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In lecture 44, we will cover the second part of link assignment. In the previous lecture, the 

deterministic assignment techniques were discussed. In this lecture, other assignment 

techniques based on Wardrop’s Principle will be covered such as, user equilibrium 

assignment, system equilibrium assignment, and stochastic assignment. Some methods 

specific to stochastic assignment such as simulation methods like Burrell’s algorithm and 

proportional stochastic method like Dial’s algorithm will also be discussed. Besides, the 

concept behind the stochastic user equilibrium will also be looked at.  
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User Equilibrium Assignment 

In the earlier lectures, the basic concept related to Wardrop’s principle have already been 

discussed. It states that the individuals choose a route in such a way that his or her travel time 

is minimized. Such a behavior on the individual level creates an equilibrium at the system or 

the network level. This was the first principle as stated by Wardrop where everybody tends to 

choose the shortest route as per their knowledge. It leads to an equilibrium where everybody 

is divided amongst certain routes. The flows on links whose travel times are assumed to vary 

with flow are set to be in equilibrium when no trip maker can improve his or her travel time 

by unilaterally shifting to another route. It implies that the travel times in all the used routes 

are same at the state of equilibrium. For example, in the diagram provided above there are 

two routes between O and D and the total demand between O and D is 110. In the graph 

provided above, travel time along the links is plotted against the link volume. It is observed 

that the free flow travel time (for link volume =0) in route 1 and route 2 are 40 and 30 mins 

respectively. Therefore, the second route is faster compared to the first and automatically 

people will start using the second road. Once the flow in the second route increases, the travel 

time also increases. When the flow in this route reaches 100 or the total number of trips 

between O and D, i.e. 110 is assigned to this route, the travel time increases to almost 40. 

Therefore, the next 10 persons who will be assigned between O and D might find route 1 to 

be more attractive compared to route 2 in terms of travel time after comparison. So, they will 

tend to choose route 1 and will continue to do the same till the travel time again increases and 

route 2 becomes more attractive. So, eventually the travel time in both the routes reach the 

same level. Any other route with higher travel time is not chosen. Suppose another route with 

free flow travel time of 65 is added to the network. This route is only chosen if the travel time 



in route 1 and 2 becomes higher than this new route. If the travel time in the new route 

remains higher, this route is not chosen at all. Therefore, volume would not be assigned to 

this route.  
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In user equilibrium, all trip makers are rational and perceive cost in the same way and seek 

the same objective, i.e. to reach the destination using the shortest path. In this regard, we will 

consider a single user class i.e. the perceptions about cost, time and preferences across the 

individuals will remain the same. Besides, no stochastic effects are included for this 

equilibrium which implies that there is no variability among the population. Based on the 

above assumptions, the principle could be also stated as, 

Under equilibrium conditions, traffic arranges itself in congested networks such that all used 

routes between an OD pair have equal and minimum cost, while all unused routes have 

greater or equal cost.  

Therefore, for a given OD pair, the above principle can be mathematically expressed as, 

𝒇𝒌 (𝒄𝒌−𝒖)=𝟎: ∀𝒌    (1) 

     𝒄𝒌 −𝒖=𝟎: ∀𝒌       (2) 

where, 𝒇𝒌 is the flow on path k, 𝒄𝒌 is the travel cost on path k and u is the minimum cost of 

travel for that path. The second equation can assume two states, 

1) If 𝒄𝒌 - u = 0, from equation 1, 𝒇𝒌 ≥ 0. In this case, used paths will have the same travel 

time. 

2) If 𝒄𝒌 - u > 0, then from equation 1, 𝒇𝒌 = 0. In this case, unused paths will have higher 

travel time than the minimum cost path. Therefore, if the travel time in path k is higher than 

the minimum cost path, then flow on path k is 0. On the other hand, if the travel time is 



similar to the minimum cost along the paths, the flow will be assigned to these paths i.e. these 

paths will be used. Some assumptions are made to conduct assignment under user 

equilibrium. Firstly, we assume that the user has perfect knowledge of the path cost and the 

users have similar preferences. Secondly, the travel time on a given link is a function of the 

flow on that link only, i.e., the travel time is affected by the total volume in that link and not 

by the volume of other links. The final assumption is that the travel time functions are 

positive and increasing.  
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Let us consider the following figure. t1 & t2 are the travel time on route 1 and 2 in minutes 

