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Intro to Field II simulation - impulse response, beam pattern 

Hello, welcome to today's lecture. Today I will be introducing a simulation program 

called Field II. Field II is a tool that is used for simulating ultrasound imaging systems 

using the spatial impulse response method. It is governed by linear acoustics theory and 

therefore nonlinear wave propagation is not incorporated in this program. It also does not 

take into account multiple scattering and as well as reverberations. So here is a website 

that includes all the information you can find with the Field II simulation program. 

 

You can find it in field-ii.dk. And this website contains a lot of information incorporating 

the background, a user guide, as well as several examples that can be implemented using 

this program.  

Now here are some steps on how to get started. 



 

First, you have to download the toolbox from the Field II simulation website. And here 

on the left menu bar, there is a download link here you can download different versions 

of the program depending on your MATLAB version. The Field II website also has 

instructions on how to install the program.  

 

What it includes is a tar file that will be downloaded to your MATLAB directory, which 

should hold the files. Then the file can be extracted by using this code here, gzip and tar. 

and that will be used to uncompress and extract the files. The tar file can then be deleted 

afterwards. And in your MATLAB directory, there will be a folder that contains all the 



Field II program  .m files. The user guide can also be found in that folder. And when you 

open MATLAB, you can type the code path using this line here, and field init to initialize 

the Field II program. So more of this information can be found in the website.  

 

The nice thing about the Field II software is that there's a lot of resources available in the 

website wherein you have a very comprehensive user guide that looks into the different 

commands and the different functions that are associated with simulating your ultrasound 

imaging system. There are also several examples as you can see here. There's an example 

of point spread functions, an intensity profile, different types of phantoms including 

cysts, kidney, fetus, other types regarding tissue motion can be found here as well. 

 

So I encourage you after you to also explore these different types of examples in field II. 

Here, I show the MATLAB interface where you have the directory set at the folder which 

contains all your m files as well as a user guide. You can either type the commands in 

your command window, or you can open up a script where you can type down the code 

that is necessary to initiate field II and run the different examples. So here I've created a 

simple script here. As of now, it's untitled in this screenshot. 



 

But the way to initialize field II is, if you can set up  the path towards that Field II 

directory and type field init. Once this program is run, then you have an introductory text 

here in the command window. Let's just know the toolbox a bit more.  

When Field II starts, there are several default values in the simulation environment 

including  the sampling frequency, which is set at 100 MHz. And of course, the sampling 

frequency is set such that it follows the Nyquist criterion. The speed of sound is set to the 

average value of soft tissue, which is 1540 m/s. And the attenuation of the medium is set 

to zero, meaning that the default value is a lossless medium. There is no attenuation as 

the ultrasound propagates through the depth. Depending on the type of problem you are 

working on, you can change this parameter using this set field command. Now the set 

field command is also there, information about that is in the user guide, so you can set it 

depending on what your parameters are and how you would like your parameters to be. 



 

It's also important to know that the Field II toolbox also follows the MKS unit system, 

which is meters, kilograms, seconds. So the distance would be according to meters, time 

would be in seconds, and frequency would be according to hertz. We also take note of the 

coordinate arrangement within the simulation environment. There are three axes. The z-

axis is corresponding to the axial depth direction. So if you look at the schematic here, we 

have our transducer array with multiple elements denoted by the small rectangular boxes. 

And you can see the beam profile right here, the axial depth is going down away from the 

transducer using this configuration. So it's from top to bottom. The X axis corresponds to 

the lateral direction of imaging. So that goes from left to right across an array. And the Y 

axis corresponds to the elevation direction, which is out of the XZ scan plane of imaging.  

 



Now the different steps for simulating an acoustic field is involved as follows.  

 

So first we would define our transducer type and create a transducer handle. I'll explain 

more about that in the next slide. Following, we would define the electromechanical 

impulse response of our imaging system. Then we would define the excitation signal that 

will be sent to the transducer elements, and finally calculating the field at each point of 

interest. Now here are some transducer types that can be simulated in the MATLAB 

command. 

 

So here on the left first column is the commands associated with the different transducer 

types. We have here  the xdc_piston. This corresponds to the command for simulating a 

flat, unfocused, circular, single element transducer, or also called the piston transducer. 

We also have xdc_concave here, which simulates a focused, concave, circular piston, 

single element transducer as well. And we also have xdc_linear_array here that will 

simulate a 1D  linear phased array. In this case, the code does not allow it to focus on the 

elevational direction. Whereas xdc_focused_array, allows you to simulate with a fixed 

elevational focus. So it actually depends on what your transducer parameters are, which 



you are simulating. We can also simulate a 1.75 phased array here with a fixed  electronic 

elevation focus as well as a 2D array. 

So you can see that this Field II simulation software has versatility in terms of simulating 

different types of transducer. Now, how do we specify a transducer type in Matlab? Here 

we can create a handle for that specific type.  

