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Scattering and acoustic wave equation 

Hello, I am Professor Karla Mercado Shekhar and in today's lecture, we will discuss 

about scattering Now what is scattering? Scattering is any redirection or disturbance of 

the incident wave that is propagating in a medium We talked about reflection last time 

and reflection is actually a special case of scattering. Scattering is useful in ultrasound 

images because it allows us to visualize objects that are in the image  

Here is, an equation of an incident wave in a homogeneous medium which satisfied the 

wave equation.  

∇2𝑝𝑖𝑛𝑐(𝑟, 𝑡) −
1

𝑐2

𝑑2𝑝𝑖𝑛𝑐(𝑟, 𝑡)

𝑑𝑡2
= 0 

This you would have seen in a previous lecture And, the total acoustic field that is being 

generated in this medium, is the summation of the incident wave here that is propagating 

towards an object, and as well as the scattered wave that is being sent back towards the 

transducer as well as scattered into different directions, depending upon the scattering 

regime.  

 

We also have to consider the interactions of those scattered waves that are being 

emanated from these different objects inside the tissue. So scattered waves from these 

tissue structures either combine coherently or incoherently You might have remembered 



from your previous physics class, about light and optics, where there's two two types of 

scattering: coherent and incoherent scattering.  

In coherent scattering, the particles are very close to each other relative to the wavelength 

scale. So in this case, if the scattered waves are in phase they will constructively interfere 

with one another and if the scattered waves are out of phase they will destructively 

interfere. In terms of incoherent scattering, the particles are far away from each other 

relative to the ultrasound wavelength. Here, the scattered energies can be simply added, 

and constructive and destructive interference does not need to be considered in this case. 

 

Now there is a  metric that is used to quantify how much of the backscattered signal is 

being sent back to the transducer from the tissue And, this metric is called backscattered 

coefficient. The definition of the backscatter coefficient is the differential scattering 

cross-section, and that is the power scattered per unit solid angle in the 180 degree 

direction. 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

=
𝑝𝑜𝑤𝑒𝑟 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 180𝑜 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑤𝑎𝑣𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
 

 

When we talk about scattering, the incident wave is actually propagating in the 0o 

direction whereas the signals that are being scattered back into the transducers from the 

tissue is in the π direction or 180o direction. And, in this formula, it's also divided by the 

incident wave intensity. Now we talk about per unit solid angle. So, in this case, when we 

talk about a two-dimensional circle, we look at the angle in terms of radians. A solid 



angle is a three-dimensional angle which looks into the amount of field of view of that 

object that is coming from a certain location in space. 

The backscatter coefficient can be quantified by the following expression, wherein you 

have the back scattered power in numerator, divided by the solid angle times the incident 

intensity of the wave as well as the scattering volume. 

𝐵𝑎𝑐𝑘 𝑆𝑐𝑎𝑡𝑡𝑒𝑟 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝐵𝑆𝐶)

=
𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑝𝑜𝑤𝑒𝑟

𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 ∗ 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑣𝑜𝑙𝑢𝑚𝑒
 

The scattering volume just represents the region of interest in your tissue that you were 

looking at, from which you are getting the backscatter signal. 

Now, there are three scattering regimes that one can consider based on the size of the 

object that you are looking at. It depends on the object size relative to the ultrasound 

wavelength, and that will be quantified by this term, ka, where, k is the wave number, 

and that's inversely proportional to the wavelength. And, a is the radius of the scatterer. 

𝑘𝑎 =
2𝜋𝑎

𝜆
 

So you can look into this schematic right here, wherein you have a wave field that is 

propagating where the dark regions correspond to the compressional part of the wave, 

and the white regions correspond to the rarefactional part of the wave. You can see here 

what one wavelength looks like. And, if the particle is of a particular size relative to the 

wavelength, it defines what the scattering regimes are.  

 

So there are three scattering regimes that we will look at here. 

If ka >> 1, then we have specular scattering   In this case, typically what happens is that, 

there is reflection from smooth planar interfaces  

The next regime is the Reighley scattering regime, in which case, ka << 1. In this case, 

you get scattering from really small  particles in the object in the medium. 

