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Hello, welcome to today's lecture. Today we'll do a recap of what we have already 

learned from the various lectures we've discussed. So, what we had learned, giving a brief 

overview of ultrasound, we had learned the piezoelectric effect, where these piezoelectric 

elements or materials can send or receive sound waves. We've also looked into different 

frequencies of biomedical ultrasound. In the imaging range, we look at one to 20 

megahertz or two to 15 megahertz. And here I show some common piezoelectric 

materials. 

Those that are used commercially today are PZT, which stands for lead zirconate titanate, 

quartz, and polymer films such as PVDF are being used for transducers.  

 

We've also talked about ultrasound pulse, and how an ultrasound wave is created. In 

particular, longitudinal waves have regions of compression and rarefaction. Compression 

where the density of the particles, when the particles are much closer to each other, and 

rarefaction, where the particles are further apart. 



And in a longitudinal wave, the particles are moving in the direction of the actual wave. 

So, we'd also talked about what the pressure wave would look like if plotted in this form 

as a function of time. So typically, ultrasound waves are a sum of sinusoids, and typically 

they have this cyclic pattern. So, when we talk about one ultrasound cycle, it has this 

form. The positive pressure amplitude will correspond to the compressional part of the 

wave, and the negative pressure amplitude corresponds to the rarefaction part of the 

wave. 

 

We've also looked at various pulse parameters such as the period, the frequency of the 

sound, the wavelength of sound, which is a function of the longitudinal sound speed, and 

the frequency of the sound. We also talked about the duration of the pulse, pulse duration, 

as well as its spatial component, the spatial pulse length. We talked about the pulse 

repetition period. The pulse repetition period basically says how often a particular 

ultrasound pulse is being sent over time. And the inverse of that, which is the pulse 

repetition frequency. 

Also, we talked about the duty cycle, which is a function of the on time divided by the on 

and off time of the pulse. So, this is basically the pulse duration divided by the pulse 

repetition period.  

 



Now, let's look at some example problems that delves with using these parameters. So 

here I have three problems. The first problem is to compute the wavelength of a  

2-Megahertz ultrasound field in a soft biological tissue. 

And in soft biological tissues, we assume that the speed of sound is 1540 meters per 

second. In the second problem, we ask what the spatial pulse length is of this  

2-Megahertz ultrasound pulse with three cycles. So, you can use the same information 

from the previous problem as well. And in the third problem, suppose that the pulse 

repetition period (PRP) was 10 milliseconds. Now what is the duty factor of this pulsing 

scheme? So here you can pause this video to attempt the problems. 

Now let's discuss the answers to these problems. For the first problem, we would like you 

to compute the wavelength for a 2 MHz ultrasound field in soft biological tissue. Here, 

we assume that the sound speed is 1540 meters per second. So, if you remember the 

equation of the wavelength, which equals the speed of sound here, divided by the 

frequency of the sound, which is 2 MHz here. So, the unit of Hertz is one by second. 

So, we compute this equation and we get 0.00077 meters. So now when we think of 

ultrasound frequencies, we usually think in the order of millimeters. So, we can convert 

this meter quantity into millimeters. And our final answer is 0.77 millimeters. For the 

second problem, in terms of what is the spatial pulse length of this 2 MHz ultrasound 

pulse with 3 cycles. So we know what the wavelength is from the previous problem. And 

now this wavelength corresponds to the length of the wave in one cycle. Now, if we look 

into 3 cycles, then we simply get the spatial pulse length, or the SPL, by just multiplying 

the wavelength by the factor of 3. 

So, we get 3 times 0.77 millimeters. Now our spatial pulse length will be 2.31 

millimeters. For the third problem, suppose that the pulse repetition period was 10 

milliseconds. 

We want to find out what the duty factor is. We first calculate what the pulse duration is. 

And we know that we have the spatial pulse length from the previous problem. We divide 

the spatial pulse length by the speed of sound, c, and we get this expression here, where 

the pulse duration is now computed as 1.5 microseconds. So typically, ultrasound 

imaging pulses are in the order of these 2 microseconds. So, this answer makes sense. 

Now, we would like to calculate the duty factor in terms of percentage. So, we also know 

that the pulse duration is 1.5 microseconds divided by the pulse repetition frequency. 

In the problem, we had expressed it as 10 milliseconds, but now we want to make sure 

that the microsecond units are both similar in the numerator and the denominator of this 

expression. And that way we can also cancel out the units since duty factor is in the form 

of percentage. So, we convert 10 milliseconds to 10,000 microseconds, or 1.5 



microseconds divided by 10,000 microseconds. And since we're going to express the duty 

factor in terms of percentage, we would multiply that value by 100. 

