Biomedical Ultrasound: Fundamentals of Imaging and Micromachined Transducers

Prof. Karla P. Mercado-Shekhar, Prof. Himanshu Shekhar, Prof. Hardik Jeetendra
Pandya

II'T Gandhinagar, 11Sc Bangalore
Lecture: 34
Intro to Field Il simulation - impulse response, beam pattern

Hello, welcome to today's lecture. Today | will be introducing a simulation program
called Field Il. Field Il is a tool that is used for simulating ultrasound imaging systems
using the spatial impulse response method. It is governed by linear acoustics theory and
therefore nonlinear wave propagation is not incorporated in this program. It also does not
take into account multiple scattering and as well as reverberations. So here is a website
that includes all the information you can find with the Field Il simulation program.

Field II

« Tool for simulating ultrasound imaging systems using the spatial impulse response method

Linear acoustics and does not take into account multiple scattering and reverberations

T Website:
Field IT Simulation Program

Field II Ultrasound Simulation
Program (field-ii.dk)

Wekcome 10 the home page for Pl it Mers you
Wil 1ind all the Information about the peogram
#long With executatiies and examphes that you

Y250und ¥aQIng at 0ur Infemational Summer
Schoot on Advanced Urrasound im. University of Denmark from May 22 1o May
31, 2024 Please chock & out #t hoe 942024, The Seadine r regisation is
Moy 1, 2024

You can find it in field-ii.dk. And this website contains a lot of information incorporating
the background, a user guide, as well as several examples that can be implemented using
this program.

Now here are some steps on how to get started.

Steps to download the toolbox

Center for Fast Ultrasound and

Main page Uttrasound Imaging Biomecharics Section W

Background i<

tooreation Downloading for Matlab 2021-2023

Downboad Aversion fof 64 bits Masab 2021 has boen made for Linux, MacOS and Wincows 10, and has boen
For Matiab 8.10 fested wih Matiab 2010 and 2020. Fleld Il version 3.30 s compatible with all previous version of Field

11 and you code shoulkd run «
for Matiab 2023 fof the new

dified for the new complation for Windows, Mac and Linux. A version

For Mat w0
SEI—1 C M1 processor has aiso boen made

For Matiab 7.12

For Mafiad 7.10 Tho Windows version has b ed with the MInGW complier. This should make & possible 1o
Voe b 78 non the code without downioading any supplementary lbrades

For Matisd 7

General downloading for Matlab 2021

Tho dowrioad Grociony CONtaNs & number of Compressed ke fies. One for each COmpUler type the
prograen ks running under (360 bokow). In 6ach ire kcated Al he flos for 1he felease. Tha tar fle can
e Sownloaded and then expanded 10 yiekd a8 fles by sing the gip and 1ar programs on UNIX
WOrKatMOns of WinZip on PCa

Tha naw code on s page Wil work win Matlab 2010 % 20214 Use the okd code varsion K other
version of Masab. You can find them under Downsaad in the joft mens.

A new code ke the Mac M1 chip for Matiab 20224 has a0 been made. This resides in the kst tar fie
i the tabde

Fleld lipro

Tho folowing oparating systerms are curmently suppored

She

System | Opersting system File Format Version
U | U it rues Matat Xiao Compressed (3,50, 84
2010-2021, 64 bis. TAR 201

Windows that runs

Windows [Matiab 2018.2021, 64 | Field_IL_ver.3_30_windomaacgz | Sant o aant
by

Compressed |3.30, 54-
2

Intel Mac ::z:.m:ow.zoﬂ (64 o %0

Elekd_Il_ver 3_30_mactagz

(419, 312

Mab 202 . Fick ¢ 4_11_maczic o
M1 Mac | Matiab 2023 (64 bits) Elekd_IL_ver 4 _11_macip ZIP archive |2023

First, you have to download the toolbox from the Field Il simulation website. And here
on the left menu bar, there is a download link here you can download different versions
of the program depending on your MATLAB version. The Field Il website also has
instructions on how to install the program.

Installation

The tar-file should be downloaded to the directory, that must hold the files. The file is then extracted by
writing:

gzip -d "name_of _tar_file".tar.gz

tar -xvf "name_of _tar_file".tar

to uncompress and extract the files. The tar-file can then be deleted.