And finally, the diffractive or the Mie scattering regime, where ka ~ 1. In this case, the 

size of the object is basically approaching the size of the wavelength. 



 Now let's look at each of the regimes more closely. So for specular scattering,  the object 

is much much larger than the ultrasound wavelength. So here, our ka parameter is again 

much much larger than 1. Here we show an ultrasound image of a liver and  typically you 

will also see the diaphragm here in the field of view. 

 

As we know, diaphragm is a muscle that helps us breathe. And what you can see is a 

muscle diaphragm that appears fairly bright in some cases, and slightly darker in a few of 

the cases.  So, when we talk about the size of this diaphragm relative to the wavelength, it 

is fairly large.  And, here you can see that the object appears good resolution, and 

typically for a specular scatterer, the detected size is pretty much accurate as you would 

see in the image. Also, what you would have noticed is that the strength of the signal 

varies depending on the orientation of the object. So for instance in the above image the 

transducer would be viewing from the top of the image and as it images through the 

tissue you can see that regions that are more flat in this image appear brighter than 

regions that are more angled, and that is because in specular scattering. The strength of 

the signal has a strong orientation dependence if you see the schematic below, you can 

imagine that the boundary is like a diaphragm. If the incident wave coming from the 

transducer is going in this particular angle then the reflected wave will also reflect back at 

an angle that is equal to the incident wave, but on the other direction So in this case not 

much of the reflected wave is actually coming back to the transducer and being 

considered as the backscattered signal. 



 

So here's just an example of how the orientation of the specular scatterer would be 

affected and seen in an ultrasound image.  

Next, we discuss Reighley scattering and this Reighley scattering phenomenon was 

actually derived by Lord Reighley who we have previously discussed before. He had 

published a book on the theory of of sound in the late 1800s.  In this case the scatterers or 

the objects are considered much much smaller than the ultrasound wavelength. So in this 

case ka is <<1. What typically happens in Reighley scattering is that you have an incident 

wave that is going from the transducer, it then interacts with the object and scatters in 

multiple directions. Now this scattered signal typically has a weak angular dependence 

and typically these objects or the structures in the tissue cannot be visualized. 

 

However such small structures can contribute to the background texture of the image. 

What kind of Reighley scatterers are can be found in an ultrasound image? Well, we 

know that tissues contain cells ,extracellular matrix proteins that are on the order of 

micron scale. So when we talk about ultrasound imaging at the clinical imaging 

frequencies the wavelength are on the order of 0.3 to 1 mm and so these cells and 

extracellular matrix proteins are quite small,  much much smaller than the ultrasound 

wavelength, So they are considered Reighley scatterers.  



Now here is an example of a scattering from a rigid sphere and this is the mathematical 

formulation of what a Reighley scattering would be if ka <<1.   

𝐼𝑠𝑐𝑎𝑡

𝐼𝑖𝑛𝑐
=

𝑘4𝑎6

9𝑟2
(1 −

3𝑐𝑜𝑠𝜃

2
) 

 

 

Although most parts of the body are not so rigid the rigid sphere approximation fairly 

holds in terms of the relationship of the intensity and the back scattered wave.  So we can 

see here that we have a fraction of the scattered intensity over the incident intensity. So as 

you can see here,  k is to the fourth power, it means that 1/λ is to the fourth power. So as 

the wavelength of sound decreases, the intensity of the backscattering would increase to 

the fourth power. So one example that we can think of in everyday life is our blue sky. 

We know that there are gas molecules in the atmosphere. They undergo Rayleigh 

scattering of light in this case. And we also know that in visible light, blue color, has the 

shortest wavelength. So this is the wavelength that would scatter the most, hence having 

the blue color in our sky.  

In the body, we have red blood cells, cells that have an approximate diameter of about 7 

microns, and if you use 5 MHz ultrasound with a 300 micron wavelength to view these 

red blood cells, then you would consider the red blood cells as being Reighley scatterers 

because they are much, much smaller in dimension compared to the ultrasound 

wavelength.  

Now let's talk about the final scattering regime, which is the diffractive or the Mie 

scattering regime. This theory was developed by Gustav Mie, and the relationship 

between the ka value is on the order of one, meaning that the size of the object is of the 

order of one wavelength.  