 

So let's say I give this example where we'd like to create an unfocused circular or single 

element transducer with a radius of 8 mm. And we divide the element of this transducer 

into  0.5 mm simulation elements. So what are these simulation elements? So these are 

mathematical subdivisions of the actual physical transducer aperture, and that's used to 

calculate the acoustic field. So this is similar to when we are doing finite element 

modeling. For instance. where you have an object and you divide that into multiple 

smaller objects, to be able to simulate the properties or the response of that object. So 

similarly, we subdivide one aperture into multiple smaller elements. We call that 

“simulation elements”. So if we reduce the size of this simulation elements, much better 

the results would be produced. You will get finer results, but it will lead to longer 

computation times. 

So there's a rule of thumb that the size of these simulation elements should be on the 

order of the wavelength. And in this case, each element is being approximated as point 

sources. So for example, similar to what you would observe when you apply Huygens 

principle, the way you would specify the transducer type is you would create a handle. In 

this case, in your MATLAB script or your command window, you can type this code 

where you name a handle for your transducer. 

 



 

In this example, I call it piston. So piston is the handle. And that will equal to your 

command, xdc_ piston. Now, this will change if you have a linear array. So depending on 

the type of transducer you would like to simulate, then you would change this command. 

And the inputs to this xdc_piston command would be the radius of the transducer. So I 

had asked for an 8 mm radius. And in this case, since the field two environment operates 

in MKS units, here we write down 0.008 in terms of meters. And we would like that this 

aperture be divided into 0.5 mm simulation elements. So the next input you would have 

here is the size of that simulation element in meters.  

After we define our transducer, the next step is to define the impulse response. So we had 

discussed earlier in a previous lecture what the impulse response is. 

 

And this is the type of signal that describes the velocity of the transducer space in 

response to an electronic impulse. So if we would like to set the impulse response of the 

piston transducer to be a Gaussian weighted sinusoidal signal, and we'd like that to be 

centered at 2 MHz frequency with a negative 6 dB bandwidth of 70%, our code would be 

something that looks like this. I had created a script called BeamPatternPiston here and 

saved that as an m file. 



So I had already assigned my transducer handle. And next I will define the bandwidth 

ratio in the variable, BWR. And then I'd also like to define the sampling frequency.  

Then this Gauss pulse command is in the signal processing toolbox of MATLAB, and 

this will help you simulate the samples of the impulse response (Line number 21). So the 

inputs of this Gauss pulse would be, you would type “cutoff”, the center frequency, 

bandwidth ratio, -6 dB corresponds to the full width half maximum of that bandwidth, 

which is what we would like, and the -40 stands for the dynamic range of your impulse 

response in dB. 

So we would get this and create the frequencies components (Line number 23). The range 

of the values in the time domain would be added as input using the sampling frequencies 

and the time components. Then in this case, we like to simulate, a 2 MHz and then the 

bandwidth ratio. You would run this impulse response.  

The impulse response would be inputted in the command in line 25 where you'd also look 

into the transducer handle. The command for generating the impulse response is 

xdc_impulse. And in your workspace, you will get these important variables that will 

represent your impulse response on your transducer.  

Now this is what an impulse response would look like. You have some Gaussian 

weighted sinusoid which you can observe here. And in field two, if you multiply the 

amplitude by a certain factor, then the impulse response would scale according to that 

factor. So depending on your application, one would simulate it that way. 

 

After you have created your impulse response, the next is to define your excitation signal. 

And this is actually the voltage signal that is being applied to the transducer. And you 

would do this by setting using the command, xdc_excitation.  

 



 

So we would like to set the circular piston to be driven by a five cycle long, 2MHz sine 

burst. Here, Ncyc=5 is the number of cycles. We can find the sampling frequency, and 

the center frequency of the wave in this case is 2MHz. And we look at the time vector 

which would be used for the timing of our excitation pulse. And then we would generate 

the excitation pulse. Now this is a sine burst we had defined. So it's just the sine function 

of two pi  center frequency times that time vector. So you had created the excitation 

pulse, then you would put it in this xdc_excitation command, wherein you point the 

handle to your piston transducer that you defined earlier, and then you put the excitation 

pulse signal here.  

If you would like to display what the signal would look like at a point located 15 

centimeters on the axis, then you can code something like this.  

 



So our calc_hp function, actually computes the pressure amplitudes at different points in 

space. So depending on the location we'd like to compute, we would input the location in 

the vector parameter. So the calc_hp command returns a vector of pressure amplitudes, 

which here we call hp, and a time vector corresponding to the sample in the vector. You 

can also compute the start time, and we'll go through that a little bit further.  

In terms of the inputs of calc_hp,   we would use this handle to point to our transducer. 

