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In lecture 42 we will talk about route choice. In this lecture, route choice will be discussed in 

the context of trip assignment. We will also cover different algorithms utilised to determine 

attractive routes. Both minimum spanning tree and shortest path algorithms will be discussed. 

We will solve examples for minimum spanning tree using Kruskal’s algorithm and Prim’s 

algorithm. Finally, shortest path algorithms like minimum tree algorithm and Djikstra’s 

algorithm will also be covered in this lecture. 
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Route Choice 

Link assignment can be conducted after the determination of the route chosen by the user to 

travel between his origin and destination. Therefore, the users are assigned to a network 

based on some underlying assumptions based on route choice. These assumptions are based 

on the principles postulated by Wardrop (1952). Wardrop established two principles of route 

choice. Both the principles are mutually independent. He suggested two forms of 

equilibriums, user equilibrium and system equilibrium. The user equilibrium is based on the 

assumption that the users choose a route which minimises their travel time. The equilibrium 

for such cases is said to be attained when no user will be able to lower their transportation 

costs further by changing their action. The journey time has a specific characteristic for user 

equilibrium. The journey time in the used routes between the different origin and destination 

pairs will be equal. Moreover, the journey time in used routes will always be less than the 

time taken by a single vehicle in any unused routes. Therefore, the cumulative journey time 

of the unused routes will be higher than the cumulative journey time in used routes. The first 

Wardrop principle is based on the concept that the route with minimum travel time will be 

chosen. So, automatically the used routes are those which have minimum travel time 

according to users. Any other routes which are not chosen will have higher travel time 

compared to chosen route. The system equilibrium is based on the second principle of 

Wardrop. This principle is based on the assumption that the users distribute themselves so 

that each inter zonal travel time for all users is same. Under this principle, the equilibrium can 

be achieved if the total cost of system is minimised. For example, system equilibrium can be 

attained with road pricing or central routing control. Such equilibrium can be established 

when the city authority tries to provide equal impedance through the introduction of road 



pricing schemes or control of the traffic signals at the central level. But system equilibrium is 

difficult to achieve since it does not consider the behavioural principles. It is difficult to 

optimise a system since individuals choose routes based on their perception of travel time, 

preference and. information. Therefore, user equilibrium is commonly used in traffic 

assignment. But users do not have the perfect information regarding the network. So, another 

variant of the user equilibrium is introduced. The equilibrium where users choose a route 

which he perceives to be the shortest is also known as stochastic equilibrium. The main 

assumption of this equilibrium is that the users have incomplete knowledge of networks and 

transportation modes. In this equilibrium, all the users have routes either equal to or greater 

than their perceived costs. The main difference between user and stochastic equilibrium is the 

use of travel time in both the models. While the stochastic equilibrium models use variability 

of perceived route time, user equilibrium models use a single definition for all the users.  
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There is a need to identify a set of routes which might be considered attractive to the users 

prior to traffic assignment. Apart from identification of appropriate routes, the sequence of 

user addition to these routes must also be taken into consideration. There are several 

algorithms to determine the attractive routes in terms of cost. ‘Minimum Spanning Tree’ and 

‘Shortest Path’ are the two most important algorithms for route determination. Routes are 

usually identified based on travel time or travel cost or a combination of both. Several factors 

are thought to influence the choice of route when driving between two points. Following 

factors like journey time, distance, monetary cost (fuel and others), congestion and queues, 

type of manoeuvres required, type of road (motorway, trunk road, secondary road), scenery, 

signposting, road works, reliability of travel time and habit can influence the route choice 



decisions of the users. But it is difficult to incorporate a generalised cost function based on 

such exhaustive list of variables. Besides, modelling these variables in traffic assignment 

model can give rise to complexities. So, only two factors are considered for approximation in 

route choice, time and monetary cost. Monetary cost is usually proportional to travel distance. 

