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  Welcome back to my course on Mine Automation and Data Analytics.  Today, we will discuss 
regression in this lesson. In the last lecture, you saw that we are dealing with regression and 
classification in machine learning, mainly supervised learning.  Regression is one of the most 
used models we use daily in the machine learning community, as well as in statistical methods.  
So, in this lesson, we will focus on a few types of regressions. Next, we will proceed with 
different types of regression. 

 

  So, in today's lesson, we will discuss linear regression, then the assumption in linear 
regression, and we will also introduce multilinear regression and the associated regularization 
to deal with overfitting, that is, ridge regression and lasso regression.  We will discuss both 
these regularization methods.  So, let's start with the simple or linear regression models. As we 
have already seen, the most famous example is y, which equals mx plus b. 

 

 In this, y = mx + b, y is the dependent variable, x is the independent variable, and m is the 
slope of the line representing the relationship between x and y.  And b is the intercept on the y-
axis.  So here we are predicting something from the input value x. We predict the dependent 
variable based on a specific set of x data.  So, this is one of the simplest forms of the linear 
regression model. 



 

  And popularly, if you see it in the market survey, rock mechanics, and finance, these have a 
perfect application of these regression methods.  So today, we will limit our discussion to linear 
and multiple linear regression.  So, in simple linear regression, only one independent variable 
exists.  In multiple linear regression, we have multiple independent variables. So, in our linear, 
only y = mx + c,  where x is the single independent variable. 

 

 Whereas for the multiple linear regression, there would be x1, x2, x3, x4.  Up to the number 
that is prevalent in that particular case.  So, let's start with the assumption of linear regression 
because whenever we deal with some model, that model has some assumption. These 
assumptions are fundamental to follow, and we have to satisfy these assumptions during the 
construction of the model. So, the first assumption is linearity. 

 

  This says that the dependent variable and independent variable are linear, we are assuming.  
If it is not linear, we cannot apply this simple linear regression method to that data set. So this 
is the assumption number one.  The second assumption is independence.  The observations are 
independent of each other. 

 

This means one observation does not affect the other observation.  And subsequently, so forth.  
So, we have to ensure that.  Third is the homoscedasticity (i.e., variance is uniform) ; the 
residual variance is constant across all levels of the independent variable. Another way of 
saying this is that the variance of the data points is roughly the same for all data points. Another 
consideration that we have to follow is normality. 

 



  The residuals are normally distributed.  In this regard, residuals are normally distributed.  And 
we have to ensure no multi-collinearity. That is, independent variables are not too highly 
correlated with each other. We have to ensure that x data or different data are not within 
themselves or are not highly correlated. 

 

 We have to ensure that these five assumptions exist, and we have to satisfy them. Based on 
that, we can apply them. We may need some help, particularly in predicting y in the data set of 
x like that.  So, the process of linear regression.  First is the data collection. This involves the 
data concerning the variable of interest we are measuring or are interested in dealing with. 

 

  Then, based on that data collection, if it is mining, we have to understand that these data have 
a good amount of noise and some missing data. And then, we have to level it; we have to encode 
it to certain variables so data pre-processing is required on the data set.  So, we have to deal 
with data cleaning, handling the missing values, and all these things at the first stage.  The 
second is the model building.  Based on this data, we have to build a linear model. 

 

  Okay. We also have to fit the linear regression model.  Then the third is the model evaluation. 
We have to check because, in the first model, we have seen data, then ML, then prediction, and 
here we have evaluation.  So, we have to evaluate the model.  So, based on the prediction from 
the input data, we have to check with the corresponding output data. 

 

  Then, we have to calculate the MAE, MSE or MSE, which are all the things that will be used 
to evaluate the model performance.  Based on this model performance, the values of M and C 
are to be scaled to fit the data. Okay. We must also fine-tune this value  M and C for linear 
model Y, which equals MX plus C. So once M and C are evaluated correctly and based on this 



model evaluation, we can fit that data, we can fit that model in new data, and we can build the 
model Y, equal to MX plus C. 

