Urban Landuse and Transportation Planning Prof. Debapratim Pandit Department of Architecture and Regional Planning Indian Institute of Science - Kharagpur

Lecture - 20 Microsimulation and Population Synthesis 2

Welcome back to lecture 20. In this lecture, the second part of the microsimulation and population synthesis will be discussed which include the proportional fitting for a 3-dimensional table, synthetic reconstruction, combinatorial optimization technique and other methods for generating a synthetic population.

(Refer Slide Time: 00:46)

Iterative proportional fitting: 3-dimensional table

When one additional dimension (i.e. variable) is added with a 2-dimensional table (discussed in lecture 19), it is called a 3-dimensional table. In a 2D table, there are 2 single-dimensional variables (e.g. gender and income) or marginal i.e. the marginals are of a single dimension, but in a 3-dimensional table, there are more marginals or variables (e.g. gender, income, and education) and 2 dimensional marginals (e.g. gender and income, gender and education, and income and education) like a cube.

The seed needs to be 3 dimensional which could be referred to as rows, columns, and also slices. In the above figure, it has been shown how the seed data can be represented as a cube. After taking the cube apart, marginals for rows, columns, and slices can be found along with 2 seed tables for 2 slices.

(Refer Slide Time: 02:54)

The same data have been represented in a simpler way (in the figure) instead of a cube form where the blue part is the 3-dimensional seed, the grey part shows the marginal totals for 2 dimensions and the yellow part shows the marginal totals for single dimensions (e.g. 40 is the total number of people of education group 1, 38 is the total number of people have education group 2, similarly, 38 is the total number of people income group 1 and 76 is the total number of people in gender group 1). All marginals should be consistent because they should add up to the total value (e.g. 143).

SEED						
Income	Gender		Slice	Education		
Row	Column	1	2	3	4	Total
1	1	5	4	6	7	22
1	2	3	6	5	2	16
2	1	9	11	3	1	24
2	2	2	5	7	3	17
3	1	8	4	12	6	30
3	2	13	8	2	11	34
	Total	40	38	35	30	143
Income						
1		8	10	11	9	38
2		11	16	10	4	41
3		21	12	14	17	64
	Gender					
	1	22	19	21	14	76
	2	18	19	14	16	67

Now, these marginals (e.g. marginal for income, gender, and education) for a target area must be known for the prediction of the number of households in each of these groups in that particular zone. Each marginal is adjusted proportionately one at a time in the IPF method i.e. this seed data has to be proportionately adjusted as per each marginal. In a first step, each row of cells should be adjusted proportionally to match the target totals of marginal 1 (e.g. income gender adjustment). In the next step, each column of cells should be adjusted proportionately to match the target totals of marginal 2 (e.g. income education adjustment). Similarly, each slice of a cell should be adjusted (e.g. gender education adjustment) to match the target total of marginal 3. Then, steps 1to 3 will be repeated till convergence is reached like IPF of 2 dimensions (discussed in lecture 19).

(Refer Slide Time: 08:01)