respectively. x1 & x2 are the traffic flow (Veh/hour) on routes 1 and 2 respectively. Assuming 

user equilibrium conditions and hourly flow rate of 4500 Veh/hr, we need to determine the 

travel time on each route, traffic volumes on each route, and total system traffic. q is the total 

traffic volume in 1000s veh/hr between the origin 1 and destination 2. Therefore, the total 

flow between the above pair is 4.5. Based on the basic flow conservation identity, the total 

traffic flow is represented as, q = x1 + x2 = 4.5. Now, let us check whether equilibrium 

conditions are satisfied by assigning the traffic in one of the routes. Let us assign the entire 

traffic volume to route 1. Now, t1 is given by the following equation, 

t1 = 6+4x1 

Substituting x1 with 4.5 in the above equation, the travel time for route 1 is estimated as 24 

minutes. Now, t2 is given by the following equation, 

t2 = 4 + x2
2 

Since the entire volume is assigned to route 1, no flow will be assigned to route 2. Therefore, 

x2 is taken as 0. Based on this value of x2, t2 is estimated as 4 minutes. While the travel time 



in route 1 is a linear function, the travel time in route 2 is a quadratic function. Therefore, 

when the flow increases in the route 2, there is drastic increase in travel time. Since, t1 & t2 

are not equal, the equilibrium condition is not attained. Similarly, if the entire traffic is 

assigned to route 2, t2 is estimated as 24.25 minutes and the travel time in route 1 is estimated 

as 6 minutes. So, in this scenario also the equilibrium conditions are not satisfied.   
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Now, let us assume that based on the Wardrop’s equilibrium rule, 

t1 = t2 

Substituting t1 and t2 with the equations provided above we get, 

6+4x1 = 4+ x2
2 

Now, based on the flow conservation identity we have, 

x1 + x2 = 4.5 

So, x1 can be expressed in terms of x2 as, 

x1 = 4.5− x2 

Substituting the value of x1 we get, 

6 + 4(4.5 − x2)=4+ x2
2 

Solving the above equation, the value of x2 is obtained as 2.89 whereas x1 is estimated as (4.5 

- 2.8) i.e. 1.6. So, these values can be inserted in the travel time equation to determine the 

average travel time in both the links. The average travel time in both the links must be equal 

since the flows are estimated for equilibrium condition. The average travel time in both the 

links is found to be 12.4 minutes. So, this is the equilibrium time or the travel time in both the 

routes under equilibrium. Now, the total flow in x1 is 1601 veh/hr and the total flow in x2 is 

2899 veh/hr. Now, the total system traffic can be estimated using the following equation, 



S(x) = x1t1(x1) + x2t2(x2) 

Where, x1 and x2 are the flows under equilibrium in link 1 and link 2 respectively. t1(x1) and 

t2(x2) are travel time at x1 and x2 respectively. Based on the values obtained above for the 

above parameters, the total system traffic under equilibrium is estimated as 930 vehicles. 

Therefore, the system can handle an average of 930 vehicle trips between the given OD pair 

under equilibrium. This can measure efficiency of a given system.  
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The first principle of Wardrop’s equilibrium can be solved mathematically. A single route is 

composed of multiple links. So, we need to determine the total area under each of the flows 

along these links. In order to achieve equilibrium, the total area must be minimum since the 

shortest route must be determined between an OD pair as per the Wardrop’s equilibrium. 

This can be solved using an equivalent nonlinear mathematical optimization program, which 

is expressed as follows: 

 

which is subjected to the following constraints: 

           

 

 



where fk
rs is the flow on link k between the OD pair r and s, xa is the equilibrium flows in path 

a, ta is the travel time on link a, qrs is the trip rate between r and s and δrs is a definitional 

binary constraint, i.e. 1 and 0 based on the inclusion of a link within a path. If the flow is 

assigned to a link, then that flow will only be considered for equilibrium flow if the link 

belongs to the shortest path. Therefore, the equilibrium flow along a path is estimated by 

considering the total flows on the links included in that path. Besides, fk
rs in a link k must 

always be greater than 0. Also, the equilibrium flows along the links must be greater than 0. 

Therefore, the travel time between an OD pair must be minimized by satisfying all the above 

conditions. 