The users can allocate their preferred weights for travel time and distance in most traffic 

assignment models. The route choice can be estimated based on the generalised cost derived 

from the weighted sum of the factors mentioned. The route choice decision of different 

users/drivers can vary due to several reasons. One of the reasons which can influence 

users’/drivers’ decisions is difference in individual perceptions. Some individuals may wish 

to minimise time whereas others may wish to minimise fuel consumption. Some individuals 

can look for minimisation of both factors. Difference in perception can lead to different route 

choice options since the definition of shortest path varies across individuals. The level of 

knowledge of alternative routes varies across individuals. This will lead to different route 

options for different individuals based on their level of knowledge. Finally, the congestion 

effects can also influence route choice decisions. Congestion will affect the shorter routes 

first making the generalised cost comparable to initially less attractive routes. The routes 

chosen previously may no longer qualify to be the ‘perceived’ route choice of the 

users/drivers. For example, there are two routes. In in one of the routes, the travel time is 10 

minutes while the travel time in the other route is 12 minutes. Since the former route has 

lesser travel time, people will tend to choose the first route. Eventually, it becomes congested 

and the travel time increases to 30 minutes while the travel time in the other route remains 

unchanged. Now, the second route becomes more attractive. Therefore, the shortest path can 

change over time which can lead to change in the route choice.  
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Minimum Spanning Tree 

Minimum Spanning Tree (MST) is one of the common algorithms for determining attractive 

routes in terms of cost. The identification of attractive paths for the drivers can be attained by 

choosing the path with the lowest cost. Cost can be in terms of impedance or money or both. 

The objective for MST is to visit all nodes or to reach a particular node. A basic spanning tree 

(ST) of a graph with n vertices is just a subgraph that contains n vertices and n - 1 edges. It 

ensures connectivity of a network with minimum number of links. We can determine the 

important links in a network through a ST. We must ensure that ST does not contain n edges 

since it will create a loop. Besides, the edges must be selected such that they do not form a 

circuit. ST can enable us to visit each particular node by travelling the least number of links. 

Now for a MST, the cumulative weights of the links of ST must be minimum. Let us assume 

that, the edges of the graphs have weights or lengths. The weight of a tree is just the sum of 

the weight of its edges. The tree with the minimum weight is the minimum spanning tree. 

Several spanning trees connecting all the nodes in a particular graph can exist. But there 

could be only one spanning tree whose cumulative weight of edges is minimum if weights are 

unique. MST can be used to determine the shortest road network to ensure connectivity 

within a network. The minimum weight for the spanning tree can be determined using several 

algorithms. The classical minimum spanning tree algorithm are Kruskal’s algorithm and 

Prim’s algorithm. Some examples have been solved below using these algorithms. 
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A Minimum Spanning Tree can have two features, possible multiplicity and uniqueness.  

1. Possible multiplicity- there may be several minimum spanning trees of the same weight 

having minimum number of edges. In particular, if all weights are same every spanning tree 

is minimum. For example, if we give the same weight to all the edges then all the spanning 

trees will have minimum weight. 

2. Uniqueness- If each edge has a distinct weight, there will be only one, unique minimum 

spanning tree, also known as the uniqueness property.  

A network with ABCD nodes is given above. Each edge of the network has a distinct weight. 

These weights are the impedances which are all unique. So, this will generate only one 

minimum spanning tree as given in the figure above. 
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Kruskal’s Algorithm 

This is one of the classical minimum spanning tree algorithms. This is a greedy algorithm. 

Let us take a graph with 'n' vertices. We need to keep adding the shortest (least cost) edge, 

while avoiding the creation of cycles, i.e. a closed loop, until (n - 1) edges have been added. 

The steps of the algorithm are discussed below.  

Step 1: Keep a subgraph S of G, initially empty  

Step 2: Sort the edges of G in increasing order by length  

Step 3: for each edge e in sorted order  

           if the endpoints of e are disconnected in S  

            add e to S  

Step 4: return S  
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Let us consider a graph with ABCDEF vertices as given above. In the given graph, we have 

six nodes and eight links. As discussed earlier, a spanning tree will have n-1 edges. For the 

given example, the minimum spanning tree will have 5 edges since there are six vertices in 

the graph. Each edge has a distinct cost or weight. Based on Kruskal’s algorithm, the edges 

are sorted based on weight. CF is the edge with the minimum weight of 1. So, CF is selected, 

and the algorithm looks for next minimum weight edge. Now, both DE and AF have the same 

weight. DE is not connected with edge CF in subgraph S, whereas AF is connected to the 

edge selected in previous iteration. So, AF is selected and added to the tree. The algorithm 

continues to add edges until the tree comprises of 5 edges. The iteration stops after the 

selection of 5th edge because addition of 6th edge will form a closed loop which will deviate 

the principle of a spanning tree. Finally, the minimum spanning tree from the given graph is 