 

 

 M dash and C dash are the new values we get from the data.  So this indicates finally the 
relationship.  So here, Y is the dependent variable, and X is the independent variable, and we 
should have a good amount of data, so Xi starts from 1 and goes to N, which is the N number 
of the data set we have. Here, we are using the same statistical method we have already dealt 
with in this model to get a better Y equal to the MX plus  C model, or here, M and B are the 
constants that we have to predict.  So, instead of C, it is B, and B is the interceptor. 

 

 Now, the  MSE, mean squared error, because this is one of the criteria for evaluating the model.  
So, in MSE, the mean squared error is the squared difference of the level output versus the 
predicted output. So, Yi minus Y cap is the expected value.  So the squared difference is the  Y 
equals one by N divided by N, which is the MSE, mean squared error.  So, we calculate this 
mean squared error to see this model's performance, which is one of the criteria for evaluating 
the model. 

 

  So, from this MSE, we can also go to the following model criteria for calculating the root 
mean squared error. This is the root over of this particular data.  So here we are, concentrating 
on getting a lesser or minimum  MSE, okay? We are achieving, we are targeting.  So to achieve 
that, we need to fine-tune the M and B  okay. 

 

 We must follow the least square estimate of M and B to fine-tune the M and B. So, M is to be 
calculated like this: the summation of i equals 1 to N over Xi minus X bar into Yi minus Y bar 
divided by  Xi minus X bar. The whole square from i is equal to 1 to  N. And B is equal to the 
Y bar minus the M X bar.  Okay. So, the X bar is the mean of the independent variable, the Y 
bar is the mean of the dependent variable. B is the interceptor we are determining. 

 

  So from this data, you can see that this particular model is Y is equal to 1, 2, 3, 4, 5, Y X is 
equal to 1, 2, 3, 4, 5, and Y is equal to 2,  3, 4, 5, 6. So, this indicates that Y is equal to  X plus 



1. So, M is equal to 1, and C is equal to 1.  M is equal to 1, which means the gradient is 1.  So, 
the gradient is 45 degrees. 

 

  It intercepts at one on the Y-axis. So this is a data.  Blue dots are the data; we predict the line 
fitting and match the data with the predicted or dependent variable.  Now, there are three kinds 
of evaluation matrix to evaluate the model.  One that we have already shown you is mean 
squared error, which measures the average of the square of the errors that are residuals, and the 
square root of the MSE is the root mean squared error. 

 

  Another matrix is the mean absolute error.  The average of the absolute error is the mean 
absolute error.  So, these values are crucial for assessing the quality of the model—the quality 
of the model, its interpretability, and its predictability on the input data.  So, the evaluation 
metric MAE is nothing but summing over Yi minus  Yi of mod from i equals 1 to n, summing 
over divided by n. 

 

  So, the Yi cap represents the predicted value of the target variable for the ith data set. Yi is the 
actual value of the target value variable of the ith data set.  So, this MAE gives an equal 
weightage to all errors regardless of the magnitude.  It provides a more straightforward 
interpretation since it is the same unit as the target variable because Y is the target variable, 
which is also the difference; the absolute difference between these two is that we are calculating 
that it is the same unit as the target variable.  MSE, here we are heavily penalizing the errors. 

 

  Because of the error difference, this is the actual value, this is the predicted value, the 
difference, and then it is squared. We are penalizing the errors heavily because of the squaring 
of operation.  So, the lower the MSE value, the better the model performance. That is what we 
expect, and we rely on this particular matrix. 

 

  RMSE, root mean squared error. So here again, when it is squared, it is root over, so the RMSE 
and the predicted variable of the same unit are okay.  It is one advantage in terms of 
interpretability and is the most commonly used metric. The goal is to understand the magnitude 
of the error on the same scale as the target variable.  So, in summary, in the evaluation matrix, 
MSE is the average of the squared error, penalizing more significantly for the mistakes or 
penalizing heavily for the errors.  The mean absolute error provides a more interpretable 
measure, and RMSE  is the square root of the MSE, providing interpretable measures in the 
same scale as the target variable.  So, we have to choose which matrix we will use for assessing 
the performance of the model based on the performance; based on the data, we calculate and 
see the pattern of the errors and the residuals. 