(Refer Slide Time: 17:29) 

 
System Equilibrium Assignment 

The extension of the first principle can be observed in Wardrop’s second principle which 

talks about the system optimal assignment. The second principle, also known as system 

equilibrium, proposes an alternative way of assigning traffic onto the network. In this 

equilibrium, the transport planners and engineers who are trying to minimize traffic or 

manage traffic aim to minimize travel cost over an entire city. A desired minimum travel time 

in different corridors in the network can be achieved through different strategies like route 

extension, right-of-way extension, new route addition, signal management and more. The 

second principle can be stated as, 

Under social equilibrium condition traffic should be arranged in congested networks in such 

a way that the average (or total) travel cost is minimised. 

Therefore, the total volume as well as the travel time in each link must be minimized. 

Mathematically, the above principle can be expressed as, 



 

Where, xa is the total volume in each link, ta(xa ) is the travel time of each link for flow xa . 

The above optimization problem is subjected to the following constraints: 

           

 

 

 

Where, frs
k is flow on path k connecting O-D pair r-s, qrs is trip rate between r and s and δ is a 

binary function equal to 1 when link a belongs to path of k, otherwise 0. While the travel time 

is minimised under user equilibrium, the overall system cost is minimised for system 

equilibrium. Therefore, both the link volume and the travel time is considered in the overall 

cost of the system. Moreover, in this equilibrium process, we do not consider the travel time 

minimization of each individual. Therefore, some user may have higher travel time compared 

to others, but the overall system travel time will be minimized.  
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Let us consider the previous example to explain the system equilibrium. The total system 

travel cost can be represented as, 

S(x) = x1*t1(x1) + x2*t2(x2) 

Based on the functions of t1 & t2 provided above, the system travel cost function can be 

written as, 

S(x) = x1 * (6+4x1) + x2 * (4+x2
2) 



S(x) = 6x1 +4x1
2 + 4x2 +x2

3 

Substituting the value of x1 the equation takes the following form, 

S(x) = x2
3 + 4x2 

2 − 38x2+108 

So, to minimize system travel cost, we have to set the first derivative to 0. Therefore, the 

system travel cost is differentiated with respect to x2. The following expression is derived: 

 

If we solve the above equation, x2 is estimated as 2.467 and the value of x1 is 2.033. When the 

travel time functions are replaced with the values calculated above, t1 becomes 14.13 and t2 

becomes 10.08 minutes. The travel times so estimated are completely different from the one 

we estimated earlier. For the user equilibrium, the travel time in both the links was found to 

be similar, i.e. 12.4 minutes. Here, the travel times are different. The total system travel cost 

based on the given equation is estimated as 893.2 vehicles which is less than the cost 

determined for user equilibrium assignment (930 vehicles). Although the minimum cost is 

achieved over the system, all people will not be travelling along the shortest route. Some 

people will be using a longer route. Therefore, the overall system is more stable with a total 

minimum cost. The transport planners will focus on the reduction of the overall cost of the 

system. So, probably for them, this is an ideal method which can be employed.  
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Stochastic Assignment 

In the equilibrium assignment, the variation in perception of each individual is not included. 

The stochastic assignment algorithms consider human behavior to conduct assignment for a 

given network. The stochastic methods consider variability in drivers’ perception while 

choosing a route. The drivers choose to minimize cost or a composite measure (distance, 



travel time or generalized cost). So, the drivers can consider any one of the parameters or a 

combination of some of them. The stochastic method considers alternative routes between 

each OD pair based on the knowledge of the drivers or the perception of the drivers about the 

shortest path. This will lead to a certain form of assignment based on the driver’s route 

choice. Stochastic assignment can be carried out by using two common methods, simulation-

based method, and proportional stochastic methods. 

Simulation-based method – this method considers stochastic (for e.g.- Monte-Carlo) 

simulation to incorporate the variability in the perceived cost. An example of the same is 

Burrell’s algorithm. 

Proportional stochastic methods – this method considers that the flows are allocated to 

alternative routes. The proportions are calculated using logit or similar equations. The cost of 

a route is considered to be an exponential function. Dial’s algorithm is an example of this 

method. 
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Simulation-based Method 

Burrell’s algorithm, a simulation-based method, considers engineered cost and subjective 

costs as perceived by each driver for each link in a network. Such consideration takes care of 

the variation in perception. The mean is considered as the engineered cost. The distribution of 

perceived cost is assumed to be independent. This is because of perceptions regarding cost 

vary across drivers. While this algorithm assumes that this variation follows a uniform 

distribution, some other algorithms assumes that the perceived cost is normally distributed. 