So here the answer is 0.015%. So hopefully you got these answers based on what we 

have learned on this course.  

 

We have also looked into measurement methods of the pressure amplitude and we had 

discussed an experimental setup where we have a hydrophone and a transducer 

submerged in a water tank as shown here. Here, just a reminder that the transducer is 

being excited by a single generator and then a power amplifier. 

And the ultrasound signal is being sent through this transducer and the hydrophone 

listens. Now remember that a hydrophone is like a microphone underwater. It just listens 

to the ultrasound pulse. Now this hydrophone is also connected to a translation device 

that allows the hydrophone to map the beam in 3 dimension. It also is connected to a 

preamplifier and an oscilloscope right here. 

So, the figure on the bottom left just showing an example of a PVDF transducer right 

here. It's called a needle hydrophone and a couple of ultrasound transducers ranging from 

1 to 20 MHz. What you would get from a hydrophone signal, something looks like this. 

So you can map the  measured voltage, which you can convert to pressure based on the 

hydrophone sensitivity. And you can map it as a function of the on-axis distance or the 

axial distance from the transducer. 

 



And you can see here that as you keep moving farther and farther away from the 

transducer face, the hydrophone will detect a peak at the focus right here, located at 80 

millimeters axial distance. Now what is the recommended hydrophone size? We had 

discussed this earlier that the IEC has a specific standard for what a maximum effective 

hydrophone radius would be to try to avoid spatial averaging or disturbance of the 

ultrasound wave field as the hydrophone is scanning the beam. So, here's the equation 

that is given to us where the radius is bmax. So, what this represents is that the maximum 

hydrophone size should be this. And you should select the hydrophone that is much, 

much less than this radius. 
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So, it's a function of the wavelength in the water. It's a function of the axial distance 

between the transducer and the hydrophone, as well as the transducer radius. Now let's 

look at the answer to this problem. So first we would calculate what the wavelength of 

sound is. So, the wavelength equation would be the speed of sound divided by the 

frequency of the sound. 

So here we have that the speed of sound in water is 1480 meters per second, and we have 

a 2 MHz transducer. So that would be denoted by 2 times 10 to the sixth per second, 

where again, Hz is one by a second. We plug this into our equation, and we get 0.00074 

meters. Now again, when we talk in terms of ultrasound and MHz frequencies, that 

corresponds to wavelengths on the order of millimeters. 

So, our wavelength would be 0.74 millimeters right here. Next, we would plug these 

values into the equation. So, this was the equation given to us for the maximum 

hydrophone radius. We plug in our value for the wavelength here. We also know what 

the focal distance is, which is "l" here, and that is 40 millimeters. 

So, we plug that into this equation. We also know the radius or actually the diameter of 

the transducer. So, then we would want the "a". So basically, we would divide the 

diameter by 2 because the diameter is twice the radius of the transducer. And so here, 16 

by 2 would be 8 millimeters. Now we plug all these values into the equation. 

Using your numerical tool, you would be getting a radius of 0.47 millimeters right here.  



 

So, what this means is that this is the maximum radius of the hydrophone that you can 

use to avoid spatial averaging or even disturbing the ultrasound field. This means that 

you would be able to, you would need to use a hydrophone that is below this value right 

here. 

So typically, a hydrophone that's 0.2 millimeters, 0.1 millimeters that you can use for 

characterizing the beam of this 2 MHz transducer. We also discussed a couple of 

intensity metrics. So, for instance, when you measure the ultrasound pressure field from a 

hydrophone, the output signal can look something like this. It can be an asymmetric 

sinusoidal wave like this. 

So, to calculate the intensity, you will need to perform this integral using this equation 

and to get the intensity that looks like this in terms of watts per centimeter squared. Now 

there are several intensity metrics that we had discussed. The first being temporal peak 

intensity or ITP right here. And that is the peak intensity of this intensity waveform. We 

also have the pulse average intensity, which is the IPA here. 

 

And that is the intensity of the waveform that is averaged during the pulse duration of the 

signal. We also looked into the temporal average intensity, or ITA, and that is the intensity 

of the waveform that is averaged during the pulse repetition period. So, the "on" is 

divided by the "on" and "off" time of the waveform. And we also noted that the temporal 

average intensity, ITA, equals the pulse average intensity times this duty factor. In terms 



of the spatial intensity metrics, we had discussed the spatial peak intensity ISP here and 

the spatial average intensity ISA right here. 