The files can also be opend using programs like winzip (www.winzip.com).

The Field Il program can now be run from this directory or from an other directory by writing:

path(path, /home/user/field_Il/m_files');
field_init

where /home/user/field_|lI/m_files contains the Field Il m-files. This ensures that the directory is
included in the Matlab search path, and the user-written m-files can then be placed in a separate
directory.

From Field II website: https://field-ii.dk/?./downloading 2021.html

What it includes is a tar file that will be downloaded to your MATLAB directory, which
should hold the files. Then the file can be extracted by using this code here, gzip and tar.
and that will be used to uncompress and extract the files. The tar file can then be deleted
afterwards. And in your MATLAB directory, there will be a folder that contains all the

Field Il program .m files. The user guide can also be found in that folder. And when you
open MATLAB, you can type the code path using this line here, and field init to initialize
the Field Il program. So more of this information can be found in the website.

path(path, thome/userfield_Il/im_files’);
field _init

The nice thing about the Field 1l software is that there's a lot of resources available in the
website wherein you have a very comprehensive user guide that looks into the different
commands and the different functions that are associated with simulating your ultrasound
imaging system. There are also several examples as you can see here. There's an example
of point spread functions, an intensity profile, different types of phantoms including
cysts, kidney, fetus, other types regarding tissue motion can be found here as well.

Field II
Field II Simulation Program

Cantor for Fast Uitrasound and
Ulrasound knaging Bomechanics Section

User Guide and examples can be
explored in the website

Examples

ndt Jersen and Peter Munk. Comouter phantoms a
naging, vol, 23, pp. 7500, Ede.: 5. Loos an

Select one of the following 10f seeing both m-fles and the resultng images

Simple examples

Fotus phantom
PW examplo
Flow example
CFM axample
Tiasue motion
Copyright
News

B.mode image examples

Flow simulations
Flokd lipro

She

9 biood and tissue motion
é Print Version 3 t of flles on the web.-site, which demonsirzates the use of the code.
You ca 0ugh this web acddress.

So | encourage you after you to also explore these different types of examples in field II.
Here, | show the MATLAB interface where you have the directory set at the folder which
contains all your m files as well as a user guide. You can either type the commands in
your command window, or you can open up a script where you can type down the code
that is necessary to initiate field 11 and run the different examples. So here I've created a
simple script here. As of now, it's untitled in this screenshot.

Running the Field II program in MATLAB

1 ompare v WA Y g N8N e Y Py

> < &
:
c “«
o~ 8
+ S
A
£dn’
g
o

“h‘. l'
-

But the way to initialize field Il is, if you can set up the path towards that Field Il
directory and type field init. Once this program is run, then you have an introductory text
here in the command window. Let's just know the toolbox a bit more.

When Field 1l starts, there are several default values in the simulation environment
including the sampling frequency, which is set at 100 MHz. And of course, the sampling
frequency is set such that it follows the Nyquist criterion. The speed of sound is set to the
average value of soft tissue, which is 1540 m/s. And the attenuation of the medium is set
to zero, meaning that the default value is a lossless medium. There is no attenuation as
the ultrasound propagates through the depth. Depending on the type of problem you are
working on, you can change this parameter using this set field command. Now the set
field command is also there, information about that is in the user guide, so you can set it
depending on what your parameters are and how you would like your parameters to be.

Knowing the toolbox

= When Field II starts, default values for the simulation environment are set
i. Sampling frequency (100 MHz)

ii. Speed of sound (1540 m/s)

iii. Attenuation of medium (0 dB/cm/MHz)

- Can be changed with set_field command

« Unit system: MKS
i. Distance: meter
ii. Time: second

iii. Frequency: Hz

It's also important to know that the Field Il toolbox also follows the MKS unit system,
which is meters, kilograms, seconds. So the distance would be according to meters, time
would be in seconds, and frequency would be according to hertz. We also take note of the
coordinate arrangement within the simulation environment. There are three axes. The z-
axis is corresponding to the axial depth direction. So if you look at the schematic here, we
have our transducer array with multiple elements denoted by the small rectangular boxes.
And you can see the beam profile right here, the axial depth is going down away from the
transducer using this configuration. So it's from top to bottom. The X axis corresponds to
the lateral direction of imaging. So that goes from left to right across an array. And the Y
axis corresponds to the elevation direction, which is out of the XZ scan plane of imaging.