This distribution is basically the distribution of the observations of perceptions of individuals 

regarding link cost. The drivers choose the route that minimizes their perceived route costs, 

which is the sum of individual link costs. Therefore, the drivers will choose the route that will 



yield the least cost based on their perceptions. In order to represent the perceived cost on each 

link, a distribution must be selected. Besides, the spread parameter for this distribution, σ 

must also be decided. Based on the distribution and spread parameter, we can generate 

random numbers for individuals to represent the cost a person actually perceives for a link. 

Each individual person has to select costs for each link which will lead to different shortest 

path alternatives. If the process is carried out for every individual, then it might lead to 

complexities in computation. Now, there will be a group of individuals for whom the 

perceived costs for a link will be similar. Therefore, the population along each OD pair can 

be divided into N segments, as observed in incremental methods. These segments are based 

on these group of people who will assume the same cost for this link. In most cases, N is just 

equal to 3 or 5. So, there are maximum 3 or 5 groups with different perceptions of route cost. 

The Burrell’s algorithm generates cheap routes more often as a result of stochastic variation 

in the link cost because a distribution is assumed for the link costs. The random numbers, so 

generated will tend to replicate the actual link cost since these numbers will be close towards 

the mean. Such characteristics of the distribution will automatically lead to cheaper routes in 

most of the cases. 
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Let us now understand the process behind the algorithm. The first step is to code the network 

in which the different characteristics of the network are assigned. Next, we need to calculate 

the initial link impedances using a statistical distribution because link impedance is a random 

variable. The distribution is assumed based on a known mean value of the link impedance. 

Then we determine random numbers as link impedances through simulation. Based on the 

simulated values of link impedances, we can build a network. Then appropriate paths are 



searched in that network. The trip rates or the number of trips between an OD pair can be 

identified from the trip table. Based on the given table, we can assign trips for group of 

individuals into the paths which have been determined in the previous step. Based on the 

assigned trips, the link volume can be accumulated, and the link impedances are updated 

based on volume by capacity ratio. Once the updated link impedances are obtained, we must 

check whether prescribed number of iterations are completed. If the iteration is yet to reach 

the prescribed number, the link impedances are simulated, and the above process is repeated. 

Once the prescribed number of iterations is reached, the impedance must be calculated based 

on speed and the assignment information can be obtained as an output. So, the link cost 

distribution applied to a link of cost C can be expressed as, 

 

 where C* is the random value of link travel cost or the random cost, C is the actual link 

travel costs (mean of the observed costs). And yi is the standard normal distribution, and D is 

the diversion factor that we assume to give us a random value. The steps involved in the 

Burrell’s algorithm can be summarized as follows: 

Step 1: Make n = 0. 

Step 2: Make n = n + 1. 

Step 3: For each i − j pair: 

Compute perceived costs for each link by sampling from the corresponding distributions of 

costs by means of random numbers. 

Build the minimum perceived cost path from i to j and assign Tij/N trips to it accumulating 

the resulting flows on the network. 

Step 4: If n = N stop, otherwise go to step 2.  

Therefore, the shortest paths are created out of the random values generated for link costs and 

a group of people assumed to have similar perception is assigned to that shortest path. Once 

the assignment is conducted, the entire traffic volume on the network is updated. Once the 

algorithm terminates after a fixed number of iteration, the total trips between OD pairs based 

on the trip table has been assigned to the network. 
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Proportional Stochastic Method 

Theoretically, the proportional stochastic method splits the trips arriving at a node between 

all possible exit nodes. The number of trips going from one node to another are divided. 

Therefore, the trips are split into different pathways using this method. But the 

implementation of this method is based on the entry points of the trips. Thus, the division of 

trip arriving at a node is actually based upon where the trips are coming from, that is the 

number of entry points. For example, in the above diagram, there is a point B between origin 

i and destination j. The trips are arriving from A1, A2, A3, and A4. So, the total number of 

trips will be divided based on a parameter, known as splitting factor, fi on the possible entry 

nodes A1, A2, A3, and A4 between origin i and destination j. This splitting factor can be 

defined as, 

fi =0       if dAi ≥ dBi 

0 < fi ≤ 1      if dAi < dBi 

dAi represents the minimum cost of travel from the origin i to node Ai. If dAi is greater than 

dBi, then dBi is the shortest route and splitting of trips is not required. This ensures that the 

trips are allocated to routes which take them efficiently away from the origin. But if dAi is 

lesser than dBi, it implies that dAi is actually the shortest path. Therefore, an alternate path 

must be adopted to arrive at B through Ai. Thus, a splitting factor between 0 to 1 must be 

considered for the division in the trips. So, the trips TB that passes through B must be a 

divided according to the following equation if dAi < dBi: 