And then the location is, in terms of x, y, and z. So the first input of this vector would be 

x, second y, and third is z. Since we're looking 15 centimeters on axis, that's in the axial 

direction, which is our z direction. And this is in meters. So we use the length of the 

pressure samples that we would get, divide that by the sampling frequency of 100 MHz 

and to that, the start time is added. 

What the start_time does is that when you generate the actual pressure signal as a 

function of time then the first sample would start at the start time. The start time actually 

corresponds to the 15 centimeter distance, where your point is located. 

So that start time is needed to shift the pulse at the right timing. So here you just plot the 

signal according to this basic plotting function here. And so this is what we get. We get 

five cycles. Of course, it's not  a complete sine burst that is evenly distributed, because it 

also depends on our impulse response. But this is what the pressure field would look like 

at that point in space.  

Now if you want to create a two-dimensional map of that pressure field, say from  minus 

1 to 1 centimeter in the lateral X direction and 0.1 to 10 centimeters in the axial Z 

direction. So this is the following MATLAB code here.  

 



The first thing we would need is to initialize the field points. So we would like 

calculations at several points in space. And in this case, for the lateral location, we 

generate a vector from -1 cm or -0.01 meter, all the way to 0.01 meter. The subdivision or 

sub-locations will be 0.5 millimeters. And then in the axial direction, similarly from 0.1 

centimeters all the way up to 10 centimeters at 0.5 spatial  difference. The next thing after 

we have our vector of points is that, we will then initialize the matrix of intensity values 

So later on, we'd like to create an intensity map. And the way we would do that is at each 

point in space. We have this for loop right here. That's going to go through each lateral 

location in X and it's going to calculate what the pressure field would be at that point in 

space. And since intensity is proportional to the pressure squared, then what we do is at 

that specific point in space,  we would first square the pressure signal and sum over that 

vector pressure signal. So with that, it's similar to doing the integral of the pressure 

squared as we are calculating the intensity. 

Then, we would also like to plot a normalized intensity. So we would just divide the 

entire intensity matrix by the maximum intensity values and we displayed a two-

dimensional map of it. So the result is also in the figure below, where we have the z 

direction or the axial direction in the vertical axis, and we have the lateral direction in the 

horizontal axis. And so when we're looking at this, it's showing that the transducer is 

emitting the field from the top of the image. 

 

You can see the Fresnel region, which is the near field region of your transducer. And 

then below that would be the far field region. So it's nice to be able to see, depending on 

the type of transducer you had. This simulation program would give you what the field 

you would expect to be. 



You can also plot the on-axis intensity right. So you can just take the column at a point in 

space. When we talk about axis,  It means that we start at the zero lateral location, which 

is the center of your beam, and then you just plot it across the axial depth. So if you want 

to create a on-axis intensity profile from 0.5 to 20 centimeters, then you would code it 

like this. 

 

So first you would  specify the points in space. So in this case, we're talking about the z-

axis. So we're going from 0.5 centimeters in 0.5 centimeter intervals all the way up to 20 

centimeters right here. Again, these are in meter units. And the points can be such that 

you can have your matrix of coordinates with zero values for x and y since we're only 

looking at the z direction. We use again the calc_hp function to compute the pressure 

field at that location. Use start time again. And we would sum the pressure squared, the 

hp squared for doing our integral. And after that, we get an I value, which corresponds to 

our intensity. And we would plot the normalized intensity to get the output. You will see 

that the x-axis normalized intensity as a function of axial depth right and you can see that 

when you are in the near field, the on-axis intensity goes up and down really fast in the 

spatial dimension in the near field right. But as you go towards the far field, you notice 

that the intensity will climb up all the way to the last axial maxima. and the intensity 

would attenuate because the beam is also spreading as you go further into the far field. So 

this is a nice way to visualize what your field would look like on axis.  

So that is an example of a single element circular piston transducer. Now I'll give an 

example of what a focused linear array transducer would look like in terms of its beam 



pattern. So what we want to do is we want to create a two-dimensional beam pattern of a 

64 element focused linear array transducer with 5 MHz center frequency and it's focused 

at 5 cm. So here's just reminding you again of what the coordinates would look like. So 

we have our transducer array. We'll have 64 elements in this case. There is only four here 

in the schematic, but we'll have 64 elements in our example. So the beam will look 

something like this. And you'll have an elevational direction. You have lateral and an 

axial direction. Also, just to remind you that if you remember in the transducer array 

lecture where we talked about element width, the kerf, which is the space between the 

elements, and then the pitch, which is the kerf plus the element width. So these 

parameters will become important when you are simulating your linear array transducer. 

 

 

So let's go back to the parameters that you will define in your MATLAB code. So first 

you have your sampling frequency which is, 100 MHz. The center frequency we would 

like to be 5 MHz, so 5e6. Bandwidth ratio, we'll keep it at 70%. The number of elements 

are defined here as 64.  