ncneme Sender Slice Education Icome Bice Education Icome 2 1 2 3 4Total 2 3 4Total 2 1 2 3 4Total 1 2 3 4 Total 3 2 2 2 3 6 5 1 2 2 1 3 1 1 2 3 4 1	SEED		
Row Column 1 2 3 4 Total 1 1 2 3 4 5 6 5 2 1 2 1 2 2 2 1 2 1 1 1 5 6 5 2 1 2 1 1 1 1 2 1 1 1 1 2 1 3 1 1 8 1 1 3 1 1 8 1 1 3 1	Income Gender Slice Education		
1 1 1 1 1 5 4 6 7 22 2 1 28 21 2 2 2 3 1 1 5 4 6 5 2 3 1 1 2 3 6 5 2 3 1 <td>tal Row Column 1 2 3 4 Total</td> <td></td> <td></td>	tal Row Column 1 2 3 4 Total		
1 2 1 2 2 2 1 2 1 2 1 2 1 1 1 2 1 3 1 3 1 2 1 3 1 3 1 3 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1	30 1 1 5 4 6 7 22		
2 1 2 2 1 9 1 3 1 24 3 3 3 3 3 3 3 1 32 3 1 32 3 2 2 5 7 3 37 1 12 14 13 7 44 39 13 8 2 14 36 2 15 14 13 7 44 37 3 2 13 8 0 14 44	21 1 2 3 6 5 2 16		
2 2 2 5 7 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 2 1 3 3 2 1 3 3 2 1 3 3 2 1 3 3 2 1 3 3 2 1 3 3 2 1 3 3 2 1	28 2 1 9 11 3 1 24		
3 1 8 4 12 6 30 1 1 2 44 44 39 175 3 2 13 8 2 11 34 1 12 12 14 13 7 45 2 11 16 10 44 44 1 12 14 13 7 45 2 11 16 10 44 46 76	21 2 2 2 5 7 3 17		
3 2 13 2 13 8 2 11 34 Total 1 12 14 13 7 49 3 2 13 8 2 11 34 35 30 143 accome 1 12 14 13 7 49 3 21 16 10 44 41 37 49 3 21 11 16 10 44 41 </td <td>32 3 1 8 4 12 6 30</td> <td></td> <td></td>	32 3 1 8 4 12 6 30		
ncme Total 40 32 41 22 1 1 12 13 14 13 7 40 88 35 30 14 1 12 14 13 7 40 38 11 9 38 2 15 14 13 7 40 3 21 14 10 44 44 44 44 44 44 44 44 44 44 44 44 44 46 67 1 28 24 21 17 90 2 18 19 14 16 67 01 01 2 3 4 10 1 12 14 16 67 76 67 76 67 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 <	3 2 13 8 2 11 34		
Nume Income Income <td>Total 40 38 35 30 143</td> <td></td> <td></td>	Total 40 38 35 30 143		
2 15 14 13 7 45 3 2 15 14 13 7 45 3 2 11 16 10 4 4 4 1 24 16 14 20 76 3 21 12 14 17 64 1 2 23 20 22 25 20 22 28 14 16 67 01 02 23 20 22 88 19 14 16 67 01 2 3 4 Total 8 54455 8.1812 9.54455 8 <td>50 Income</td> <td></td> <td></td>	50 Income		
3 24 16 16 20 76 Gender 21 12 14 17 66 2 23 20 20 22 85 91 22 14 17 66 1 22 23 20 20 22 85 91 1 22 19 24 16 67 01 0UMN ADUSTMENT 5 Gender Silce Education 6 7 <t< td=""><td>49 1 11 16 10 4 41</td><td></td><td></td></t<>	49 1 11 16 10 4 41		
Gender Coulum Coulum Succ ADJUSTMENT Coulum Succ ADJUSTMENT Gender Silce Education Image: Silce Education 1 1 1 1 1 1 1 6 Gender Silce Education Image: Silce Education Image: Silce Silce Education 1 1 6.81818 5.45455 8.18182 9.545455 2.623 2.21 1 1 7.60697 5.7289 6.55896 9.41176 2.93934 1 1 2.83937 7.875 6.5625 2.623 2.21 1 1 7.60697 5.7289 6.55896 9.41176 2.94066 Row Column 1 2 3 1 1 7.60697 5.7289 6.55896 9.41176 2.94066 Row Column 1 2 3 1 1 7.60697 5.7289 6.55896 9.41176 2.94066 Row 2 2.85714 5.3294 2.19841 2 1	76 21 12 14 17 64		
I 28 24 21 17 90 2 23 20 22 85 1 22 19 21 14 76 01 2 23 20 22 85 1 21 18 19 14 16 67 0LUMN ADJUSTMENT 5	Gender		
2 23 20 20 22 85 2 1 <td>90 1 22 19 21 14 76</td> <td></td> <td></td>	90 1 22 19 21 14 76		
nn 1 OLUMN ADUSTMENT © Gender 1 2 39375 7787 6 5625 2 - 2525 221 2 1 105 12.8333 35 1.16667 28 2 2 2 1 0.05 12.8333 35 1.16667 28 2 2 1 0.05 12.8333 35 1.16667 28 2 2 2 2 2 2.85714 4.54874 9.25426 3.74561 2.7588 6.5399 6.941176 29.4066 Bow Column 1 2 3 4 Total Income Gender 2 2 2 2 2 2.85714 4.54874 9.25426 3.74561 2.7666 27.0593 3 1 8.53333 4.26667 12.8 6.4 32 2 2 1 4.01176 2.5346 1351 46 2 1 2.12471 9.45246 2.2 6.5358 6.2112 2.2 1 1.12442 9.45426 3.0177 32.608 2 1 2.12757 13.3329 1.47443 12.1705 151 Income Cender 1 1 2.7575 13.3239 1.47443 12.12755 49 3 2 2.49745 14.3893 15.2294 20.3118 75 2 1 127761 4751 13.3751 13.224 2.64006 1.3751 10.38571 4.4412 39 2 1 12.471 9.82426 3.74591 1.3542 1.264006 1.3751 10.38571 5.1542 1.44884 44 3 2 14.4412 39 1.75 2 1 12.7575 13.3239 1.47443 11.21705 151 Income Cender 1 12.7575 13.3239 1.47443 11.21705 151 1 12.7575 13.2239 1.2004 1.3.7716 12.08064 1 1 12.7575 13.2239 1.51626 1.468877 7 2 1 12.8483 2.46971 1.3 7746 12.08064 1.48877 7 2 1 12.5483 1.4884 1.7.716 12.08064 1.2.7716 12.08064 1.3.7716 12.08064 1.2.7716 12.08064 1.2.7756 1.51.626 1.404877 7 3 2 2 1.5 44 11 3 7 449 3 2 2 3.0498 2.4.0739 1.7.2833 4.2.6697 1.2.8 5.15.626 1.404877 7 3 2 2 3.0498 2.4.0739 1.7.2834 2.1.5068 1.404877 7 3 2 2 3.0498 2.4.0739 1.7.2834 2.1.506 1.0.68877 7 3 2 2 3.0498 2.4.0739 1.7.2834 2.1.506 1.51.51.51.61.4044.84877 7 3 2 2 3.0498 2.4.0739 1.7.2834 2.1.506 1.2.86805 1.2.86805 0.2.8586 0.2.8	85 2 18 19 14 16 67		
n 1 2 Gender Slice Education Counter ADJUSTMENT 2 Gender Slice Education Counter ADJUSTMENT 1 1 6 1818 5.45455 8.18182 9.54545 08 2 1 2 9.9375 7.875 6.5625 2.625 2.1 2 1 105 12.633 3.5 1 16667 28 2 2 2 2.47059 6.17647 8.64706 3.70588 21 3 2 1 6.1755 7.13295 6.17647 8.64706 3.70588 21 3 2 1 8.5333 4.26667 12.8 6.4 32 2 2 2 2.47059 6.17647 8.64706 3.70588 21 3 2 1 8.5333 4.26667 12.8 6.4 32 3 2 1 8.5794 1.25141 12.14759 1.35394 6.3017 3.2084 3 2 1 8.5735 4.26647 12.8 6.4 32 3 2 1 8.5795 1.3295 1.1757 13.3295 1.47443 12.1705 51 1 1 0.7557 13.3295 1.47443 12.1705 51 1 1 0.7557 13.3295 1.47443 12.1705 51 1 1 0.7557 13.8295 1.47443 12.1705 51 1 1 0.755 1.1626 1.404807 7 3 2 2 1.5905 1.51626 1.404807 7 3 2 2 2.8049 2.41691 1.7739 2.02468 1.18496 1.200 76 2 2 2.80498 2.40799 1.72354 2.16104 85.9695 5 2 1 2.28006 1.2614 13.7716 1.208068 1 3 2 2.9905 1.5058 1.51626 1.404807 7 3 2 2.30498 2.4079 1.72354 2.16104 85.9695 5 2 1 2.28044 1.37716 1.208068 1 3 2 2.29049 2.41691 1.7739 2.02428 1 3 2 2.29049 2.4079 1.72354 2.16104 85.9695 5 2 2 2.30498 2.4079 1.72354 2.16104 85.9695 5 2 2 2.30498 2.4079 1.72354 2.16104 85.96			
OLUMA DUSTMENT ROW SUCE ADJUSTMENT COLUMA SUCE ADJUSTMENT COLUMA SUCE ADJUSTMENT Column 1 2 3 4 total Income Gender Silce Education Income Silce Education Income Gender Silce Education Silce Education Income Income			
Gender Silce Education NOW SUCE ADJUSTMENT 1 1 6.81818 5.45455 8.1382 9.55455 30 Row Column 1 2 3 4 Total 1 1 6.81818 5.45455 8.1382 9.55455 30 Row Column 1 2 3 4 Total 1 2 3.9375 7.875 6.5623 2.625 2.21 1 1 7.60697 5.7289 6.65896 9.41176 2.94066 Row Column 1 2 3 2 1 0.512.833 3.51 1.6667 2.8 1 2.439303 8.2711 5.34142 2.582475 5.67065 2.70159 1 1 2.43953 6.87142 6.4177 2 2 2.28577 5.3294 2.19841 2 2 2.85077 3.78797 10.738677 5 3 2 1.64421 10.1776 2.52941 1.39118 <td< td=""><td></td><td></td><td></td></td<>			
Column 1 2 8 4 Total Siles 95455 30 Column 1 2 3 4 Total 1 16 16 1818 545455 30 0 Column 1 2 3 4 Total 1 2 9.9375 7.875 6.5625 2.625 22 1 1 7.60697 5.728 6.5636 9.41176 2.94056 1 1 7.6203 6.9010 5.84128 9.5712 5.8359 9.41176 2.94056 1 1 7.6203 6.9010 5.84288 9.97782 1 1 7.6203 6.90105 5.842828 9.97782 1 1 1 7.6203 6.90105 5.842828 9.83294 1 1 1 7.6203 6.90105 5.842828 9.83294 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2.87979	ROW SLICE ADJUSTMENT		
1 1 2 3.8.4935 8.1812 9.34945 3.01 How L 2 3 4 10621 Income Gender Sile Education 2 1 1.05 12.8333 8.56525 2.6525 2.21 1 1 7.60697 5.728 6.65896 4.1176 2.80698 2.0171 5.248140 2.58824 2.05934 1 1.72605 5.7287 5.7576 5.7287 5.7576 5.75762 5	Income Gender Slice Education COLUMN SLICE ADJUSTMENT	MN SLICE ADJUSTMENT	VENT
