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Lecture-32 

Multiple Linear Regression 
 

In lecture 32 we will cover multiple linear regression. The different concepts that we will cover 

are: Multiple linear regression, Assumptions for multiple linear regression, and Multiple linear 

regression using SPSS. 
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Multiple Linear Regression (MLR): 

Multiple linear regression (MLR) is a statistical methodology for prediction of a continuous 

dependent variable from multiple predictor variables which may be categorical or continuous in 

nature. A simple linear regression equation has only one predictor variable and would look like 

the equation below. 

ܻ = ܽ + ଵܾ .ܺଵ 

In case of simple linear regression, for a given set of values of dependent variable Y, a is the 

intercept and b1 is the slope of the straight line (linear graph), which is an attempt to predict or fit 

the values of Y using a straight line. Fitting a line essentially means finding the best line to explain 

the scatter plot (data) of Y. For example, in the given figure there are two variables,  age and size. 

So an attempt has been made to predict size using age as predictor variable. The line represented 

by Size= 0.83 + 0.96 Age predicts size using age. Here, 0.83 is the intercept and 0.96 is the slope 

of the line ( ܍ܛܑ܀
ܖܝ܀

).  

 

As it can be seen in the figure, the scatter plot of the dependent variable i.e. size follow a direction 

but is scattered along it. If the data is to be represented by a straight line, it will touch some of the 

points of the scatter plot, but will miss many of the points. The difference between each of the 

observations of Y and the corresponding projection on the straight line is called error or residual, 

and is represented by the following equation. 

߳ = ܻ − ܻ  



Where ࣕ is the residual or error for ith observation, ࢅ is the observed value of the dependent 

variable for ith value of X and ࢅ represents the value on the fitted line for the same value of X. In 

order to determine the best line that fits the data, the sum of the squared errors (SSE) over each 

and every observation is minimized. In many texts, SSE is also called sum of squared residuals 

(SSR). 

ܧܵܵ =  ൫ ܻ − ܻ൯
ଶ



ୀଵ

=  ( ܻ − ߚ ܺ)ଶ


ୀଵ

  

 

In other words, out of infinite number of straight lines that could be drawn through a scatter plot 

between Y and X 1. The goal is to find the values of intercept ‘a’ and slope ‘b’ which results in the 

least sum of squared errors, alternatively, best fits the data. The process of finding the values for 

‘a’ and ‘b’ to get the minimum SSE is called ordinary least square (OLS) estimation.  
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Contrary to simple linear regression, MLR has multiple variables and if Y is the response of the 

dependent variable and X1, X2 …. Xp are a set of explanatory variables, and each of these has n 

observations, the equation would look like the following equation, where the value of all the partial 

regression coefficients b1, b2…. bp, and the intercept a, are estimated by OLS estimation using the 

n observations. 

 

 



 

 

 Dependent Independent 

 Y X1 X2 ..… Xj ….. Xp 
O

bs
er

va
tio

ns
 

y1 x11 x12 ….. x1j ….. x1p 

y2 x21 x22 ….. x2j ….. x2p 

: ….. ….. ….. ….. ….. ….. 

yi xi1 xi2 ….. xij ….. xip 

: ….. ….. ….. ….. ….. ….. 

yn xn1 xn2 ….. xnj ….. xnp 

 

ܻ = ܽ + ଵܾ . ଵܺ +  ଶܾ .ܺଶ … … … + ܾ .ܺ 

 

Intercept is the value of Y when X1, X2 …. Xp (or X, in case of simple linear regression) is equal 

to 0. Each of the variables X1, X2 …. Xp are linearly related to Y while all the other variables are 

controlled or kept fixed. 

 

There are some assumptions for multiple linear regression: 

 Linear relationship 

 Multivariate normality 

 No multicollinearity 

 No auto-correlation 

 Homoscedasticity 

Adequate sample size is very crucial for a reliable estimate of MLR. It is recommended to have at 

least 20 observations per independent variable. For example, if a model has 4 variables, so the 

minimum number of samples for a reliable estimate of partial regression coefficients and the 

constant is 80. 
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Following is the detailed explanation of each of the assumptions: 

Linear relationship: Relationship between the dependent variable and the independent variables 

is assumed to be linear. This can be checked by a scatter plot of individual independent variables 

vs. the dependent variable. In the scatter plots, some observations might be located very far from 

the cluster where majority of the observations or data points lie. Such observations are called 

outliers. Presence of outliers in the data may influence the model in an undesirable way by skewing 

the fitted regression line. That means because these points are far away from rest of the points of 

dataset,  these will actually change the orientation of the regression line. So it is better to get rid of 

the outliers based on certain conditions like, outliers lying beyond the standard deviation of 3, or 

lying in certain quartile if we divide the data into different quartiles. 