BAFCDE. The total weight of the minimum spanning tree is 4(BA) +2(AF) +1(FC) +3(CD) 

+2(DE) =12 units.  
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Prim’s Algorithm 

This algorithm is another classical minimum spanning tree algorithm. This is a modified form 

of Kruskal’s algorithm. While we choose edges for Kruskal’s algorithm, nodes are considered 

for Prim’s algorithm. Rather than building a subgraph with one edge at a time, Prim's 

algorithm builds a tree with one vertex at a time. In other words, Prim's algorithm treats the 

nodes as a single tree and keeps on adding new nodes to the spanning tree from the given 

graph. The algorithm can be described as: 

Step 1: Remove all loops and parallel edges. This step is more relevant when some iterations 

have already been conducted. Also, the creation of loops can also be avoided. 

Step 2: Any arbitrary node can be chosen as root node. 

Step 3: Check outgoing edges and select the one with least cost. 

Step 4: Grow the tree by one edge using the minimum weight edge out of the edges that 

connect the tree to nodes not yet in the tree. The edges can be connected to the open-ended 

nodes of the tree so that it could grow further. The tree will grow in the direction of minimum 

weight edge. 

Step 5: Step 4 is continued until all the vertices of the graph are traversed.  
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Let us apply the Prim’s algorithm in the example given above. ABCDEF is the given graph 

with six nodes. The impedances between the connected nodes are given. We can initiate the 

algorithm with any one of the nodes. Let us start with A and the outgoing links are checked to 

identify the least cost edge. There are two outgoing links from A. The edge having the least 

impedance is AB. So, AB is chosen. Once AB is selected, we need to expand the tree from 

node B. There are three outgoing links from B. BC is selected since it has the least weight 

compared to other outgoing links from B. Now if we expand the tree from node C, there will 

be two outgoing links. If we choose the least cost outgoing link from C, it will create a loop 

and spanning tree cannot be created. Same holds true for node A. The only direction in which 

the tree can be expanded is node B. BE being the least cost link is selected in the following 

step. Node E, F and, D are added to the tree in the subsequent steps. Finally, the minimum 

spanning tree for the given graph is AB-BC-BE-EF-FD. The total weight of the minimum 

spanning tree can be estimated as follows: 

AB+BC+BE+EF+FD = 1+3+4+2+1 = 11units. 
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Shortest Path 

Shortest path is a method of finding a path between two vertices (or nodes) such that the sum 

of the weights of its constituent edges is minimized. There are two important characteristics 

of the shortest path. The subpath of a shortest path is also a shortest path because we are 

already on a shortest path. If a graph G contains a negative weight cycle, then some shortest 

path may not exist. A negative cycle in the graph implies that there is a loop and when the 

weight of the links in a loop is added, it leads to a negative value of the weight (impedance). 

Let us consider a digraph where G = (V, E) with edge-weight function 𝑤: 𝐸⟶ℝ. So, V and E 

are vertices and edges respectively. Each weight function is represented with w. The weight 

of a path p = 𝑣1⟶𝑣2⟶ …⟶𝑣𝑘 is defined as the summation of weights of all the vertices that 

is included in the path p. The weight function of the path can be represented as, 

 