 

  Now,  relying on this foundation, we want to jump to the next stage. That is an extension of 
the linear regression, which is the polynomial regression, extending linear regression to 
accommodate the polynomial relationship.  Then another is ridge regression, and  LASO 
regression is a technique for regularization to prevent overfitting. Overfitting is a problem in 
linear regression or regression. Logistic regression is used for the binary classification problem 
and generalized linear model GLM extension of linear regression to accommodate non-
normally distributed dependent variables. 

 

  So, this linear regression is a widely used method in economics, finance, biology, social 
science, and engineering for modeling and predicting tasks.  So, we will also examine some of 
the applications of this linear regression model.  Multiple linear regression. So, multiple linear 
regression extends the simple linear regression model.  So here, instead of only a single 
independent variable X, we have several independent variables k and X 1, 2, 3, 4, 5 up to k X 
k. 

 

 So, the expression remains the same. Y is equal to, or Y cap is equal to, b0 plus b1 X1 b2 X2  
up to bk Xk. So, Y cap is the dependent variable's predicted value, b0 is the Y-intercept, and b1 
to bk is the coefficient associated with the independent variable. X1  X2 up to Xk is the 
independent variable.  So here, also in the multiple linear regression, we have to follow the 
same pattern. 

 

 First is the data collection.  So, we have to gather the data on the dependent and independent 
variables.  We have to collect these data sets.  Then, for data processing, we have to clean the 
data, handle the missing value, and encode the categorical value if necessary. The model is 
fitting.  We have to select the appropriate independent variable for the model. 

 

  Or fit the model to the training data using ordinary least square methods or gradient descent. 
Then, we have to evaluate the model.  We have already discussed some of the metrics MSE 
and RMSE. Based on that, we have to assess the significance of this coefficient and its impact 
on the interpretability of the variable to the independent variable. Based on that, we have to 
finally predict and build a model that will predict in a new data set. 

 

  The multilinear regression assumes that the relationship between the independent and the 
dependent variable is linear.  Independence and the observations are independent of each other. 
One observation does not affect the different observations. The homoscedasticity, the variance 
of the residuals, is constant across all levels of the independent variable. 

 



  Normality: the residuals are normally distributed.  There is no multicollinearity; the 
independent variables are not too highly correlated. So, these are the five assumptions we have 
also seen in the simple linear regression method.  So, multiple linear regression aims to find 
the value of b0, b1, and b2 up to bk, which minimizes the difference between the predicted 
value y cap and the actual value y  from the data set. So, this b is calculated in a matrix format.  
x transpose x  of inverse multiple by x transpose into y. 

 

 So y is the vector of the dependent variable, x is the matrix of the independent variable, and b 
is the vector of coefficients. Okay. So, one of the popular packages is Scikit-Learn in Python, 
and the R and R statistical tools can also be used to calculate these b0, b1, b2, and bk for a 
multilinear regression model.  This can be efficiently done using the Python package and 
Scikit-Learn. Now, one of the problems we have, assuming you have seen no multicollinearity, 
is that independent variables are not too highly correlated. 

 

 But if it is so, if the multicollinearity assumption is violated, there is a high correlation between 
the independent variables, which can lead to an unstable coefficient that will not predict in a 
new data set efficiently. So, the regularization technique is one of the most popular methods 
for dealing with this situation.  So, we will discuss two methods today. One is the ridge 
regression, and the other is the Lasso regression, which mitigates the effect of the 
multicollinearity between the independent variables and the regularization of the dependent 
variables. So, it is a very efficient method with a high-efficiency level in the regression model 
and machine learning algorithms. 

 

  So, let us discuss the ridge regression.  So, this ridge regression, also known as  Tikhonov 
regularization, is a linear regression technique that extends to an ordinary least square 



regression by adding a regularization term.  So this is the regularization term lambda, 
summation of j equals 1 to p, bj squared.  So bj squared, summing over j equals 1 to p  into 
lambda. 