 

Multivariate normality: All the independent variables should be multivariate normally 

distributed. This could be tested by drawing a histogram of the dataset. Other methods like Q-Q 

(quantile- quantile) plot and P-P (Probability plot) can also be employed to test is a variable is 

normally distributed. In both of Q-Q plot and P-P plot, if the points or observations of a variable 

lie on the diagonal line, the variable is normally distributed. Goodness of fit test is also there to 

test the normality of a given data. Sometimes a given data may not seem to be normally distributed. 

In such cases, a non-linear transformation (E.g.: log transformation) can make the data normally 

distributed and the transformed data can be used in the regression.  

 



No Multicollinearity: Multicollinearity means the high correlation between independent 

variables. In such cases, a change in one of the variables, results in a change in the correlated 

variable(s). A regression model should not have multicollinearity and in case of such an instance, 

only one of the correlated variables should be included in the model. In order to test the correlation 

between each pair of variables, a matrix is made using Pearson’s bivariate correlation. Ideally the 

correlation coefficients for every pair of variables should be less than 0.3 to be called ‘weakly 

correlated’. If the coefficients are between 0.3 to 0.5, they are moderately correlated, and 

coefficients higher than that represent high correlation. Another method to determine the presence 

of multicollinearity is using variance inflation factor (VIF). For any of the independent variables, 

If the VIF is between 5 to 10, multicollinearity exists. Independent variables with VIF towards 10, 

should be removed as they are highly correlated.  
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No Autocorrelation: Often MLR employs data, which might have dependent residuals. For 

example, the value of dependent variable at a point (x+1) is also dependent of the value of the 

same dependent variable at a previous point (x). This phenomenon is called autocorrelation. 

Although this is not an issue with survey data, but it might be there in time-series data. Durbin-

Watson test is used to check for auto-correlation. Out of the range of 0 to 4 for the value of ‘d’, a 

value between 1.5 and 2.5 suggests no auto-correlation in the data.  

 



Homoscedasticity: A data is said to be homoscedastic if the error or residual is same across all 

values of the independent variables. MLR assumes the data to be homoscedastic and not 

heteroscedastic. Heteroscedasticity results in the regression coefficients to be less precise and 

hence away from the correct population values. To check if a given data is homoscedastic or not, 

a scatter plot of predicted values and residuals is done. If the points in the scatter plot can be seen 

to be lying between two parallel lines, then the data is homoscedastic. If the scatter plot lies 

between two non-parallel lines, heteroscedasticity is said to be there in the data.  
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Multiple Linear Regression using IBM SPSS: 

Out of the many statistical packages available in the market, IBM SPSS is one of them. In this 

demonstration, SPSS has been used to carry out MLR using the dataset of ‘housing price in 

California’. The data is freely available on GitHub (http://github.com/ageron/handson-

ml/tree/master/datasets/housing) and has 20435 observations on seven variables, namely; Housing 

median age, Total rooms, Total bedrooms, Population, Median income, Median house value, 

Ocean proximity, in which except for Ocean proximity, all are continuous data and the mentioned 

variable is categorical data. Each of the 20435 observations is data of a zone on the given variables. 

Each zone consists of a group of 600 to 3000  households. So each of the 20435 observations of 

the mentioned variables is the zonal average of the respective variables.  

 



The first thing that is required to be done is data cleaning. In data cleaning, outliers need to checked 

for and removed if found. Apart from that, there might also be some missing data due to human 

error by surveyor or due to the inability of the respondents to provide response for a few variables. 

Ideally if there are missing values, the whole observation needs to be deleted, but as we go on 

deleting observations, it might so happen the observations to be deleted is more than 10% of the 

data collected. In such a case, some techniques need to be employed to predict the values for the 

missing entries based on the data at hand. For example, for a particular group of values we can 

take average of similar kind of population group or we can take the average of the entire 

population, while some other variables might require specialized techniques. If the observations 

having missing values is less than 10%, the incomplete observations can be deleted.  