1 2 3.9373 7.875 6.56.5 2.623 2.1 1 1 7.6097 5.7289 6.9389 9.41176 2.940066 Row Column 1 2 3 2 1 0.105 12.833 3.5 1.1667 2.8 1 2 4.39033 8.2116 5.34104 2.58824 2.5989 9.41176 2.940066 1 7.6203 5.90015 5.841248 5.84126 2.720159 1 7.6203 5.90015 5.841286 2.54237 5.32342 0.5389 9.41176 2.940066 1 7.6203 5.90015 5.841286 2.941176 2.940066 1 7.6203 5.90015 5.841286 5.9115 5.84104 2.54237 5.32942 2.19841 2 1 1.1445 1.3836 3.99996 1 2 2 2.85073 3.78971 10.78507 5 3.09996 1 2 2 2.85073 3.78971 10.78507 5 3.9999 3 1 2.1497 5.778971 10.78507 5 3.09996 1 1.251 1.80771	30 Row Column 1 2 3 4 Total Income Gender Slice	er Slice	ce Education
2 1 10.5 11.2433 51.1666/ 26 1 2 4.3903 8.711 5.4104 2.588.42 20.3934 1 1 7.6203 6.90019 5.84288 1 2 4.3903 8.711 5.4104 2.588.42 20.3934 1 1 7.6203 6.90019 5.84288 1 1 1.76203 6.90019 5.84288 1 1 1.76203 6.90019 5.84288 1 1 1.76203 6.90019 5.84288 1 1 1.76203 6.90019 5.84288 1 1.11429 9.42108 1.787781 5.78758 1.6766 27.01981 1 1.1845 3.309996 1 2 1.8444 4.1839 1.1 2 1.1845 3.309996 1 3.2 15.7996 1.12541 2.640061 13.6982 43.392 3 1 8.1449 5.7869 1.0736677 5 3.446 41 39 1 7.7807 1.78677 3.6464 1 1.8149 3.16892 43.392 3 1 8.14977 1.761 1.8149 3.246		nn 1	2 3 4 Total
2 2 2 2 4 1 1 1 2 4 5 1 2 4 4 3 1 2 4 2 3 3 1 1 1 2 1 1 1 3 2 1	21 1 1 7.60697 5.7289 6.65896 9.41176 29.4066 Row Column 1		5.90019 5.8842898 9.20091 29.6059
3 1 833333 4,26807 12,8 6.4 32 2 2 2,873 3,3334 2,19841 2 1 11,11,145 11,836 3,809996 1 1 2 11,11,11,45 11,836 3,809996 1 3,5994 3,5994 3,213594 1,3594 3,0394 2,19841 2 2 2,8079 3,7987 10,7987/7 1,35994 3,0394 2,19841 2 2,2809 3,7987 10,7987/7 1,35994 3,0394 2,19841 2 2,2809 3,7987 10,7987/7 1,35994 3,03944 1,89984 3,318 2,8209 3,7987 10,7987/7 1,38296 3,083545 1 1,8205 4,441 1,8984 1,82097 5,71652 1,80871 1,608544 1,111,11645 1,80877 1,80877 1,8387 1,83874 1,83874 1,83984 1,81876 3,0835454 1,111,11645 1,11886 3,0835454 1,111,11645 1,11886 3,083545 1,111,11645 1,11886 3,083545 1,111,11645 1,11886 3,083545 1,111,11645 1,111,11645 1,111645	21 1 1 7.60697 5.7289 6.65896 9.41176 29.4066 Row Column 1 28 1 2 4.39303 8.2711 5.34104 2.58824 20.5934 1 1 7.62053 6.9001	1 7.62053 6.9001	Construction of the second
3 2 10.4412 10.116 2.52492 12.5318 4.53 1 8.2038 4.7593 13.3394 6.3017 32.2008 32.2008 37.7897 10.78577 13.3293 10.78577 13.3293 6.3017 32.2008 3 1 8.2038 4.74591 13.3294 6.3017 32.2008 3 1 8.21097 3.77897 10.78577 13.3293 2 1.5796 1.12541 2.640061 1.35892 43.982 3 1 8.21097 5.77627 11.305711 6 2 1.279706 19.0098 12.2471 4.87255 49 1 1.2107 51 44 41 39 7 dag 51 44 41 51 44 41 51 44 41 51 44 41 51 44 41 51 44 41 41 51 51 44 41 51 51 44 41 51 51 51 51 51	21 1 1 7.60697 5.7289 6.65589 9.41176 29.40666 Row Column 1 28 1 2 4.9303 8.2711 5.54140 2.58842 20.5984 1 1 7.65055 6.9014 21 2 1 12.1429 9.45126 5.745763 1.67666 27.0159 1 2 4.38353 6.8714	2 4.38353 6.8714	5.87142 6.1977782 2.6349 20.0876
Image: Total Solution	21 1 1 7.6097 5.7289 6.65896 9.41176 29.4066 Row Column 1 28 1 2 4.39303 8.2711 5.34104 2.58824 20.5934 1 1 7.60253 6.9001 21 2 1 12.12429 9.45126 3.745763 1.57606 27.0159 1 2 4.38333 6.8714 32 2 2 2.55714 4.54874 9.25427 5.32394 21.9841 2 1 12.1645 11.383 4 0 4 0.67000 6.57000 5.0700 5.0700 2.0101 2 1 12.1645 11.383	2 4.38353 6.8714 1 12.1645 11.383	5.87142 6.1977782 2.6349 20.0876 11.3836 3.3099996 1.63851 28.4966
Income Income Income Table 3 2 15755 9.34861 3.063545 1 2 12.9706 19.098 12.1471 48725 44 12 12 14 12 14 12 12 1 10.0557 13.8295 14.743 12.1705 51.3655 9.34861 3.063545 1 Table 3 Table 3 Table 3 1 10.0557 13.8295 14.471 12.050 1 12.041 12.041 13.7716 12.0041 13.7716 12.0041 13.7716 12.0041 13.7716 12.0041 13.7716 12.0468 1 Gender 3 2.24.843 1.1121 900 Gender 1 12.0504 13.7716 12.0041 13.7716 12.0041 14.048677 7 1 2.25.8515 2.25.852 2.4.4818 17.1121 900 Gender 1 2.79502 19.9261 23.76466 17.7886 89.0050 Gender 14.86935 2 2 2.04998 <td>21 1 1 7.60697 5.7289 6.65896 9.41176 29.4066 Row Column 1 28 1 2 4.9903 8.2711 5.4104 2.58824 20.9934 1 1 7.6203 6.001 21 2 1 12.1429 9.55126 5.77576 1.57606 27.0159 1 2 4.38353 6.8714 32 2 2 2.85714 4.54874 9.254237 5.32394 21.9841 2 1 12.1645 1.1838 43 3 1 8.20036 4.74591 1.35599 6.30177 32.6089 2 2 2.85097 3.7789</td> <td>2 4.38353 6.8714 1 12.1645 11.383 2 2.85097 3.7789</td> <td>87142 6.1977782 2.6349 20.0876 1.3836 3.3099996 1.63851 28.4966 7.7897 10.738677 5.41992 22.7885</td>	21 1 1 7.60697 5.7289 6.65896 9.41176 29.4066 Row Column 1 28 1 2 4.9903 8.2711 5.4104 2.58824 20.9934 1 1 7.6203 6.001 21 2 1 12.1429 9.55126 5.77576 1.57606 27.0159 1 2 4.38353 6.8714 32 2 2 2.85714 4.54874 9.254237 5.32394 21.9841 2 1 12.1645 1.1838 43 3 1 8.20036 4.74591 1.35599 6.30177 32.6089 2 2 2.85097 3.7789	2 4.38353 6.8714 1 12.1645 11.383 2 2.85097 3.7789	87142 6.1977782 2.6349 20.0876 1.3836 3.3099996 1.63851 28.4966 7.7897 10.738677 5.41992 22.7885
Image: Section 2	21 1 1 7.6097 5.7289 6.65589 9.41176 29.4066 Row Column 1 28 1 2 4.39803 8.2711 5.534104 2.58824 20.5984 1 1 7.6205 6.9001 21 2 1 1.21429 9.45126 3.745763 1.67606 27.0159 1 2 4.38835 6.8714 32 2 2 2.85714 4.54874 9.254237 5.32394 21.9841 2 1 12.1645 1.383 43 3 1 8.2006 4.74591 3.55996 5.0177 3.7689 2 2.85079 3.7789 175 3 1 15.7996 11.2541 2.640061 13.6982 43.392 3 1 8.2047 5.7586 175 3 2 15.7996 11.2541 2.640061 3.6982 43.392 3 1 8.2047 5.7586	1 7.62053 6.9001 2 4.38353 6.8714 1 12.1645 11.383 2 2.85097 3.7789 1 8.21497 5.7162	587142 6.1977782 2.6349 20.0876 11.3836 3.3099996 1.63851 28.4966 7.7897 10.738677 5.41992 22.7885 6.71622 11.805711 6.16058 31.8975
1 1	1 1 7.6097 5.7289 6.65896 9.41176 29.4066 Row Column 1 28 1 2 4.39303 8.2711 5.34104 2.58824 20.5934 1 1 7.6025 6.67696 27.0159 1 2 4.38333 6.8714 32 2 2 2.85714 4.54874 9.25423 5.32394 21.9841 2 1 21.21645 11.383 43 3 1 8.20036 4.74591 1.33594 6.30177 32.608 2 2.85874 9.778 7/5 3 2 1.5799 1.2542 4.60061 1.36982 4.33821 2 2.86874 3.7782 7/5 3 2 1.57999 1.2541 4.401 3.9 1.75 3.2 1.57655 9.3496	1 7,62053 6.9001 2 4.38353 6.8714 1 12.1645 11.383 2 2.85097 3.7789 1 8.21497 5.7162 2 15.7655 9.3496	587142 6.1977782 2.6349 20.0876 1.13836 3.3099996 1.63851 28.4966 5.77897 10.738677 5.41992 22.7885 5.71622 11.805711 6.16058 31.8975 3.49661 3.0635445 13.9452 42.1238
Gender Gender 1 <th< td=""><td>1 1 7.60e97 5.7289 6.65896 9.41176 29.4066 Row Column 1 28 1 2 4.3903 8.2711 5.51410 2.58842 20.5984 1 1 7.6205 6.6900 21 2 1 1.21429 9.45126 5.745763 1.67606 27.0159 1 2 4.38853 6.8714 32 2 2 2.85714 4.54874 9.254237 5.32394 21.9841 2 1 1.21451 1.83594 5.0177 3.2682 2 2.85077 3.7789 175 3 2 1.57965 1.2541 2.640061 1.35982 4.3392 3 1.82149 7.5765 17 0.61 51 4.4 41 9 175 3 2 15.7555 9.3494 51 1.6 4 41 9 175 51 4 </td><td>1 7.62053 6.9001 2 4.38353 6.8714 1 12.1645 11.383 2 2.85097 3.7789 1 8.21497 5.7162 2 15.7655 9.3496 51 4</td><td>8.87142 6.1977782 2.6349 20.0876 11.3836 3.3099996 1.63851 28.4966 3.77897 10.738677 5.41992 22.7885 7.71622 11.805711 6.16058 31.8975 3.49641 3.0635445 13.9452 42.1238 44 41 39 175</td></th<>	1 1 7.60e97 5.7289 6.65896 9.41176 29.4066 Row Column 1 28 1 2 4.3903 8.2711 5.51410 2.58842 20.5984 1 1 7.6205 6.6900 21 2 1 1.21429 9.45126 5.745763 1.67606 27.0159 1 2 4.38853 6.8714 32 2 2 2.85714 4.54874 9.254237 5.32394 21.9841 2 1 1.21451 1.83594 5.0177 3.2682 2 2.85077 3.7789 175 3 2 1.57965 1.2541 2.640061 1.35982 4.3392 3 1.82149 7.5765 17 0.61 51 4.4 41 9 175 3 2 15.7555 9.3494 51 1.6 4 41 9 175 51 4	1 7.62053 6.9001 2 4.38353 6.8714 1 12.1645 11.383 2 2.85097 3.7789 1 8.21497 5.7162 2 15.7655 9.3496 51 4	8.87142 6.1977782 2.6349 20.0876 11.3836 3.3099996 1.63851 28.4966 3.77897 10.738677 5.41992 22.7885 7.71622 11.805711 6.16058 31.8975 3.49641 3.0635445 13.9452 42.1238 44 41 39 175