 

Now this is a profile of the beam, a sample profile of the intensity. across the beam in the 

cross section of the beam. And we also talked about the beam uniformity factor. This 

basically tells how uniform the beam is. And that's a function of the ISP or the spatial peak 

intensity divided by the spatial average intensity. 

 

Now putting all these intensity metrics together, we know that a waveform has a temporal 

and spatial component to them. So we put together these six intensity metrics, spatial 

peak temporal peak intensity, ISPTP, spatial average temporal peak intensity, ISATP, spatial 

peak pulse average intensity, ISPPA, spatial average pulse average intensity, ISAPA, And the 

final two, which are more widely used in ultrasound, is the spatial peak temporal average 

intensity, ISPTA, and the spatial average temporal average intensity, or the ISATA. So, as we 

move up here, we know that spatial peak temporal peak would be the highest value, 

wherein the spatial average temporal average intensity would be the lowest value. Now 

let's look at some example problems. So, for the first problem, suppose the ISPPA or the 

Spatial Peak Pulse Average Intensity of a 2 MHz ultrasound beam was 100 watts per 

centimeter squared and the beam uniformity factor was 10. 

The pulsing scheme occurred with a duty factor of 1%. Now we want to find what is the 

ISATA or the Spatial Average-Temporal Average Intensity. For the second problem, 

suppose an ultrasound beam has a cross-sectional profile resembling a half-cycle 



sinusoid. Now what is the beam uniformity factor? So please take a moment to pause 

your video while attempting this problem. 

Now let's look at the answers to each problem. So, what we do for the first problem is 

that we want to calculate ISPPA. So, what you can do is you can either assess the problem 

in terms of the temporal part, PA and TA, or if you want to also look into the SP and SA. 

So, it doesn't matter which direction you go, either temporal or spatial, you will get the 

same answer. So, in this solution, first we would like to focus on the temporal intensity 

metrics. So, we know that temporal average, the temporal average intensity equals the 

pulse average intensity times the duty factor. 

So, what we're given is the ISPPA times the duty factor and we can get the ISPTA. So that 

equals 100 watts per centimeter squared and you multiply that by duty factor we're given 

that is one percent so and it would be 0.01, and so you would get the ISPTA as one watt per 

centimeter squared. Next, to get the ISATA, we deal with the spatial intensity metric. So, 

we know that ISA equals ISP divided by the beam uniformity factor here. 

So, what you would do is you would get the ISPTA, divide that by the beam uniformity 

factor. So, 1 watt per centimeter squared divided by 10. and that would equal 0.1 watt per 

centimeter squared. So, this is your ISATA, or your spatial average temporal average 

intensity. 

 

For the second problem, we have, suppose an ultrasound beam has a cross-sectional 

profile resembling a half-cycle sinusoid. So here on the left, we have an intensity profile 

as a function of space, the distance across the beam here. We can see that it's a half-cycle 

sinusoid here with a peak of spatial peak intensity right here. We want to know what the 

beam uniformity factor is. So, we know the relationship of the beam uniformity factor 

and the spatial peak and the spatial average intensity. 

We also know that if you integrate across the half cycle of a sinusoid, it would be 0.637 

of the peak intensity right here. So, what we would do here is substitute the spatial 

average intensity with this 0.637 spatial peak intensity right here. So the nice thing about 

this equation is that you won't need to know the exact factor, the exact value of the ISP, 

because ISP will cancel out in the numerator and the denominator. 

So, what's left is 1 by 0.637. And when you would compute that, you would get a beam 

uniformity factor of 1.57. So, this is your answer.  



 

Now let's talk about decibel notation. Decibel notation is a standard notation that is used 

for comparing two signals either in pressure, amplitude, or intensity. Decibel notation is 

frequently used to describe changes in attenuation, signal amplification, signal 

compression to vary the dynamic range in an ultrasound image. You might have recalled 

from a previous lecture when we talked about attenuation. We expressed attenuation in 

terms of nepers per centimeter and then we also converted it to decibel per centimeters. 

Now what is this decibel notation? So, decibel by definition is 10 log10. So here I show 

the intensity, differences in intensity equals 10 log10 by I2 by I1. 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =  ∆𝐼𝑑𝐵 = 10 log10 (
𝐼2

𝐼1
) 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =  ∆𝑃𝑑𝐵 = 20 log10 (
𝑃2

𝑃1
) 

So, these are the two signals with different intensities. Since intensity and pressure are 

related by P squared, then the pressure equation for decibel notation turns into the change 

in pressure in dB equals 20 log10 of P2 by P1. Here, I show a table of the decibel notations 

that are frequently used in ultrasound. So, if the amplitudes and the intensities are the 

same, then the decibel is zero. If the intensity is doubled, you get a decibel of 3, an 

increase in the intensity of 3 dB right here. Now, in terms of amplitude, if the amplitude 

ratio, the amplitude is doubled, then the dB notation for that is of an increase in 6 dB. 

