This has to be worked out in consultation with local authorities. Knore here and communication system is disastery dwwn a disaster course. The areas need to be clearly identified and provided with temporary and full proof nication system. mergency Action Committee re coordinated action, an intergency Action Committee should be constituted. MD life the claiman of this Committee. The committee may comprise of: Head of perainlose, Head of county, Head of head head, Head of	218 m
6.6.3 Co An effici manager commun 6.6.4 En MMEC w		218 m
6.6.3 Co An effici manager commun 6.6.4 En MMEC w		218 m

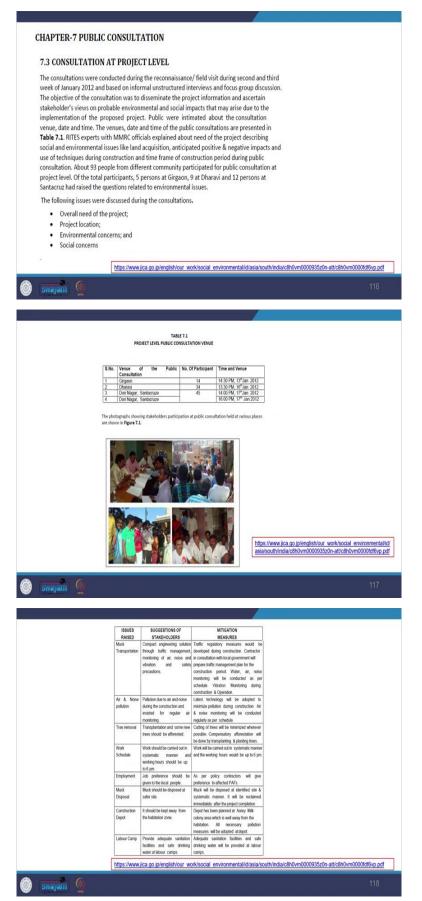
And then also the disaster management, how what kind of prevention actions they would take, what kind of reporting procedure would be followed, and what kind of communication system would be there Emergency Action Committee, which will be there.

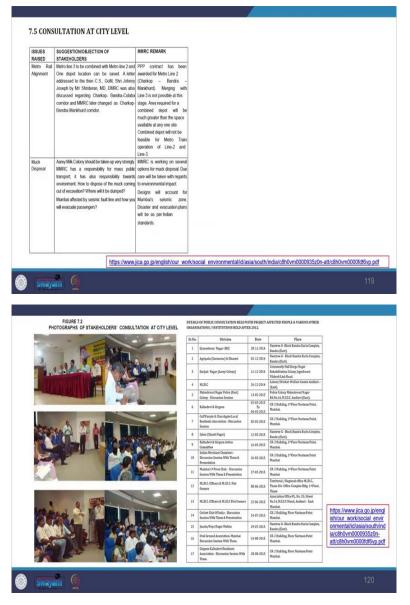


Environmental Impact	Mitigation Measures Taken or To Be Taken	Time Frame	Implementing Organization	Responsible Organization	
DESIGN PHASE					
Metro Alignment	The proposed corridor alignment was selected to minimise the land disturbance to avoid archaeological sites, temptes and other environmentally sensitive areas.	During Design	DPR and design consultant	PIU	
Cultural Heritage	Avoided by adjustment of alignment.	During Design	DPR and design consultant	PIU	

swayam 🧕

https://www.jica.go.jp/english/our_work/social_environmental/id/asia/south/india/c8h0vm0000935z0n-att/c8h0vm0000fdf6vp.pdf