Outcol 25 24 16 20 76 2 15.055 15.055 14.048677 7 2 125.8515 22.5545 24.4818 17.1121 90 6 6 3 23.9805 15.0658 14.869255 2 2 2.2.8493 24.1691 17.739 20.2426 85 1 27.9502 19.9261 23.76466 17.3896 89.0305 6ender 6ender 6ender 6ender 6ender 1 22.93.0498 24.0739 17.23534 21.6104 85.9695 1 2.2 2.4 2.1 1.0 2.1 2.1 1.0 1.	1 1 7.6097 5.7289 6.65589 9.41176 19.4066 Row Column 1 28 1 2 4.38303 8.2711 5.34104 2.58824 20.5984 1 1 7.62055 6.9001 21 2 1 1.1429 9.45126 3.745763 1.67606 27.0159 1 2 4.38833 6.8714 32 2 2 2.85714 4.54874 9.25423 5.32394 21.9841 2 1 1.21645 1.3835 43 3 1 8.2006 4.74593 1.35596 6.30177 3.7689 2 2 2.85077 3.7785 175 3 2 15.7996 11.2541 2.640061 13.6982 43.382 3 1 8.21497 5.7162 1 1 1.2 1.2 2.4 9 3 2 15.7565 9.3496 1 1 1.2 1.2 2 5	1 7.62055 6.9001 2 4.38353 6.8714 1 12.1645 11.383 2 2.85097 3.7789 1 8.21497 5.7162 2 15.7655 9.3496 51 4	8.87142 6.1977782 2.6349 20.0876 113836 3.099996 1.63851 28.4966 77897 10.738677 5.41992 22.7885 7.7587 10.738677 5.41992 22.7885 7.1622 11.805711 6.16058 31.8975 3.4961 3.0635445 13.9452 42.1238 44 41 39 175
2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 3 2 3	1 1 7.6097 5.7289 6.65896 9.41176 29.4066 Row Column 1 28 1 2 4.39303 8.2711 5.34104 2.58824 20.5984 1 1 7.6025 6.67696 27.0159 1 2 4.38333 6.8714 32 2 2 2.85714 4.54874 9.25423 5.3294 21.9841 2 2 2.85333 6.8714 33 1 8.20036 4.74591 1.33594 6.30177 32.6084 2 2.85833 3 1 2.12465 1.7857 75 3 2 1.5996 1.2542 4.60061 1.36982 4.3982 3 1 8.21497 5.7758 51 Income - - Total 51 4 4 1 39 15 3 2 15.755 9.3496 1 7.6491 13.77 51 100 12 14 12 <	1 762055 65001 2 438353 68714 1 12.1645 11.383 2 2.85097 3.7789 1 8.21497 5.7162 2 15.7655 9.3496 51 4 12.0041 13.771	8.87142 6.1977782 2.6349 20.0876 1.3836 3.309996 1.63851 28.4966 7.77897 0.73677 5.4792 22.7885 5.71622 11.805711 6.16058 31.8975 3.4961 3.0635445 13.9452 42.1238 44 41 39 175 3.37716 12.082068 11.8358 49.6935
1 2/3502 13/261 23/0496 1/3896 89/0303 Gender 2 23.0498 24.0739 17.23534 21.6104 85.9695 1 2.28 24 21	1 1 7.6097 5.7289 6.65589 9.41176 29.4066 Row Column 1 28 1 2 4.303 8.2711 5.51406 2.5824 2.05584 1 1 7.6205 6.9001 21 2 1 1.21429 9.45126 3.745763 1.67606 27.0159 1 2 4.38353 6.8714 32 2 2 2.85714 4.54874 9.25423 5.32842 2.05841 2 1 1.2145 1.383596 6.3017 3.26891 2 2 2.85073 3.7789 175 3 2 15.7966 11.2541 2.640061 13.6982 43.392 3 2 15.7563 5.7162 1 10 12 44 13 9 175 3 2 15.7563 9.469 1 12 14 12 12 5.7563 1.6706 1 16 16 10 16 <td< td=""><td>1 / 7.62053 6.5900 2 4.38353 6.8714 1 12.1645 11.383 2 2.85097 3.7789 1 8.21497 5.7162 2 15.7655 9.3496 51 4 12.0041 13.771 15.0155 15.162</td><td>387142 6.1977782 2.6.849 20.8076 13836 3.099996 1.63851 28.4966 13836 3.099996 1.63851 28.4966 7.7897 10.73867 5.41992 22.7885 7.1622 11.805711 6.16058 3.8975 3.4961 3.065445 13.9452 42.1283 44 41 39 175 3.7776 12.082068 11.8355 49.6935 5.1626 14.048677 7.05843 51.2851</td></td<>	1 / 7.62053 6.5900 2 4.38353 6.8714 1 12.1645 11.383 2 2.85097 3.7789 1 8.21497 5.7162 2 15.7655 9.3496 51 4 12.0041 13.771 15.0155 15.162	387142 6.1977782 2.6.849 20.8076 13836 3.099996 1.63851 28.4966 13836 3.099996 1.63851 28.4966 7.7897 10.73867 5.41992 22.7885 7.1622 11.805711 6.16058 3.8975 3.4961 3.065445 13.9452 42.1283 44 41 39 175 3.7776 12.082068 11.8355 49.6935 5.1626 14.048677 7.05843 51.2851
2 23.9998 24.0739 17.23534 21.6104 85.9695 1 28 24 21	1 1 7.6097 5.7289 6.65896 9.41176 19.4066 Row Column 1 28 1 2 4.39303 8.2711 5.34104 2.58824 20.5984 1 1 7.6205 6.67696 27.0159 1 2 4.38333 6.8714 32 2 2 2.85714 4.54874 9.25423 5.32942 2.19841 2 1 2.1469 5.1383 43 3 1 8.2006 4.75891 1.35594 6.30177 3.2608 3 1<8.21497	1 7.62053 6.5900 2 4.38353 6.8714 1 22.1645 11.383 2 2.85097 3.7789 1 8.21497 5.7162 2 15.7655 9.3496 51 4 12.0041 13.771 15.0155 15.162 23.9805 15.065	187142 6.1977782 2.6849 20.0876 13836 3.099996 1.63851 28.496 173871 10.78677 5.41992 22.7885 17422 11.805711 6.16055 31.8975 13461 3.063545 13.9452 42.1288 144 41 39 175 13.7716 12.022068 11.8858 49.6935 15.1626 14.046077 7.05845 51.2851 5.0568 14.869255 20.1058 74.0213
	1 1 7.60e97 5.7289 6.65589 9.41176 12.94066 Row Column 1 9.40176 13.60067 1 7.6205 6.8714 21 2 1 1.21429 9.45126 3.745763 1.67606 27.0159 1 2 4.3833 6.8714 32 2 2 2.85714 4.54874 9.254237 5.32394 21.9841 2 1 1.21469 5.13594 5.13941 2.85071 3.7585 3.9302 2 2.85071 3.7585 3.9302 3 1 8.20087 3.7585 3.9302 3 1 8.20497 5.7585 3.4902 3 1 8.20671 3.7585 3.9302 3 1 8.20497 5.7585 3.490 3 1 8.20497 5.7585 3.490 3 1 8.20497 5.7585 3.490 3 1 8.20497 5.7585 3.490 3 1 8.20497 5.7585 3.490 1 1.2049	1 / 62053 65001 2 4.38353 6.8714 1 12.1645 11.383 2 2.85097 3.7788 8 2.1497 3.7788 1 8.21497 3.7788 1 8.21497 3.7788 1 8.21497 3.7788 1 8.21497 3.778 1 8.21497 3.778 1 8.21497 3.778 1 1.20041 13.771 1 5.0155 15.162 2 3.9805 15.065 er	387142 6.1977782 2.6.849 20.80% 13856 3.09996 1.6385.1 2.8.4966 17897 10.738677 5.41992 22.7885 5.71622 11.805711 6.16055 31.8975 3.49961 3.0651445 13.9452 42.1238 44 41 39 175 3.7716 12.082068 11.8355 49.6935 5.1626 14.048677 7.05845 51.2851 5.0558 14.6869255 20.108 74.021
2 23 20 20	1 1 7.6097 5.7289 6.65589 9.41176 19.4066 Row Column 1 28 1 2 4.39303 8.2711 5.34104 2.58824 20.5984 20.5984 1 1 7.6025 6.9001 21 2 1 1.1429 9.45126 3.745763 1.67606 27.0159 1 2 4.38353 6.8714 32 2 2 2.85714 4.54874 9.25423 5.32942 21.9841 2 1 2.1645 1.83353 6.8714 3 1 8.2006 1.35996 6.30177 3.27689 2 2.25679 3.7789 51 Income - - - - - Total 51 4.4 4.1 39 1 8.21497 5.7162 3 2 15.755 9.3669 - - - Total 51 - - - - - - - -	1 / 62053 6-5001 2 4.38353 6.8714 1 12.1645 11.383 2 2.85097 3.7788 1 8.21497 5.7162 2 15.7655 9.3496 5 1 4 1 2.0041 13.771 15.0155 15.162 2 3.9805 15.065 Ff 1 2.8 22	387142 6.1977782 2.6.849 20.0876 13836 3.099996 1.63851 28.4966 13836 3.099996 1.63851 28.4966 7.7807 10.78877 5.41992 22.7885 7.1622 11.805711 6.16058 3.8975 3.4961 3.065545 13.9452 42.1288 44 41 39 175 3.7776 12.082068 11.8355 49.6935 5.1626 14.048677 7.05843 51.2851 5.0568 14.869255 20.1058 74.0213 24 21 17 90
	1 1 7.6097 5.7289 6.65898 9.41176 29.4066 Row Column 1 28 1 2 4.39303 8.2711 5.34104 2.58824 20.5984 1 1 7.6205 6.67696 27.0159 1 2 4.38333 6.8714 32 2 2 2.85714 4.54874 9.25423 5.32394 21.9841 2 1 12.1645 1.1383 33 1 8.20036 4.74591 1.359394 6.30177 3.2608 3 1 8.21497 5.7758 3 2 1.57996 11.2541 2.64061 1.50982 43.382 3 1 8.21497 5.7755 9.3696 51 norme	1 / 62053 65001 2 4.3855 6.8714 1 12.1645 11.383 2 2.85097 3.7789 1 8.21497 5.7162 2 15.7655 9.3496 51 4 1 2.0041 13.771 15.0155 15.162 2 3.9805 15.065 sr 1 28 2 2 2 3 2	187142 6.1977782 2.6.84 20.8376 1386 3.30996 1.6.851 3.84966 17897 10.738677 5.41992 22.7885 1896 3.09976 5.4192 22.7885 14907 10.738677 5.41992 22.7885 34961 3.05845 13.9452 4.1284 44 41 39 175 3.7716 12.082068 11.8358 49.6935 5.1626 14.048677 70.5843 5.12851 5.0568 14.869255 20.1058 74.0213 24 21 17 90 20 20 22 855