You can see here that the incident wave and a scatterer that undergoes the Mie scattering 

regime,where you can see that these scattering has a stronger angular dependence 

compared to the Rayleigh scattering regime.  



 

So when we talk about Mie scatterers, the object size and its shape in the ultrasound 

image may not match with the actual dimensions that it has. For instance, if you view a 

Rayleigh scatterer, which can be a point scatterer, then you will see the same shape in an 

ultrasound image. But for Mie scatterers, this directional dependence of scattering 

actually impacts what the object will look like in an ultrasound image. So basically 

structures in the body that have a size on the order of a wavelength or in the order of 

millimeters can cause Mie scattering. 

So for instance, when we talk about the atmosphere again, we have droplets in the clouds 

that undergo Mie scattering of light. So some of these clouds are gray or white, and 

almost all the wavelengths are scattered equally. So in this case, we know that visible 

light is almost white, so then we see some tinge of gray as well in the clouds, depending 

on the sizes of these droplets.  

When we have all these scattered waves together interfering with one another, it forms 

what's called a speckle pattern. So this is inherent in any wave-based imaging modalities. 

For instance, when you have a laser pointer and you shine it onto a rough surface, you 

will see this granular pattern, similar to the image below. So the same thing happens in 

ultrasound as well . Ultrasound speckle looks like the image below on the left. So it's 

caused by constructive, destructive interference of the sound between the scattered 

signals from these very small scatters on the order of sub wavelengths. 

 



And as mentioned earlier, this speckle can contribute to background texture of the 

ultrasound image. And the features of this texture also depends on the amount of 

scatterers that are in that tissue region that you are imaging. So the scatterer density also 

depends on the size of the scatterer as well as any acoustic impedance changes within 

those scattering interfaces.  

Let us now discuss about fully developed speckle. So when the number of scatterers 

exceeds a critical value, inside a resolution cell, then the speckle pattern will turn into 

what's called a fully developed speckle. 

In this case, the amplitude of this tissue scatter will follow a Rayleigh probability density 

function. And this density function looks like the figure below.  

 

We can quantify this density function using the signal-to-noise ratio. Basically looking 

into the speckle signal-to-noise ratio, which is a function of the mean of the amplitude 

within that region of interest, divided by the standard deviation of that amplitude within 

the same region of interest.  

𝑆𝑁𝑅 =
𝑀𝑒𝑎𝑛(𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡)

𝑆𝑇𝐷(𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡)
= 1.91 

And for a fully developed speckle it follows a Rayleigh probability density function, this 

SNR value would be 1.91. 

So some speckle features also depend on the ultrasound frequency and beam properties 

and not on the macroscopic tissue anatomy. And also depending on the SNR, the 

organization of the tissue structures can affect what the SNR is. So we will later talk 

about the different types of speckle statistics.  



Speckle can sometimes be characterized as noise. But in ultrasound imaging, speckle is 

deterministic and not random like in electronic noise. The speckle can affect image 

quality, such as the contrast and resolution of the image, which we will discuss more in a 

subsequent lecture. But it can also be useful in some cases, such as when you're doing 

motion tracking,  or when you are doing Doppler imaging and tracking the motion of 

certain structures in the tissue. Also in elastography, when you're inducing some shear 

waves that will then be used to track the motion of the tissue, and then getting some 

elastic property or mechanical property of the tissue.  

Figure below shows an ultrasound image of a kidney. And you can see that most of the 

image has speckle in them. This speckle is important for assessing the background texture 

of the tissue. So in summary, we've talked about the scattering phenomenon. We looked 

at different scattering regimes, such as specular scattering, Rayleigh scattering, and Mie 

scattering, which depends on the size of the object or the structure in the tissue relative to 

the ultrasound wavelength. We also looked into speckle and ultrasound images. Now this 

lecture will form the foundation for the next stages when we look at ultrasound imaging. 

 

Now let's change track slightly. In a previous lecture, we talked about the wave equation. 

Now let's derive the wave equation. So let's start out with several assumptions that we use 

to derive this equation. So if we assume that the medium is lossless,  meaning that there 

is no decrease in pressure amplitude with distance of propagation, this will give us a 

nonlinear wave equation for lossless fluids.  