 



And then we also would like to define the elevation focus of two centimeters, so 0.02 

meters. Depending on the transducer that you're trying to simulate, the manufacturer of 

that transducer would give you what the elevation focus is. Also, elevation f number here 

is 6.5. The kerf fraction, 0.05. So fraction of element width that is kerf. So the fraction of 

this element width or the pitch that is actually the kerf is the kerf fraction.  

And we would like to see the beam at the focus. So here our focal point is 5 cm, so 0.05. 

And since we're only looking at a focal point on axis, your X and Y locations are set to 

zero. There are also some other parameters here that will be important when you are 

going to calculate others. For instance, the wavelength here would be computed by your 

speed of sound and your center frequency. Also, to define the element width, you would 

need that wavelength parameter here, as well as you can define an element height and the 

kerf as well. 

Now let's create the transducer handle. To create a focused linear array transducer, we 

would use this command, xdc_focused_array. Depending on your transducer, you would 

go back to that table that I had described earlier, which looks at the different commands 

for the transducer type. So the inputs for this function will be the number of elements, the 

element width, element height, as well as the kerf, elevation, focus, and there are two 

others here that relate to the number of subdivisions, so simulation elements within that 

transducer element. So here I type 10 in the X direction and 10 in the Y direction, 

meaning that for one element I'm dividing it into 10 smaller mathematical elements in the 

X as well as in the Y direction. And another input is the focus.  

 

So after we create the handle to our transducer, in this case my handle is now called tx,  

then we will set the impulse response, similar to what it was previously. So in this case, 

Gauss pulse cut off is 5 MHz. 



Then you should add -6 dB, Similar to how Gauss pulse was in the single element 

transducer part. So we would create the impulse response here, from -tc to 1/fs. to tc , 5e6 

and the bandwidth ratio. Afterwards, let's say you wanted to weight the type of pulse. 

So here in this case, you would like to apply a Hanning window. So we would just 

multiply that impulse response with the Hanning window of a similar length. Then we 

would calculate the impulse response again using the xdc_impulse. So after you set your 

impulse response, then you can generate an excitation pulse. 

Here, the number of cycles is set to 10. So I'm exciting the transducer with a 10 cycle 

sine burst or sinusoidal excitation pulse. I also like to weight that sine pulse using a 

Hanning function and then calculate the excitation signal by inputting the transducer 

handle and the excitation pulse that we sent to the transducer. So setting the impulse 

response, creating the handle, generating the excitation pulse, these are the common steps 

you would do first before viewing the beam of the transducer. So then we'd also like to 

define the spatial grid for the simulation. 

So in this case, the spatial grid would go from -1 to 1 cm with at 0.5 cm spatial intervals. 

And the Z direction will be simulating from 0.1 cm or 1 mm all the way up to 10 cm. The 

variable, Tp, the post duration will be relevant for the next stage of the simulation. We 

then also initialize the intensity matrix because here we'd like to plot the beam intensity 

of the focus linear array transducer. 

Initializing variables helps to make the computation faster. So then now here, we're 

calculating the beam pattern right here, where similar to the 2D beam pattern of the single 

element transducer, we would have, it loop through the different lateral locations, and 

look at the points as a function of the axial locations as well.  

 

So using this code, we will be defining the points along the Z axis at each lateral x 

location. Then we would compute the pressure field at these points here using the calc_hp 

function again where we put the transducer handle and the points variable that looks to 

the locations in the field. 

Afterwards, we would like to compute the intensity. If you would like close enough 

values to the intensity based on the pressure, you can divide by two times the acoustic 



impedance and the pulse duration right here. And then you would get the intensity that 

would be close enough based on a plane wave approximation. Then here you would 

normalize intensity. You would get a normalized intensity variable in I. 

Then you would plot the beam pattern according to your spatial coordinates. So this is 

how a focused linear array transducer intensity beam would look like, where you can see 

that there's a nice focal spot at 5 cm, which would we have defined.  

 

And for any focused transducers that you would simulate, you would see a really high 

intensity beam, and the beam would be much thinner at the focal spot right. You can also 

see the focal region, the near field and the far field would be farther in the axial direction.  

So I hope this lecture gives you a good overview of how to use Field II, how to set up the 

program in your MATLAB environment. We have defined the transducer. We also know 

how to define the impulse response as well as the excitation signal to the transducer. We 

learned how to generate 2D intensity field maps of a single element transducer and a 

focused linear array transducer. So based on these, the coding is very similar to what it 

would be for other types of transducers that is supported in the Field II environment. If 

you want to know more about how to code for different types of transducers, then I 

recommend going through the Field II website, as well as looking through the user guide 

to help guide you on how to code. We will see you in the next lecture. Thank you. 