In the table below, (continuation of the earlier example) marginals (i.e. marginals for income and gender, marginals for gender and education, marginals for income and education) for the target area are available.

-													
TARGET							SEED						
Income	Gender		Slice	Education			Income	Gender		Slice	Education		
Row	Column	1	2	3	4	Total	Row	Column	1	2	3	4	Total
1	. 1					30	1	1	5	4	6	7	1
1	. 2					21	1	2	3	6	5	2	1
2	1					28	2	1	9	11	3	1	1
2	2					21	2	2	2	5	7	3	1
3	1					32	3	1	8	4	12	6	
3	2					43	3	2	13	8	2	11	
	Total	51	44	41	39	175		Total	40	38	35	30	14
Income							Income						
1		12	14	12	12	50	1		8	10	11	9	
2		15	14	13	7	49	2		11	16	10	4	
3	1	24	16	16	20	76	3		21	12	14	17	e
	Gender							Gender	~~				
	1	28	24	21	17	90		1	22	19	21	14	-
	2	23	20	20	22	85		2	18	19	14	16	6
									10	13	14	10	

in the first step, for example, the target value 30 which is the summation of the first row, is divided with seed table marginal total to get the proportion value i.e. 30 divided by 22 which is multiplied with 5 resulted in 6.818. The process is repeated for all the rows to get an updated table (shown below), where all the first marginal matches with the target, but none of the other matches.