Coordinate arrangement

z-axis: axial depth direction (away from transducer)
x-axis: lateral direction (left to right across an array)

y-axis: elevational direction (out of x-z scan plane)

Transducer array

Elevational

(y)

Lateral
(x)

Now the different steps for simulating an acoustic field is involved as follows.

Simulation of acoustic field

Steps:
1. Define transducer type and create transducer “handle”

2. Define electromechanical impulse response
3. Define excitation signal
4

Calculate field at each point of interest

So first we would define our transducer type and create a transducer handle. I'll explain
more about that in the next slide. Following, we would define the electromechanical
impulse response of our imaging system. Then we would define the excitation signal that
will be sent to the transducer elements, and finally calculating the field at each point of
interest. Now here are some transducer types that can be simulated in the MATLAB
command.

MATLAB commands for different transducer types

'Command Transducer type

: xdc_piston Flat (unfocused) circular piston

' xdc_concave Concave (focused) circular piston
xdc_linear array 1D linear (phased) array, no

. elevational focusing

xdc_focused array 1D linear (phased) array with fixed

elevational focus

' xdc_focused multirow | 1.75 linear (phased) array with fixed
and electronic elevation focus

xdc_ 2d 2D array

—

So here on the left first column is the commands associated with the different transducer
types. We have here the xdc_piston. This corresponds to the command for simulating a
flat, unfocused, circular, single element transducer, or also called the piston transducer.
We also have xdc_concave here, which simulates a focused, concave, circular piston,
single element transducer as well. And we also have xdc_linear_array here that will
simulate a 1D linear phased array. In this case, the code does not allow it to focus on the
elevational direction. Whereas xdc_focused_array, allows you to simulate with a fixed
elevational focus. So it actually depends on what your transducer parameters are, which

you are simulating. We can also simulate a 1.75 phased array here with a fixed electronic
elevation focus as well as a 2D array.

So you can see that this Field Il simulation software has versatility in terms of simulating
different types of transducer. Now, how do we specify a transducer type in Matlab? Here
we can create a handle for that specific type.

Create handle for specific transducer type
Create an unfocused circular transducer with a radius of 8 mm, divided into 0.5 mm
simulation elements

Simulation elements are mathematical subdivisions of physical transducer aperture
used in calculation of the acoustic field

Reducing size of simulation element is better, but leads to longer computation times
Size of elements should be on the order of a wavelength

+ Each element is being approximated as point sources

In MATLAB: radius of transducer (m)

piston = xdc_piston(0.008,0.0005); @

handle for transducer simulation element |

So let's say | give this example where we'd like to create an unfocused circular or single
element transducer with a radius of 8 mm. And we divide the element of this transducer
into 0.5 mm simulation elements. So what are these simulation elements? So these are
mathematical subdivisions of the actual physical transducer aperture, and that's used to
calculate the acoustic field. So this is similar to when we are doing finite element
modeling. For instance. where you have an object and you divide that into multiple
smaller objects, to be able to simulate the properties or the response of that object. So
similarly, we subdivide one aperture into multiple smaller elements. We call that
“simulation elements”. So if we reduce the size of this simulation elements, much better
the results would be produced. You will get finer results, but it will lead to longer
computation times.

So there's a rule of thumb that the size of these simulation elements should be on the
order of the wavelength. And in this case, each element is being approximated as point
sources. So for example, similar to what you would observe when you apply Huygens
principle, the way you would specify the transducer type is you would create a handle. In
this case, in your MATLAB script or your command window, you can type this code
where you name a handle for your transducer.

In MATLAB: radius of transducer (m)

t

piston = xdc_piston(0.008,0.0005);

handle for transducer simulation element
size (m)

In this example, | call it piston. So piston is the handle. And that will equal to your
command, xdc_ piston. Now, this will change if you have a linear array. So depending on
the type of transducer you would like to simulate, then you would change this command.
And the inputs to this xdc_piston command would be the radius of the transducer. So |
had asked for an 8 mm radius. And in this case, since the field two environment operates
in MKS units, here we write down 0.008 in terms of meters. And we would like that this
aperture be divided into 0.5 mm simulation elements. So the next input you would have
here is the size of that simulation element in meters.