Therefore, a shortest path from u to v is a path of minimum weight from u to v. The shortest 

path weight from u to v is defined as the minimum of the weight function defined above if a 

path exists between u and v. If no path exists between the vertices u and v, the shortest path is 

assumed to be infinity because if there is no path then the cost will be maximum. This 

cost(weight) is represented as infinity. If the shortest path can be identified, the value of 

infinity can be replaced with a value found for weight (impedance) for that path. The 

definition for shortest path can be represented as, 

𝛿(𝑢,𝑣)=𝑚𝑖𝑛{𝑤(𝑝):𝑝 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑢 𝑡𝑜 𝑣} 

𝛿(𝑢,𝑣)= ∝𝑖𝑓 𝑛𝑜 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑢 𝑡𝑜 𝑣 𝑒𝑥𝑖𝑠𝑡𝑠 
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The Minimum Tree Algorithm 

The minimum tree algorithm can be utilised to determine the shortest path between a given 

OD pair. Minimum tree algorithm can be described numerically by a tree table. A tree table 

usually contains three types of information. The tree table must contain all the network nodes 

j including the origin. The total impedance of minimum path from the origin to each node j 

must also be included in the table. Besides, the table must include the information regarding 

the node i that immediately precedes node j on the minimum path from origin to node j. In 

the given graph, let us assume the origin is 1. Each node in the given graph is listed for the 

tree table. The graph consists of five nodes. So, five nodes are included in the column node(j) 

of the tree table. Now the total impedance from origin 1 to each of the nodes listed under this 

column must be determined. The total impedance must be noted in a separate column in the 

tree table. If there are multiple values from origin 1 to a node, then the minimum value is 

noted as the total impedance. In this example, there are two different impedances from origin 

1 to node 5, i.e. 12 units and 15 units. Since, 12 is less than 15, the former value is noted as 

total impedance to node 5. The final column denotes the nodes preceding the nodes to which 

the total impedances are calculated. Since 12 units has been noted as total impedance, the 

node preceding node 5 which generates the above value is 4. Therefore, the shortest path for 

the given graph determined through minimum tree algorithm is 1-2-4-5 with a total weight of 

12 units.  
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Minimum tree algorithm can produce a tree table to determine all inter zonal minimum paths 

emanating from zone of origin. The algorithm is given as follows:  

Step 1: Initialize the path impedances of the tree table (zero for the node of origin and a very 

large number for all other nodes). As discussed earlier, at the initial phase we might not have 

the knowledge of the existence of a shortest path. So, the node we are considering can be 

assigned with zero. The remaining nodes can be initiated with the value of infinity.  

Step 2: Enter into a list the links (i, j) that emerge directly out of any node i added to the tree 

except the ones which form a cycle. For example, for the earlier network, links (1,2) and (1,3) 

will be added to the list since it emerges from node 1. 

Step 3: For each node j included in the list, add the impedance of link (i, j) to the tree table’s 

current total impedance to node i. If this value is smaller than the current tree table entry for 

node j, replace the longer path to node j with the shorter one just discovered, otherwise reject 

this option and proceed to the next link in the list. From the list of links (i, j), node j is added 

to the tree. For example, we initialised the nodes with the value of infinity. Since, the 

impedance estimated to the nodes are lower than infinity, we can replace the value of infinity 

with the newly calculated value of impedance. If at any point in iteration, the impedance 

value calculated to a node is lower than the previously recorded value, the lower value is 

noted in the column for total impedance. So, the algorithm continues to look for the minimum 

link and the tree is expanded in the direction of the minimum link. 

Step 4: Return to step 2 unless the list is empty. The process is continued until all the nodes 

in the given network has been taken into consideration. 
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Let us see by an example the process to determine the minimum tree for the given network. 

This is the same network discussed in the previous lecture. The centroid nodes are 1, 2, 3, 4 

and 5. The links are either bidirectional or unidirectional. The impedance provided for each 

link is represented in the scheme matrix. For example, the impedance from node 1 to node 6 

is 5. Similarly, from 6 to 1 the impedance is 5, 6 to 7, the impedance is 8 and from 7 to 6 it is 