Iteration 3	1					
ROW COL	UMN ADJU	STMENT				
Income	Gender		Slice	Education		
Row	Column	1	2	3	4	Total
1	1	6.81818	5.45455	8.18182	9.54545	30
1	2	3.9375	7.875	6.5625	2.625	21
2	1	10.5	12.8333	3.5	1.16667	28
2	2	2.47059	6.17647	8.64706	3.70588	21
3	1	8.53333	4.26667	12.8	6.4	32
3	2	16.4412	10.1176	2.52941	13.9118	43
	Total	48.7008	46.7237	42.2208	37.3548	175
Income						
1		10.7557	13.3295	14.7443	12.1705	51
2		12.9706	19.0098	12.1471	4.87255	49
3		24.9745	14.3843	15.3294	20.3118	75
	Gender					
	1	25.8515	22.5545	24.4818	17.1121	90
	2	22.8493	24.1691	17.739	20.2426	85

Hence, similarly, in the next step, the next marginal have been adjusted. For example, for income level 1, the proportion factor would be 12 divided by 10, where 12 is target marginal. Then, the proportion value 1.2 would be multiplied with 6.81818 and 3.9375 resulted in 7.60697 and 4.3903 respectively. A similar process will be repeated for other marginal to get the following updated table (Row slice adjustment table). Now, a similar process is repeated for the column adjustment to complete the first iteration.

	ROW SLICE		FNT			
	NOW SEICE	L ADJOSTIN				
Income	Gender		Slice	Education		
Row	Column	1	2	3	4	Total
1	1	7.60697	5.7289	6.65896	9.41176	29.4066
1	2	4.39303	8.2711	5.34104	2.58824	20.5934
2	1	12.1429	9.45126	3.745763	1.67606	27.0159
2	2	2.85714	4.54874	9.254237	5.32394	21.9841
3	1	8.20036	4.74591	13.35994	6.30177	32.608
3	2	15.7996	11.2541	2.640061	13.6982	43.392
	Total	51	44	41	39	175
Income						
1		12	14	12	12	50
2		15	14	13	7	49
3		24	16	16	20	76
	Gender					
	1	27.9502	19.9261	23.76466	17.3896	89.0305
	2	23.0498	24.0739	17.23534	21.6104	85.9695

	COLUMN	SLICE ADJU	STMENT			
Income	Gender		Slice	Education		
Row	Column	1	2	3	4	Total
1	1	7.62053	6.90019	5.8842898	9.20091	29.6059
1	2	4.38353	6.87142	6.1977782	2.6349	20.0876
2	1	12.1645	11.3836	3.3099996	1.63851	28.4966
2	2	2.85097	3.77897	10.738677	5.41992	22.7885
3	1	8.21497	5.71622	11.805711	6.16058	31.8975
3	2	15.7655	9.34961	3.0635445	13.9452	42.1238
	Total	51	44	41	39	175
Income						
1		12.0041	13.7716	12.082068	11.8358	49.6935
2		15.0155	15.1626	14.048677	7.05843	51.2851
3		23.9805	15.0658	14.869255	20.1058	74.0213
	Gender					
	1	28	24	21	17	90
	2	23	20	20	22	85

(Refer Slide Time: 11:34)

Zero Cell Problem

One of the major problems with IPF is called the 0 cell problem. In the previous example, all the cells have got some values, but some of these cells could have 0 value, because in the actual case when different demographic groups (not only income gender education) are considered, the total number of people in each group may be very less which results in cells with no value. The '0 value' in the seed leads to problems due to division by 0. There are 3 ways to address this problem.

- a) the 0 cells can be replaced with a small value which can be like 0.001
- b) category reduction can be done as in PopSyn and CEMDAP. In this process, before starting the IPF, categories can be automatically aggregated considering a user-specified threshold for marginals. Category reduction could be also done as an independent step to improve results as sometimes too much disaggregation does not provide any additional advantages.
- c) Zone level seed can be replaced with regional level seed estimate and for that average values from the regional area can be taken (e.g. PopSyn)

Sparse List

With increasing attributes and categories, the complexity of categorization increases with several cells having 0 values which unnecessarily increases the memory and computation load e.g.

among one lakh categories, maybe 70,000 categories have got no values, whereas only 30,000 categories have values. So, this kind of computation then takes a lot of memory and the entire computation process becomes slower. To overcome this issue a list structure can be used instead of a matrix form.

A sparse list reduces memory requirement by considering a list-based representation of attribute details which is proportional to the size of the seed and the number of attributes do not depend on categorization details i.e. each of the 30,000 demographic groups(with non-zero values) are based on certain attributes or variables and only those variables are listed and the number of individuals in those particular groups is listed which could be also called the weight of that particular group. This weightage could be again multiplied with an expansion factor like the proportion that had been estimated in IPF.

For example, in an ILUTE synthesizer, classical IPF is used and a real-valued expansion factor is attached directly on the list of attributes for each of those demographic groups.

(Refer Slide Time: 16:24)

Synthetic reconstruction

IPF helps in estimating the joint distribution of the different variables, which are eventually used to build the weights or proportions or actual values of each cell of the cross-classification table. These values are adjusted to integers. This process is called integerization or integer conversion (explained in lecture 19) and this results in some problems because of rounding up.

At first, the weights or proportion or values for each of those cells i.e, for each of the demographic groups have to be determined which can be used to create a synthetic population of households or individuals also. For example, for household-level population reconstruction, households from the reference sample (i.e. disaggregate sample) should be chosen in proportion to the estimated probabilities given in the multi-way table obtained by IPF or other techniques. There are also other techniques for estimating this weight/proportion values and using this the probabilities can be estimated, and based on these probabilities, the samples can be selected from the disaggregate sample set.

Selection with replacement is more common than selection without replacement. i.e, from a sample list after selecting one sample, the next sample is selected with an assumption that in the next draw, there is an equal chance of choosing the previous sample again. But in many cases by using some measures it can be applied that in the next draws, a sample can have a lesser chance of getting selected form a particular group which could be done by attaching some extra weights to these particular probabilities.

All variables essential for building the models also have to be written i.e. in multiple crossclassification tables, single cross-classification tables can be combined where the probabilities can be estimated by doing joint probability estimations, or some of the variables in a table can be selected instead of all variables in the table.

So, the number of households of each type can be determined by the total number of households multiplied by the probability in the multiway table. Household selection from the sample is done by using Monte Carlo method using the conditional probabilities from the multiway tables and this process could be also done in a sequential manner. For example, if individuals are selected based on only age and sex. The conditional probability of a individual of particular sex given a particular age will be determined. If it is done for age, sex and marital status, the probability of marital status can be determined with the condition that age and sex group is of a certain type. So, using the sequential procedure, the probability of a particular group or probability of a particular sample to be determined.

One problem is that, calculating probabilities in sequence may result in varying results as per the sequence followed. For example, the result following the sequence, marital status, then age, and then sex differs from the result obtained if the sequence is sex followed by age and marital status. Usually, a sequence is followed based on the decision criteria in which that particular synthetic population is drawn for a particular model. For example, in the case of a household level mode choice model, probably at first the household head is required to determine followed by his employment status, location of office if employed, and finally, mode choice for a work trip. Hence, the sequence is determined based on the requirement. Agents with higher probabilities appear more in the synthesized population in Monte Carlo simulation.