After we define our transducer, the next step is to define the impulse response. So we had
discussed earlier in a previous lecture what the impulse response is.

Define impulse response

+ Signal describing the velocity of transducer face in response to an electrical impulse

+ Set impulse response of the piston transducer to be a Gaussian-weighted sinusoidal
signal centered at 2 MHz with a -6dB bandwidth of 70%

Workspace

BeamPatterPiston.m +
1 AU}

paswun Name Value

{H BWR 0.7000

Hifts 100000000
YR 0.7 l 1 imp_resp bl

{11 piston 0

f te 8.1104¢-07

imp_resp = gauspuls(-tc:1/fs:itc, 2e6 , BWR); Q
And this is the type of signal that describes the velocity of the transducer space in
response to an electronic impulse. So if we would like to set the impulse response of the
piston transducer to be a Gaussian weighted sinusoidal signal, and we'd like that to be
centered at 2 MHz frequency with a negative 6 dB bandwidth of 70%, our code would be

something that looks like this. | had created a script called BeamPatternPiston here and
saved that as an m file.

So | had already assigned my transducer handle. And next | will define the bandwidth
ratio in the variable, BWR. And then I'd also like to define the sampling frequency.

Then this Gauss pulse command is in the signal processing toolbox of MATLAB, and
this will help you simulate the samples of the impulse response (Line number 21). So the
inputs of this Gauss pulse would be, you would type “cutoff”, the center frequency,
bandwidth ratio, -6 dB corresponds to the full width half maximum of that bandwidth,
which is what we would like, and the -40 stands for the dynamic range of your impulse
response in dB.

So we would get this and create the frequencies components (Line number 23). The range
of the values in the time domain would be added as input using the sampling frequencies
and the time components. Then in this case, we like to simulate, a 2 MHz and then the
bandwidth ratio. You would run this impulse response.

The impulse response would be inputted in the command in line 25 where you'd also look
into the transducer handle. The command for generating the impulse response is
xdc_impulse. And in your workspace, you will get these important variables that will
represent your impulse response on your transducer.

Now this is what an impulse response would look like. You have some Gaussian
weighted sinusoid which you can observe here. And in field two, if you multiply the
amplitude by a certain factor, then the impulse response would scale according to that
factor. So depending on your application, one would simulate it that way.

Impulse response

1

« Any amplitude scaling of the impulse
response will cause a corresponding

06| | scaling of the amplitude of the result

0.8}

04}

0.2}

[

Amplitude (V)

0.2 |
04|
-06 |

-0.8 |

\—:;,

\=

0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 v
Time (ms)

After you have created your impulse response, the next is to define your excitation signal.
And this is actually the voltage signal that is being applied to the transducer. And you
would do this by setting using the command, xdc_excitation.

Define excitation signal

« Excitation voltage applied to transducer is set with xdc_excitation command

+ Set the circular piston to be driven by a 5-cycle long, 2 MHz sineburst
MATLAB code:

Ncyc¢ 5; % Number of cycles

fs = 100e6; % Sampling frequency

fo 2e6; X Center frequency of wave

t ex = 0:1/fs:Ncyc/fo; X time vector

ex_pulse = sin(2*pi*fo*t_ex); % excitation pulse

xdc_excitation(piston,ex_pulse);

So we would like to set the circular piston to be driven by a five cycle long, 2MHz sine
burst. Here, Ncyc=5 is the number of cycles. We can find the sampling frequency, and
the center frequency of the wave in this case is 2MHz. And we look at the time vector
which would be used for the timing of our excitation pulse. And then we would generate
the excitation pulse. Now this is a sine burst we had defined. So it's just the sine function
of two pi center frequency times that time vector. So you had created the excitation
pulse, then you would put it in this xdc_excitation command, wherein you point the
handle to your piston transducer that you defined earlier, and then you put the excitation
pulse signal here.

If you would like to display what the signal would look like at a point located 15
centimeters on the axis, then you can code something like this.