 

Nomenclature of variables follows certain rules in SPSS, which otherwise might cause the program 

to interrupt the analysis. For example, space between the variable names, special characters, 

numbers at the start of variable name are not allowed. Underscore maybe used to separate words 

in the name of a variable. 
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Dummy Variables: 

Categorical variables cannot be directly used in regression. They are required to be coded into 

dummy variables. For example, in the California housing dataset, the data on proximity to ocean 

has 5 categories; Island, Bay area; Near ocean; 1 hour from ocean; and Inland. They are represented 



by the numbers 0,1,2,3, and 4 respectively. For this example, 5 dummy variables are required to 

be made, each for a category of proximity. So if a house is situated in an island, the column 0 will 

have the value 1 and rest of the cells in the row will have 0. Similarly, if a house is situated in Bay 

area, column 2 will have the value 1, and rest of the cells in the row will have 0. If there are n 

categories, only (n-1)  dummy variables will be used in the model because if none of the n-1 are 

having ‘1’ in its value, it is understood that the observation belongs to the omitted class.  
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Scatter plots: 

Scatter plots are done to visualize the pair wise relation between dependent variable and the various 

independent variables and scatter plots help us to visualize. The figures shown are for the variables 

total number of bedrooms, population, and median income, versus the dependent variable i.e. 

median house value. In order to make scatter plots in SPSS, following sequence of steps needs to 

be followed: 

ݏℎܽݎܩ → ݎ݈݁݀݅ݑܤ ݐݎℎܽܥ → ݕݎ݈݈݁ܽܩ → ݐܦ ݎ ݎ݁ݐݐܽܿܵ →

(ܽ݁ݎܽ ݓ݁݅ݒ݁ݎ ݐݎℎ݁ ܿℎܽݐ ݊݅ ݁ݕݐ ݐ݈ ݎ݁ݐݐܽܿݏ ݀݁݁ݎ݅ݏ݁݀ ݎ݀ ݀݊ܽ ݃ܽݎܦ) →

ݔ ℎ݁ݐ ݊ ݏ݈ܾ݁ܽ݅ݎܽݒ ݎ݀ ݀݊ܽ ݃ܽݎܦ) − ݕ ݀݊ܽ ݏ݅ݔܽ − ܾܽݐ ݈ܾ݁ܽ݅ݎܽݒ ℎ݁ݐ ݂݉ ݏ݅ݔܽ →

  ࡷࡻ ݈݇ܿ݅ܥ
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Correlation matrix: 

Correlation matrix is generated for determining pair wise correlation of variables. The matrix is a 

square matrix of the size equal to the number of independent variables. Each cell in the matrix has 

the correlation coefficient for the variables in corresponding row and column along with the 

significance level of the coefficients. Only one of the variables with high and statistically 

significant correlation should be included in the regression model. For example, total number of 

bedrooms is correlated with population (0.878), household (0.98) and total rooms (0.93). So, 

instead of taking all 4 variables in the equation, we can take only one of these in the equation and 

that would be good enough. So, this matrix helps us to decide which variables to include in the 

model and a more efficient way to build a model. 
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P-P plots: 

As already discussed earlier in the assumption for normality,  P-P plot is used to check the 

closeness of the distribution of a given variable to the normal distribution. Q-Q plots can also be 

used for the same purpose. For a particular variable, the more the data points are near to the 

diagonal line, closer is the variable to the normal distribution. For variables that show a lot of 

deviation from  the diagonal line, natural logarithmic transformation of those variables may be 

considered for checking if it follows normal distribution, and the transformed values of the 

variables can be used in the regression model. 
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Steps to perform Linear regression in SPSS: 

Following are the steps to be followed to perform a linear regression in SPSS: 

 From the menu, Click ݁ݖݕ݈ܽ݊ܣ → ݊݅ݏݏ݁ݎܴ݃݁  →   …ݎܽ݁݊݅ܮ

 Choose the dependent variable and independent variables and add them to respective 

section in the linear regression window. 