Another assumption would be to assume that the amplitudes of the acoustic pressure 

variations in the medium are negligible then we assume linear. And this will lead us to 

the linear wave equation for dissipative fluids.  

Now if we assume both lossless and linear, then we would get our linear lossless wave 

equation.  



 

Now there are several acoustic variables to keep in mind, and some of which we have 

already discussed in other lectures. First we have the particle displacement(ε), which is a 

vector. Then we have the particle velocity, which also a vector denoted by u. We have 

our equilibrium density that's denoted by ρ0. The equilibrium density here is without the 

sound field. And then we have our instantaneous density, when the sound field 

propagates through the material (ρ). We also define a condensation parameter, which is 

denoted by S. The condensation parameter is defined by  

𝑆 =
𝜌 − 𝜌0

𝜌0
 



 

We also define equilibrium pressure(𝑃0), without the sound field. This is the pressure of 

the material at its resting state without the ultrasound field. Then we also define the 

instantaneous pressure, which is denoted by P. And that's the instantaneous pressure as 

the sound field propagates through the medium. Then we define the acoustic pressure, 

which we have looked into before, and that is denoted by the p.  

𝑝 = 𝑃 − 𝑃0 

The longitudinal speed of sound is denoted by c, and the bulk modulus, which is a 

material property of the medium is denoted by B. And you will see that B is very much 

related to the speed of sound. In a previous lecture, we have looked into three equations 

which was used to derive the acoustic wave equation. So I'll just go over these three 

equations here   

We talked about the equation of state, that relates the acoustic pressure, to the density of 

the medium. We also have the equation of continuity that relates the particle velocity, u, 

to the density via the conservation of mass. And finally, we have the equation of 

momentum, which relates the pressure, P, to the  particle velocity via the Newton's 

second law. So we will use these three equations.  

We're not going to derive exactly how these equations were derived, but we'll use this, 

and put them together to derive the acoustic wave equation. Depending on several 



assumptions, we'll give an approximate version of each of these equations. So let's look at 

the equation of state first. We assume small amplitude variations in the medium,  And 

this is after linearizing the exact description. Then the equation of state becomes, 

𝑝 = 𝐵𝑆 

Next, the equation of continuity. Assuming that the condensation S is small, the 

instantaneous density is approximately similar to the equilibrium density 𝜌~𝜌0. And so 

the equation becomes, 

𝜌0  

𝜕𝑆

𝜕𝑡
+ ∇. (𝜌0  �⃗� ) = 0 

Now finally the equation of momentum. Here we assume  small amplitudes, and the 

equation of momentum becomes in the form, 

𝜌0  

𝜕�⃗� 

𝜕𝑡
=  −∇p 

We will use these three equations to help us derive the acoustic wave equation. First,  we 

take the divergence of both sides in the equation of momentum and this is what we would 

get.  

∇(𝜌0  

𝜕�⃗� 

𝜕𝑡
) =  −∇2p           − (1) 

Next, let's take a look at the equation of continuity. We will take the time derivative of 

both sides in that equation of continuity.  

𝜌0  

𝜕2𝑆

𝜕𝑡2
+ ∇. (𝜌0  

𝜕�⃗� 

𝜕𝑡
) = 0       − (2) 

Now note that the density here is not dependent on time. So we don't do partial 

derivatives of the 𝜌0  . 

Now if we combine this first and second equations, then we would get the following 

equation.  

𝜌0  

𝜕2𝑆

𝜕𝑡2
= ∇2p        (3)            

The last step is to include the equation of state 

𝑆 =
𝑝

𝐵
 

Also, 



𝐵 = 𝜌0  𝑐
2      (4) 

So equation 3 becomes,  

𝜌0  

𝐵

𝜕2𝑝

𝜕𝑡2
= ∇2p       

Introducing the speed of sound from equation (4), the final linear lossless wave equation 

is: 

1

𝑐2

𝜕2𝑝

𝜕𝑡2
= ∇2p       

This equation describes how acoustic pressure changes in space and time. See you in the 

next lecture. Thank you. 