NO	WEIGHT	Household size	Household type	Other attributes	1. The conditional probability of an event B given that an event A has already occurred. This is written P(B A) or
1	6	2	Family: married couple		probability of B given A.
2	9	3	Family: married couple		
3	18	4	Family: married couple		P(P(A) = P(A and B)
4	18	1	Nonfamily: female living alone		$P(B A) = \frac{P(A)}{P(A)}$
5	6	1	Nonfamily: male living alone		Where,
6	6	2	Family: married couple		P (A and B) or P (A \cap B) is the probability that both events
7	15	2	Family: female householder		2 Constation of the billion is determined
SERIAL N	0 1	Probability	Cumulative Probability		4. F.g., Bandom value = 0.705.
1	-	0.089	0.000		4. E.g., Random value = 0.705.
2		0.150	0.239		HH with S.NO = 5 is selected.
2		0.300	0.539		5. HH is added to the target area and
3	111	0.113	0.651		count tables are updated.
3		0.029	0.689		6 Individuals of selected households
2 3 4 5		0.058			o, individuals of selected flousefloids
2 3 4 5 6		0.089	0.778		form the synthetic nonulation

For example, in the sparse list structure table (above figure) there are different household types, family and a married couple with various household sizes (2, or 3), non-family with female living alone, and non-family with men living alone etc.

The weightage of 6 means that there are 6 numbers of this type of household. For example, the weightages of the family with married couple is 6. So, if a particular sample is drawn from this particular table, then automatically the weight will be reduced from 6 to 5 and in this way, it can be recorded that one sample has been drawn of this particular type. This could be also used in probability calculations later on.

The Conditional probability of each type of group is estimated. The Conditional probability of an event can be estimated by using the following formula. For example, the conditional probability of an event B given that an event A has already occurred can be estimated by using the following formula.

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

Where,

P (A and B) or P (A \cap B) is the probability that both events A and B occur.

For example, the conditional probability of sample with household size 2 given that they are married couple and family is 0.089. It can be said as the conditional probability of the married couple given that they are family with household size 2.

Alternatively, the weight can be used for calculation of the probabilities which can be used if there are only 2 variables. But if there were more than 2 variables and for each different weightages are there, then using weightages, the control totals of each of these groups, and the intersection of those 2 groups, conditional probabilities can be also determined.

After the determination of the conditional probabilities of each of the samples, the listing will be done. Then the cumulative probability (in the above figure) will be determined by adding them sequentially. For example, by adding the probability of first and second groups the second cumulative probability will be found (e.g. 0.089+0.150 = 0.239) with which the probability of the third group will be determined (e.g. 0.239+0.300 = 0.539).

Then a random number is drawn from 0 to 1. For example, if a random number of 0.705 is drawn it lies in the 5th group because the next group starts from 0.778 i.e. household number 5 is selected from the sample. This is the process of drawing a particular household from the sample and then this will be put it in their actual target area and will be continued till the total number of population for the targeted area is fulfilled, provided that the individual variables (i.e. individual characteristics of the household) match with their control totals in the target area.

If households are selected to form the synthetic population sometimes individual totals may not match i.e. as the household is selected, and based on each household the individuals are determined, the individual totals may not match with the areas control totals for individuals, but the household totals will match. However, there are other procedures where both of them could be also matched by using different weightages or using both of them together and then giving weightages to both. So this is the simplest way to determine a synthetic population for a particular zone.

(Refer Slide Time: 27:26)

Conditional Monte Carlo

- Household and individual level multiway tables are estimated independently.
- Individuals are assigned to households only in the allocation stage.
- Once households are selected each member can be drawn from the subset of eligible persons as per the individual's selection probability thus ensuring consistent HH and individual level marginal.

Probability of a particular household group is typically a function of:

- 1. Sample weight
- 2. Number of expected households in target area.
- 3. Number of other households in the sample of same group.
- Thus, probability gets modified after each sample selection.

Conditional Monte Carlo

The probability of a particular household group can be determined by using conditional probabilities or using a function which includes the sample rate or the number of expected households in the target area i.e. the number of households in that target area may play a role in the total number of sample drawn.

Similarly, the number of other households in the sample of the same group (i.e. the weightage of a particular sample of particular demographic type) or a particular group in a particular sample (i.e. the disaggregate sample) may play a role. So, by using these concepts, a function can be developed to determine the probability of a sample of getting selected which is used in more complex software or procedures.

After every selection, the probability will get modified for the next sample selection i.e. the probability need to be recomputed after every selection that will also change the cumulative probability, and then another sample will be drawn.

In conditional Monte Carlo, households and individual level multiway tables are estimated independently i.e. both the cross-classification tables for households and individuals are done separately and then individuals are assigned to households only in the allocation stage i.e. during the selection of the households for a particular target area, the types individuals selected is also analysed followed by matching the totals for both and then the particular household is selected in the allocation stage. Once households are selected, each member can be drawn from the subset of eligible persons as per the individual selection probability ensuring consistent household and individual level marginal.

(Refer Slide Time: 30:20) Validation

Validation

After completion of the IPF procedure, there is a need to validate the results. The validations could be done internally or externally. Internal validation means if the same variables are utilized i.e. the variables used for synthesizing the population are also used to measure the errors in the IPF procedure i.e. marginals and cells are compared. So, for the target population and final

results, all table cells are also used i.e. the goodness of fit test by using all the cells (estimated findings in each cell and actual figures) can be done.

In the case of simultaneous population synthesis, households, and individual cells, both could be used together to design an appropriate measure and new goodness of fit measure can be used where both things would be included.

Appropriate subcategorization is important to get the best possible synthetic population. External validation means the agreement between the synthetic population and the actual population from the survey. Hence, the actual population data must be available. Here again, marginal cells and tables are compared, but in case of the absence of actual population data to validate, validation procedure is limited to internal validation only.

(Refer Slide Time: 32:06)

Combinatorial optimization(CO)
CO is less common than IPFSR techniques.
This method was proposed by Williamson et al. (1998).
Synthetic microdata using the CO results in less variation among populations.
The population is synthesized zone-by-zone.
In initial draw, a subset of individuals is selected randomly with replacement from the sample (Matching population size in that zone)
The fit of this list of individuals is assessed using the observed and expected cell counts of different tabulations.
Next one household is randomly replaced with a fresh household from the sample data.
□ If fit statistics are improved, the households are swapped and the next iteration is undertaken.
This have been further improved by Voas and Williamson (2000a) using a 'sequential fitting procedure' where the most difficult table is fitted first within a target.

Combinatorial Optimization (CO)

The combinatorial optimization, proposed by Williamsons in 1998 is less common than the IPFSR technique. It has been found from many literatures that synthetic microdata using CO results in less variation among the population. So, this is a more robust procedure compared to the IPFSR technique, but it is more computationally intensive and the population has to be synthesized zone by zone i.e. it has to be done for each zone separately.

At first, a subset of Individuals is selected randomly with replacement from the sample i.e. a subset of individuals is selected randomly from the disaggregated sample. The total number of samples drawn must match the population size for the zone for which it has been selected.

Then, the fit of this list of individuals is assessed using the observed and expected cell counts of different tabulations i.e. the number of males, females, individuals in each age group, will be measured and compared with the marginals for that particular zone. This is done by estimating the fit statistics which shows how much different is the selected sample from that expected values.

Then one household from the selected sample is replaced randomly with a fresh household from the sample data and it will be continued till further replacement does not improve the fit statistics anymore. If the last replacement improves the fit statistics, it will be retained, otherwise, the new household will be returned and another household from the sample will be selected. So, if fits statistics are improved then, households are swapped and the next iteration is undertaken.

It has been further improved by Voas and Williamson using a sequential fitting procedure, where the most difficult table is fitted first within a target i.e. among several classification tables the most difficult ones are first fitted and then the easier ones are fitted.

(Refer Slide Time: 35:22)

Sun	vey micro	data			Known small are	a constraints				
lousehold	Cha	racteristics			1.House	ehold size		2. Ag	ge of occupants	5
	size	adults	child	ren	(persons pe	r household)		Type of persons	Frequency	
а		2	2	0	Household size	Frequency		adult		3
h		2	1	1		1	1	child		2
č		4	2	2		2	0			
d		1	1	0		3	0			
ŭ		-	-			4	1			
e		3	2	1		5+	0			
					Total		2			

Step 2: Households are selected (as per constraint i.e., 2 here) randomly from sample(a,e) as initial microdata set for small area

Step 3: Households are tabulated and (absolute) difference is calculated

In this example (in the above figure), in step 1, suppose A B, C, D, E are household samples with characteristics like household size, number of adults and number of children in that particular household . Sample number A is of size 2 with 2 adults and there are no children. The sample number B has a household size of 2 with 1 adult and 1 child. This is the survey micro data or disaggregate data.