7. Therefore, based on the given network the scheme matrix is prepared. So, if a network is 

provided the scheme matrix can be derived. Similarly, if scheme matrix is given, the network 

can be drawn based on the given information in the matrix.  
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Once the scheme matrix is prepared from the given network, we can initiate the table building 

with the node 1. The only link originating from node 1 is 1-6. So, link 1-6 has been listed in 

the table shown above. The impedance is noted from scheme matrix given earlier and the 

total impedance is calculated. The given impedance is 5 which is lesser than infinity. So, the 



impedance value is accepted for link 1-6. Now from node 6 we can expand the tree in three 

directions either towards 7 or 9 or 10. The same has been listed in the table. Now we need to 

compute the total impedance till the above node from the starting node, i.e. 1. For 6 to 7, it 

will be 5 + 8 which is 13 which is less than infinity. Therefore, the new value can be 

accepted. Similarly, the new impedance to 9 and 10 is 10 and 9 respectively. Now for each of 

the three nodes, i.e., 7, 9 and 10, we need to expand the tree based on the links originating 

from these nodes. There are four links originating from node 7. The tree can be expanded to 2 

or 6 or 8 or 10. But going back to 6 can create a cycle or a parallel loop. So, this link can be 

rejected. So, the calculated impedances to 2, 8 and 10 are 15, 17 and 20 respectively. There 

are three links originating from node 9. These links are towards 6, 10 and 12. The link 9 to 6 

can be rejected because it is a parallel link. The updated impedance value to 10 and 12 are 13 

and 17 respectively. Based on the impedance value, the connection between 9 and 10 is 

rejected since 13 is higher than 9 which was calculated for connection between 6 and 10. This 

process is continued and finally it is found that all the links emanating from nodes 3, 4, 5, 13 

and 14 are rejected to avoid formation of cycles. The algorithm terminates since no more 

nodes can be added to the tree. The final values of impedance from starting node 1 to all 

other nodes can be listed in a table with information about nodes, total impedance and the 

preceding nodes. The tree table is created where the total impedance from node 1 to 1 is 0, 

from 1 to 2 is 15, from 1 to 3 is 21, from 1 to 4 is 18. The preceding node will be identified 

based on the previous table for which the total impedance value has been found to be 

minimum. The tree table will comprise of shortest paths to all nodes from the origin node. 

This is a graph-based method for determining shortest path between any two vertices in a 

particular network. 
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Dijkstra’s Algorithm 

This algorithm solves a single pair single source and a single destination shortest path 

problem. It will determine the shortest path between a single OD pair. The drawback of this 

algorithm is that it does not determine the shortest path from an origin to all the destinations. 

The algorithm can be described as follows: 

Step 1: Consider any vertex, i, as start vertex in the given network. Set i to zero, and 

distances to all other vertices from i as ∞(infinity) similar to the minimum tree algorithm. 

Step 2: Visit the unvisited vertex with the smallest known distance from the start vertex. For 

example, if the impedance for two links originating from a vertex is 3 and 4 units, then the 

link with impedance of 3 units will be selected since it is the smallest known distance 

(impedance). 

Step 3: For the current vertex, examine its unvisited neighbours and calculate the distance of 

each neighbour from the start vertex. If the calculated distance of a vertex is less than the 

known distance, update the shortest distance. Update the previous vertex for each of the 

updated distances. For example, the current vertex is 2 and its neighbours are 3 and 4. The 

distance of 3 and 4 from starting vertex 1 through vertex 2 is 5 and 3 respectively, while the 

distance of vertex 3 through vertex 5 is 7. Since 5 is less than 7, vertex 3 is updated with the 

shortest distance i.e. 5. Therefore, we also need to take care of the vertex that was recorded in 

the previous iteration. 

Step 4: Return to step 2 unless the list of unvisited neighbours is empty. 
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Let us solve the algorithm through an example. In this graph, ABCDEF these are six vertices. 

Based on the algorithm, let us initiate with vertex A. So, the value of A is set as 0 and all 

other vertices are set to infinity. A table is also created to list all the vertices and to note the 

shortest distance from the origin vertex A. Besides, the preceding vertex of a vertex is also 

noted. For the initial phase, the shortest distance of all vertices from vertex A will be 

∞(infinity). No previous vertices can be recorded in the first step. 
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One origin vertex A is fixed, its neighbours can be identified. In this example, neighbours of 

A are vertex B, C and D. The weight of the vertex B, C and D is recorded as (0+7), (0+9) and 

(0+14) respectively. The same is recorded in the table. The previous vertex of all these 

vertices is recorded as A. The vertex E and F continues to have the same weight, i.e., infinity 

since these vertices are not the neighbours of A. 
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The vertex with the smallest known weight is B. So, vertex B is selected as current vertex. 