 Method needs to be selected which directs the software on the way variables are included 

in the model. ‘Enter’ method allows all the selected independent variables in the model at 

a time. After each round of estimation the less significant variables can be removed and 

the model can be tested further. ‘Stepwise’ method starts with one variable and keeps on 

adding one variable at a time if the addition results in improvement of the results. 

‘Forward’ method adds one variable at a time based on the greatest explanatory power. 

‘Backward’ method starts with all the variables and keeps on removing one variable at a 

time based on the lowest explanatory power.  

 After method is selected, OK needs to be clicked for the software to carry out the 

estimation. 
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Model 1 Interpretation: 

In model 1, median house value is predicted using median housing age, and median income. 

The estimation result shows the partial regression coefficients of the two variables and a constant 



also. Constant is the intercept that has been explained in the introduction. It represents the median 

housing value when value of both the variables is zero.  

 

The model summary shows R-square (0.51) which essentially represents the percentage of 

variance in the dependent variable explained by the model. Due to the way R-square is estimated, 

it is sensitive to the number of variables in the model. In other words, with the increase in the 

number of variables in the model, R-square increases. To avoid this ambiguity, adjusted R-square 

(0.51) is used, which is a penalized version of R-square. In other words, as the number of variables 

in a model increases or the model complexity increases, the R-square value is penalized to make 

sure sensitivity to number of variables is taken care of. In the given model, R-square is same as 

adjusted R square because the included variables are highly significant. F value is another indicator 

that helps to determine the overall integrity of a particular model. A statistically significant (p-

value ≤ 0.05) F-test signifies that the model explains a significant amount of variance. 

 

The coefficients for each variable is their regression weight and the sign i.e. positive or negative, 

corresponding to each of these coefficients indicates the relationship of that variable with the 

dependent variable. This  means if the coefficient of any independent variable is negative, with the 

increase in the value of the variable, the value of dependent variable decreases and vice versa.   In 

the given model, both housing median age, and median income are positively related to house 

value. 

 

The last column of the coefficient table shows the p-value or level of significance of each 

coefficient. Level of significance is used to infer the confidence interval at which the coefficients 

have been found to be significant. As a rule of thumb, p-value ≤ 0.05 or C.I = (1-p) x 100 % i.e. 

95 % is taken as significant. There can be instances where variables having theoretical evidence 

of being important may not be significant at 95% C.I, but maybe significant at 90% C.I. In such 

cases, we might relax this rule to include such variables in the model, with proper justification. 
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Model 2 interpretation: 

In Model 2, the variables included are the dummy variables representing proximity to ocean, apart 

from the variables used in model 1. In addition to median age and median income, categorical 

variable island, bay, near ocean, and inland are included. Adding these variables result in the 

increase in the percentage of total variance explained i.e. R-square from 0.51 to 0.597. Adjusted 

R-square also increases and is same as R-square again as the categorical variables are highly 

significant. The model can be interpreted as; Value or cost of house increases as the median age 

of house in the zone and the median income of residents in the zone increases. Houses on island 

are most costly, followed by houses near ocean and in bay area. Cost decreases if a house is in 

inland areas.  
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Model 3 interpretation: 

In Model 3, apart from the variables in model 2, a new variable ‘population’ is added. The R-

square does not change from what it was in model 2. Also, the p-value of the new variable is 0.908, 

which is far greater than the normally assumed threshold 0f 0.05. So, this variable should be 

dropped from the model. If this p-value would have been around < 0.1, and there would have been 

enough theoretical evidence that the variable is important, we might have let it be in the model. 

The reason behind such decision is, statistical significance is determined with respect to a given 

dataset. If a variable has been theoretically proven to be important, but coming out as 

(comparatively) less significant, it might be because of the nature of the data and it may just be 

significant in some other dataset. So, this is how a regression model is developed and as shown, 

there can be different versions of the same model for comparison.  
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So, these are some of the references you can use. 
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In conclusion, it can be said that multiple linear regression is one of the most common statistical 

techniques to build predictive models. However, care should be taken that all assumptions are 

satisfied. Inclusion of independent variables in a model is an iterative procedure along with testing 

of signs that is the positive and negative relationship with the dependent variable, and the model 

fit statistics for consistency. Variables which change signs in different iterations indicate 

correlation with other variables and they may be required to be omitted from the model. 

 

 