Next, are the control totals for that particular target area. Targets are constraints which can be called the marginal targets constraints e.g. for household size 1 there is one household and for households size 4 there is also one household and the total target area has got only 2 households. Similarly, this target area has got 3 adults and 2 children.

There are no houses with household sizes 2, 3, and 5 plus. So, the total number of houses is 2 and the total population is 5. Then households are selected randomly from the sample as initial micro data set for the sample. So, as per the constraint, there are only 2 houses i.e. 2 households will be selected from sample data.

Two households have been selected randomly from the sample and suppose a and e is selected. Then these households are tabulated (step 3 in the above figure) and the absolute difference is calculated and this absolute difference is the fit statistics e.g. the estimated frequency for household size 2 and household size 3 will be one. However, the actual frequency for household size is 0 and for household size 1 and 4, is one. So, absolute differences is 4(1 + 1 + 1 + 1) i.e. there are 4 cases of mismatch.

While looking at individuals, the selection of a and e results in the estimated frequency of adults as 4 and the estimated frequency of child as one whereas the observed frequency is 3 and 2. So, here again, there is an absolute difference of 1 and 1. So, the total absolute difference is 2, and adding up this to absolute differences results in a total absolute difference of 6.

(Refer Slide Time: 38:56)

usehold Estin Frea	mated i uencv(i) 1	Observed frequencv(ii)	Absolute differe	ence	Age	Estimated Frequency(i)	Observed	A (II)	bsolute diffe	erence	
1	1		1	0	adult	requency(i)	3	3	/ (11)	0	
2	0		0	0	child		1	2		1	
3	1		0	1			Sub total:			1	
4	0		1	1							
5+	0		0	0		Total absolute					
	1	Sub total:		2		difference	(2+1)=3				
ep 5: Ste	ep <mark>4 is re</mark> p	Deated til	I no further	r redu	ction is	possible (d	and c: f	inal)			
ep 5: Ste	ep 4 is rep imated equency(i)	Observed frequency(ii	Absolute diff	r redu ^{fference}	ction is	Estimated Frequency	and c: f	inal) served quency(ii) Abso	lute difference	:(i)-(ii)
ep 5: Ste usehold Est e Fre 1	ep 4 is rep imated equency(i)	Observed frequency(ii	Absolute diff	r redu	Age 0 adult	Estimated Frequency	and c: f	inal) served quency(ii) Abso 3	lute difference	:(i)-(ii) 0
usehold Est e Fre 1 2	ep 4 is rep timated aquency(i)	Observed frequency(ii 1 0	Absolute diff (i)-(ii) 1 0	r redu	Age 0 adult 0 child	Estimated Frequency	and c: f	inal) served quency(ii) Abso 3 2	lute difference	:(i)-(ii) 0 0
ep 5: Ste usehold Est e Fre 1 2 3	p 4 is rep imated aquency(i)	Observed frequency(ii 1 0 0	Absolute diff (i)-(ii) 0 0	r redu	Age 0 adult 0 child 0	Estimated Frequency	and c: f	inal) served quency(ii	i) Abso 3 2	lute difference	•(i)-(ii) 0 0 0
ep 5: Ste usehold Est Fre 1 2 3 4	ep 4 is rep timated aquency(i)	Observed frequency(ii 1 0 0 1	Absolute diff (i)-(ii) 1 0 0 1	r redu	Age 0 adult 0 child 0	Estimated Frequency	and c: f	inal) served quency(ii) Abso 3 2	lute difference	:(i)-(ii) 0 0 0
usehold Est e I 2 3 4 5+	ep 4 is rep imated equency(i)	Observed frequency(ii 1 0 0 1 0	Absolute diff (i)-(ii) 1 0 0 1 0	r redu ^{fference}	Age 0 adult 0 child 0 0	Estimated Frequency	and c: f	served quency(ii ototal:) Abso 3 2	lute difference	:(i)-(ii) 0 0 0

In step 4, one of the pre-selected households is randomly selected and replaced with another randomly selected household from the sample only if the absolute difference is reduced. For example, a is replaced with d and now the total absolute difference comes down to 2 for the households, and for the population, the absolute difference comes down to 1. So, the total absolute difference is 3. It continues until there is no further reduction of this absolute difference. Hence, d and c are the final selections for this particular zone.

(Refer Slide Time: 39:46)

Relation Matrix

In the Albatross model (discussed in the previous lecture) a relationship matrix is created to estimate household composition that matches individual level constraint. This is a new method.

Unlike the IPF method, the relationship matrix is first completely determined e.g. suppose a contingency table of 2/2 columns is created, where these 2/2 columns include single and male, female households. In these contingency tables, the data related to couples, independent male, independent female, total male, total female are available. Now, another row can be added to this contingency table of 2 rows and 2 columns to add children for each of these categories by both the row and the column side, and then it can be further disaggregated this by age and work status of the head of the household. So, the size of the contingency table can be kept on increasing by desegregating data.

In this kind of a contingency table, both the population as well as the household type is combined i.e. in rows and columns different types of data for individuals as well as families are present. The sample data could be used as seed for these matrices. Then, IPF is undertaken on these relation matrices and the distributions obtained from this IPF are used as marginal for conducting IPF of household variables i.e. as the seed for households as well as individuals in those households are included when households are evaluated the control totals of individuals will also be evaluated automatically.

(Refer Slide Time: 42:16)

Iterative proportional updating (IPU)

Iterative proportional updating (IPU) is a variant of the iterative proportional fitting, which is used in the PopGen software, where the IPU algorithm simultaneously controls both agent at the

individual level and agent group at the household level by iteratively adjusting and relocating the weights.

The weights can be changed based on the selection of a particular household or a particular individual from that particular household. It can be done iteratively and the population group for the synthetic population for a particular zone can be determined. The data structure followed is a tabular list of agent groups similar to the sparse list variation of IPU. In short, there are agent groups (e.g. households), a tabular list, and individuals for each of these households. Weightage can be given based on both the values.

Markov chain Monte Carlo simulation

In this approach the focus is more on to meet the partial joint distribution of population characteristics rather than matching the marginal sums like in IPF i.e. how individual groups or individual demographic groups are distributed and the weightages of each individual demographic groups.

A simulation is done using those distributions and their dependencies which is not exactly a simple random Monte Carlo simulation. Here, joint distributions of population characteristics are considered and these are organized as Markov chains. In the Markov chain Monte Carlo sampling method, samples are drawn such that the next sample is dependent on the existing sample i.e. conditional probabilities are considered.

Hence, the selection of a particular sample and a particular attribute of a particular sample influences selection chances. So, it creates a selection chain and that is why it is called a Markov chain. There are two algorithms one is called a Gibbs sampling and Metropolis-Hastings algorithm, which are popular approaches to do Markov chain Monte Carlo sampling. This is another upcoming method that is also used in many new approaches to create synthetic population.

(Refer Slide Time: 45:24)

(Refer Slide Time: 45:29)

Conclusion

In India, as micro-sample data surveys are not conducted by the government, there is a need to collect extensive sample datasets for each study area, which is a major limitation in developing disaggregate models or conducting microsimulation studies.

Then, while several software has been developed for population synthesis, most are custom built for a specific purpose and geographical context and none exists for India. So, there is a need to develop this kind of software in the Indian context so that micro simulation procedures, detail land-use transportation models or any disaggregate models can be performed. Then, IPF could be used for developing cross-classification tables for agents and agent groups for an urban area which could be used to develop discrete choice models.

Based on the prediction model requirement other variables can also be added into the IPF procedure to have more categories or more cross classifications.

IPFSR and CO techniques are popular and easy methods of population synthesis which could be easily adapted.

Thank you.