Now, the neighbours of B are A, C and F. Since, the vertex A is already visited, A cannot be 

included in the neighbour list. The new impedance of vertex C and F through B is 17 and 22 

respectively. Now the new impedance for C is greater than the previous impedance. So, the 

previous impedance for vertex C will be maintained. The new impedance for vertex F is 22 

which is less than infinity. So, the new impedance is maintained for vertex F. D and E are not 

the neighbouring vertices of B. So, the previous records are maintained. In this step, 

information related to vertex F is only updated in the table. 
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Now, from vertex B the closest vertex must be selected as the current vertex. Out of the two 

neighbouring vertices, C and F, C is the closest vertex. So, C is selected as the current vertex. 

The neighbours of C are A, B, D and F. While D and F are unvisited neighbours, A and B are 

the visited neighbours. So, only D and F are considered to determine the shortest path. The 



new distance of vertex D and F from A is (9+2) /11 and (9+11)/20 respectively. Both the 

updated distances are lower than the distances estimated in previous iterations. So, the vertex 

D and F are updated with the new distance. Since the distance is updated, the preceding 

vertex of both the vertices is changed. These changes are recorded in the table as shown 

above. 
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Now, D being the closest vertex from C, it is selected in the next step. The only unvisited 

neighbour of D is E. The new distance for E is 20 which is less than the previous value, i.e. 

infinity. So, the shortest distance of E from A through D is updated and the previous vertex 

for this path is also recorded. All other values in the table remains unaltered. 
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In the following step, E is selected. The only unvisited neighbour of E is F. The new shortest 

distance of F from A through E is (20+6) i.e. 26. The new value is higher than the previous 



value for F. So, the shortest path recorded for F from A remains unchanged. So, now all the 

vertices have been visited and the list for unvisited vertex is empty. The algorithm can be 

terminated at this stage. So, the shortest path has been determined from A to all other 

vertices. For example, the shortest path from A to D is, A-C-D. The shortest path from A to F 

is A-C-F. At F, there are no more shortest paths since there are no more new vertices. 
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Other Shortest Path Algorithm 

In addition to Dijkstras algorithm, there are other algorithms which can also determine the 

shortest paths for a network. These algorithms can consider both positive and negative 

weighted graphs unlike Dijkstras algorithm which only takes positive weighted graphs into 

consideration. These algorithms are Floyd-Warshall algorithm and Bellman Ford algorithm. 

Floyd-Warshall algorithm - This is a dynamic programming algorithm to determine the 

shortest path in a negative or positive edge weighted graph, unlike Dijkstra’s algorithm which 

is functional only for positive edge weights. Usually, Dijkstra’s algorithm is sufficient for 

transportation network since negative edge weighted graphs are unusual in transportation. 

Another important feature of this algorithm is, unlike dijkstra’s algorithm,the shortest path 

from i to j is determined for all pairs i,j of vertices in the graph and not just from a special 

single source.  

Bellman Ford algorithm - Bellman Ford algorithm is a slower in terms of computation 

times compared to the Floyd Warshall algorithm. Shortest path is calculated between two 

vertices in a weighed graph where some edge weights are negative number. The advantage of 

this algorithm over the previous algorithm is it can also detect negative cycles (i.e. 

a cycle whose edges sum to a negative value).  
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So, these are some of the references you can use. 
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Conclusion 

Route choice is an essential step in the trip assignment process. Trip assignment cannot be 

conducted without route choice determination. The minimum spanning tree and shortest path 

are some of the strategies used by individuals to choose the attractive routes. There are 

various algorithms that are used to reduce the computation time for determining shortest path 

or minimum spanning trees in a complex network. This lecture has covered some of these 

algorithms. Other algorithms can be explored as well.  

Thank you! 

 