 

 So, p is the number of predictors.  Okay. And it is similar to y i  minus v t x i whole squared. 
So these Jacobian, we want to minimize jb.  So, jb is the objective function to be minimized, 
and b is the regression coefficient vector. Xi is the vector of the predictor variable of the ith 
observation, and xi, yi is the observed value. p is the number of predictors, and lambda is the 
regularization parameter, also known as tuning or shrinkage parameters. 

 

 

Okay.  So, we are including a penalty term here in the expression that we are minimizing this 
so that the effect of the multiple linearity between the independent variable impact on the 
prediction and predicted variable is reduced.  So this term, lambda bj squared, summing over j 
is equal to 1 to p, is the regulation term, and these regulation parameters lambda controls the 
strength of the regulation. If the lambda is 0, it is the same as the ordinary least-squared method. 
So, as the lambda increases, the impact of the regulation term becomes more significant.  The 
reach regression solution can be obtained by minimizing the objective function, Jacobian jb, 
using techniques like gradient descent or linear algebra. 

 

  So, this regulation term tends to shrink the coefficient to 0, which can help prevent overfitting 
by penalizing the significant coefficients. Okay. So this can be done in the Python package and 
in glm net in the R package.  So, the advantage of ridge regression is that it mitigates the 
overfitting phenomena. It improves the stability of the model, and it works well with high-
dimensional data. 

 

 So, this ridge regression is a valuable tool in machine learning for improving linear regression 
models' stability and generalization performance, especially when multicollinearity is present. 
So, by adding a penalty term to the cost function, reach regression effectively balances the 
trade-off between the bias and variance, leading to more robust and interpretable models.  So, 
let us examine another regulation method, LASSO regression.  So, this LASSO regression, 
which stands for least absolute shrinkage and selection operator, is another regulation technique 
used in linear regression. So, similar to the ridge regression we already discussed, LASSO 
regression also helps mitigate the problem of multicollinearity and prevent overfitting. 

 

  However, LASSO regression introduces a different type of penalty that can lead to sparsity in 
the resulting model. So, multicollinearity occurs when independent variables in a regression 
model are highly correlated. This can lead to instability in the estimate, which decreases the 



model's interpretability.  This problem can be solved using LASSO and ridge regression.  So, 
the LASSO regression addresses the multicollinearity issue by adding a penalty term to the 
cost function of the linear regression model. 

 

 So, the penalty term in LASSO regression is the L1 norm of the coefficient vector. So the cost 
function of w equals yi minus yi cap whole square summing over i equals 1 to n plus wj mod 
summing over j equals 1 to p multiplied by α. So, α is the regulation parameter here. It is a 
LASSO parameter or penalty parameter which controls the strength of the regulation.  So, the 
more extensive the value α, the more significant the shrinkage of the coefficient towards 0. 

 

  And yi is the dependent variable. This is the predicted dependent variable based on the set of 
data we are using.  So, the sparsity in  LASSO regression, unlike ridge regression with a shrink 
coefficient towards 0, LASSO regression has the property of producing a sparse model. LASSO 
can select a subset of the most crucial feature by driving some coefficient to precisely 0. So, in 
other words, the LASSO  can perform feature selection as a part of the model fitting process. 
The advantages of LASSO regression: One of the significant advantages is feature selection, 
which is the most critical feature, and the rest of the features' coefficients are equal to 0. 

 

  It handles high-dimensional data and improves the model's interpretability. So, this is one of 
the most essential advantages of the LASSO regression. So, by introducing a penalty based on 
the L1 norm, the coefficient of the LASSO regression encourages sparsity in the resulting 
model, leading to more straightforward and more efficient models that are easier to interpret. 
Ultimately, we are building a model for better interpretability. 

 

  These are the references. So, we have covered in this lecture linear regression,  then multiple 
regression, their assumptions, and how to deal with the multicollinearity within the dependent 
variables by introducing the regularization that is RIDGE regression and the LASSO 
regression.  Thank you. 