 

Therefore, the entire trip between an OD pair can be proportionately divided into different 

routes if alternate minimum link cost options are available.  
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Dial’s algorithm, named after its proponent Dial, was proposed in 1971. This algorithm 

effectively implements a logit route choice model with parameter Ω, at the network level 

identifying a set of “efficient” paths connecting each OD pair. The selection of an appropriate 

route from several route options can be represented through discrete functions. Therefore, 

route choices can be modeled using logistic functions. The splitting function is defined as, 

fi = exp(−Ωδdi ) 

where δdi is the extra cost incurred in travelling from origin to node B via node Ai instead of 

via the minimum cost route. This extra cost will only be incurred if node Ai is not a part of 

the shortest path between origin and node B as discussed earlier. Therefore, the cost is 

estimated proportionately for different route alternatives. So, based on that extra cost, the 

total trip volume is divided into different route options in a proportionate manner. If Ai is in 

the minimum cost route, then δdi = 0 and fi = 1. In other words, no extra cost will be incurred 

if node Ai is part of the shortest path and the division of trips will not be necessary. The 

nodes on costlier routes have δdi greater than 0 and fi lesser than 1. It implies that if there is 

extra cost, then the trips will be proportionately divided among multiple routes. Therefore, 

shorter routes are favored over more expensive ones because expensive routes will lead to 

multiple routes. So, Dial proposed a double pass algorithm using a logit type formulation 

which split trips from i to j among alternative routes r. The proportion of trips for route r, Tijr 

can be mathematically expressed as, 

 



where Tij is the total amount of travel between i to j. So, the splitting factor between i and j is 

expressed as the exponential function of the cost incurred to take the deviation if the 

intermediate node is not included within a minimum cost path. The proportion of the entire 

trips between i and j for each route is determined based on the extra cost incurred for 

traveling on that route. Similar formulations were observed in mode choice models as well.  
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Stochastic User Equilibrium  

The stochastic user equilibrium is a modification of the user equilibrium. The capacity 

restrained effects in terms of travel impedance is included in user equilibrium. The route 

choice under SUE equilibrium is based on capacity restrained effects as well as the variability 

in perceived route costs. While capacity restrained effect is deterministic in nature, the 

stochastic effects are considered through perceived route costs. So, stochastic user 

equilibrium models seek equilibrium where each user chooses the route with the minimum 

perceived travel cost and no user has a route with lower perceived cost and therefore, all stay 

with their current routes. Unlike Wardrop’s first principle, stochastic user equilibrium 

considers the difference between drivers’ perception. While the user equilibrium is devoid of 

behavioral assumptions, stochastic user equilibrium incorporates the human behaviour. This 

algorithm differs from Wardrop’s user equilibrium since each driver define travel cost 

individually instead of using a single definition of cost applicable to all drivers. 
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So, these are some of the references you can study. 
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Conclusion 

While Wardrop’s equilibrium assignment has been discussed in this lecture, a few capacity 

restraint assignment techniques have already been covered in the earlier lecture. These 

models try to approximate the equilibrium conditions to a certain extent. Once the vehicular 

assignment has been conducted along the different routes using the techniques discussed 

here, some advanced assignment techniques related to stochastic user equilibrium can also be 

explored. We also need to carry out transit assignment which is also undertaken similar to 

vehicular trip assignment. However, transit assignment is more challenging computationally 

since the capacity is provided not by a link but is dependent on number of transit vehicles that 

are moving along the route. Besides, there are a lot of real-time variations along those routes. 

Moreover, in a transit network, people can have difficulty in choosing transit routes between 



two alternatives since these transit routes may overlap each other. The costs associated with 

transit are also different. While travelling in transit, the individuals consider different cost 

parameters like number of transfers, fare, the in-vehicle travel time, the out-of-vehicle travel 

time and many more. Therefore, apart from vehicular assignment as covered in this lecture, 

techniques related to transit assignment must also be explored. Thank you.  

 