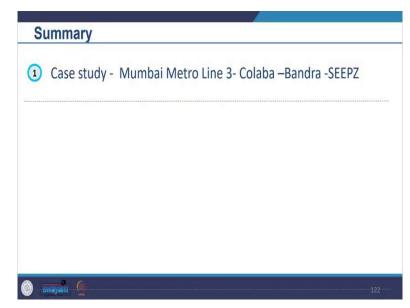

113



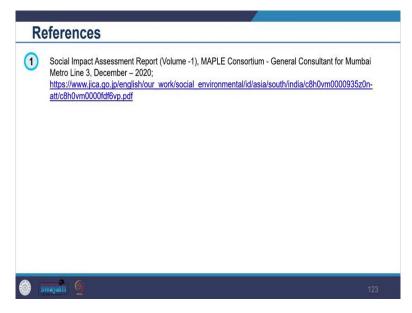
	In - Safety education and fines.	During	CONTRACTOR	PKJ Tuffc	
whicks, peop and livestock an signage				department	
	 Communicate to the public through radio. TV & newspaper announcements migading the scope and smelliume of projects, as well as certain construction activities causing disruptions or access nettriction. 				
Increase in disease Water borne Insect borne	al construction areas, to avoid creation of stagnant waterbodies. Provide adequate samilation and waste	construction	Contractor	PIJEMP implementing agency	
Contenunicable diseases	disposal at construction camps. • Provide adequate health care for workers	Throughout construction			
Location of camp and storage areas		Throughout construction	Contractor	PILIEMP implementing agency	
OPERATION PH	ASE				
Nose an			PILIEMP	PIUEMP	
Vibration	where warranted. The public shall be educated about the regulations of noise and vibration pollution and <i>th</i> implications.	completion of construction	agency	inplamenteq agency	
Environmental Impact	Mitgation Measures Taken or To the Taken	Time Frame	inplementing Organization	Responsible	
WATER					
Of polution	Sutuble treatment shall be taken for beatment		PUEMP	PIJEMP	
	of oil in depot areas before discharging the wordewater.	operation of the beatment pixed	implementing agency	inplementing agency	
Disposal of trual	Options for final disposal shall be studied and		PILIEMP	PILIEMP	
treated efficer			apprenenting approx	implementing agency	
plant.	bodes. As far as possible zero discharge rules may be adigited	piant	100		
	https://www	jica.go.j	p/english	/our work/s	al environmental/id/asia/south/india/c8h0vm0000935z0n-att/c8h0vm0000f
-					

Further, you also look at the emergency measures. So, what kind of emergency measures are provided in the project, emergency lighting, fire protection, and then they have developed in Environmental Management Action Plan EMP. So, you can see at various at the design phase, how they are doing it pre-construction stage, how they are undertaking it.

And then for all the aspects domain, which we have discussed, you can see here, then you can see the construction phase as well. And then you see at the operation phase as well how they are going to take it.



So, you see that they have also like it was the requirement of JICA, that they have to have a thorough public consultation. You have learned about the public consultation concept here. So, they have done consultation at the project level. Plus, you can see the picture here where all they did at the project level, and then they identified all the issues that were raised, and what kind of suggestions were made by the stakeholders.


And what kind of mitigation measures have been taken? So, all that has been documented. Then you also see the consultation at the city level. So, when did they conduct that has been documented what kind of issues were raised, what kind of suggestions were made, and what kind of actions have been taken to that?

So, you see that they have documented it, concerning photographs when and where they were conducted it and all that you can see the table where it was done, the date it was done place it was done, and what kind of inputs came and what kind of actions were taken. So, all that has been documented, you can see the minutes of the meetings also documented here. So, that is what we saw in the case study.

So, summarizing today, especially, while looking at this case study, we reflected upon all the learnings we have seen from, what kind of environmental context environmental pressure we are dealing with and what kind, how in practice, we handle all these aspects. So, by looking at Mumbai, metro line 3, Colaba, and Bandra SEEPZ, project we try to understand all those aspects.

(Refer Slide Time: 37:00)

So, these were our key references for this. So, we looked at this case report, and I have given you the link for that. Our references were also to the other part of what course book which we have been using, and these are the suggested watch and read, winding up. Please feel free to ask questions. Let us know about any concerns you have, and do share your opinions, experiences, and suggestions. Looking forward to interacting and CO learning with you while exploring EIA.

Thank you.