And similarly, if there is an attenuation in the signal, for instance, if you get half of the 

amplitude, the signal is attenuated by half, then the dB notation would be negative 6 dB. 

When we talk about dynamic range in an ultrasound image, we usually express it as 60 

decibels of dynamic range. And what that means is the amplitude of the highest signal 

that is being displayed in the image and the amplitude of the lowest signal that is being 

displayed is different by a factor of 1,000. In terms of intensity, that difference is of a 

factor of 1 million. Now, this is because of that squared relationship of p squared is 

proportional to the intensity. 

We've also talked about reflections at interfaces, and we had an example of calculating 

the reflection coefficients and the transmission coefficients of interfaces in this scenario. 

So, what we have here, you would recall that we have a transducer that is sending an 

ultrasound signal through fat and then muscle and then air. And some of the signal is 

propagating through these interfaces and because of differences in the acoustic 



impedances, between these tissues, then some of it will get reflected back. We also have 

here a scenario where the distance from the transducer to the muscle fat interface would 

be 5 millimeters. Let's say that the distance from the transducer to the muscle air interface 

is 15 millimeters. 

 

Now we want to find when will a 2 microsecond ultrasound echo arrive at the transducer 

from the fat muscle interface or the muscle air interface. So here we introduce pulse echo 

ultrasound, this term. So, what we're actually doing, we're pulsing an incident pulse 

through, and we're receiving the reflected echo back. Now here, what's important to 

know, okay, when does the signal echo actually arrive back to the transducer? Now, we 

introduce this range equation, which is the arrival time here, t, equals 2 times the distance 

from the transducer to the interface, divided by the longitudinal sound speed inside that 

particular tissue. 

So this factor of 2 here that is presented, it's because of pulse-echo. Previously, in a 

previous lecture, we had talked about space and time relationship of a signal that's 

propagating through. But here, since that ultrasound signal is being sent and received 

back, that signal has to travel twice the distance, and hence this factor of 2 right here. So, 

what you would get if you had detected the signals from the interfaces, and you can get it 

from a oscilloscope and plot it as a function of time, you would get a signal that looks 

something like this, where you have high amplitude signals at the interfaces of fat-

muscle, and another one between muscle and air. Now because the, as you would have 

remembered in the previous lecture, that we had calculated the reflection coefficient of 

muscle and air.  If you compare that to the reflection coefficient of fat and muscle, the 

one with muscle and air is very, very high, almost 0.98. And because of that, you would 

receive a signal echo that is much, much higher than that of the fat-muscle interface. Now 

what you will do here is we'll answer the question using this range equation of when will 

this echo from the fat-muscle interface and when will this echo from the muscle interface 

arrive. From here you can take a minute to pause the video to attempt these problems.  

We also talked about scattering. We know that scattering has a dependence on the object 

size relative to the ultrasound wavelength. We also discussed that the "ka", depending on 

its quantity, it will also depend on the type of scattering, wherein for specular scattering, 

we have "ka" being much, much greater than 1, and we use this as reflections from 

smooth planar interfaces.  



𝑘𝑎 =
2𝜋𝑎
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For Rayleigh scattering from really, really small scatterers relative to the ultrasound 

wavelength, "ka" is much, much less than 1. And in the intermediate regime, diffractive 

Mie scattering, where "ka" is on the order of 1, means that the size of the object is on the 

order of the wavelength. Now let's look at an example problem for this case. So here we 

are measuring scatter from an oil droplet of radius 2 micrometers. At 1 MHz frequency, 

the backscatter is I units. At 2 MHz frequency, what will be the backscattered intensity? 

Would it be 2 by I, 4 I, 16 I, or 64 I? You can pause the video to attempt this problem. 

Now let's look at the answer. 

Let's look at the answer now. So, the correct answer is 16 I. And why is it 16 I? So, what 

we had noticed is that the frequency has doubled from 1 to 2 MHz. And what we know is 

that the intensity will also increase a factor of frequency to the 4th power. So then, if we 

double the frequency, then that means the intensity to the 4th power will be 16. 

So, it'll be increased by a factor of 16. And this is the answer. In summary, we have 

discussed ultrasound pulse and intensity metrics. We have discussed the concept of 

acoustic impedance, reflection, transmission, as well as scattering. And these give the 

foundation for understanding ultrasound imaging, which we will discuss in the next 

lecture. Thank you. 