Calculate field at each point

Display the signal at a point located at 15 cm on axis

MATLAB code: A

[hp, start_time]=calc_hp(piston, [0 0 0.15]); calc_hp command returns:

:::;:l(:i(;)l:Icn(_](h(hp))/lsoslml time; i. Vector of pressure samples, “hp”

plot(times*1e6,hp), xlabel('time (\mus)'); ylabel('Pressure'); ii. Time corresponding to the sample in
the vector

10"

Output: start _time = 97.4 us

*| start_time @

a7 98 99 100 101 102
wme (us)

Pressure

So our calc_hp function, actually computes the pressure amplitudes at different points in
space. So depending on the location we'd like to compute, we would input the location in
the vector parameter. So the calc_hp command returns a vector of pressure amplitudes,
which here we call hp, and a time vector corresponding to the sample in the vector. You
can also compute the start time, and we'll go through that a little bit further.

In terms of the inputs of calc_hp, we would use this handle to point to our transducer.
And then the location is, in terms of X, y, and z. So the first input of this vector would be
X, second y, and third is z. Since we're looking 15 centimeters on axis, that's in the axial
direction, which is our z direction. And this is in meters. So we use the length of the
pressure samples that we would get, divide that by the sampling frequency of 100 MHz
and to that, the start time is added.

What the start_time does is that when you generate the actual pressure signal as a
function of time then the first sample would start at the start time. The start time actually
corresponds to the 15 centimeter distance, where your point is located.

So that start time is needed to shift the pulse at the right timing. So here you just plot the
signal according to this basic plotting function here. And so this is what we get. We get
five cycles. Of course, it's not a complete sine burst that is evenly distributed, because it
also depends on our impulse response. But this is what the pressure field would look like
at that point in space.

Now if you want to create a two-dimensional map of that pressure field, say from minus
1 to 1 centimeter in the lateral X direction and 0.1 to 10 centimeters in the axial Z
direction. So this is the following MATLAB code here.

2-D field map

+ Create a map of the ultrasound field from -1 to 1 cm in the lateral (x) direction and 0.1
to 10 cm in the axial (z) direction

Intensity field of 8 mm radius, 2 MHz unfocused piston driven with a 5-cycle pulse

MATLAB code:
1 % Initialize the field points
X 0.01:0.0005:0.01; % Lateral
2=0.001:0.0005:0.1; % Axla
3 % Inlitialize matrix I variable
[= zeros(length(z),length(x));
4 % Initialize matrix I variable
for nn = 1 : length(x)
points = [ones(length(z),1)*x(nn), zeros(length(z),1), 2'];
6 [hp, start_time] = calc_hp(piston, points); % Compute p
I(:,nn) = sum(hp.”2)’; % Intensity is proportion to p»2
7 end

I = I/max(I(:)); % Normalize intensity to max value
= % Display 2-D field map
9 figure(3); imagesc(x*100,2*100,1); -]
colormap(gray); axis image; -
10 A xlabel('x (cm)'),ylabel(‘z (cm)'); .
4 0 1 g
x (cm)

Z({cm)

}

The first thing we would need is to initialize the field points. So we would like
calculations at several points in space. And in this case, for the lateral location, we
generate a vector from -1 cm or -0.01 meter, all the way to 0.01 meter. The subdivision or
sub-locations will be 0.5 millimeters. And then in the axial direction, similarly from 0.1
centimeters all the way up to 10 centimeters at 0.5 spatial difference. The next thing after
we have our vector of points is that, we will then initialize the matrix of intensity values

So later on, we'd like to create an intensity map. And the way we would do that is at each
point in space. We have this for loop right here. That's going to go through each lateral
location in X and it's going to calculate what the pressure field would be at that point in
space. And since intensity is proportional to the pressure squared, then what we do is at
that specific point in space, we would first square the pressure signal and sum over that
vector pressure signal. So with that, it's similar to doing the integral of the pressure
squared as we are calculating the intensity.

Then, we would also like to plot a normalized intensity. So we would just divide the
entire intensity matrix by the maximum intensity values and we displayed a two-
dimensional map of it. So the result is also in the figure below, where we have the z
direction or the axial direction in the vertical axis, and we have the lateral direction in the
horizontal axis. And so when we're looking at this, it's showing that the transducer is
emitting the field from the top of the image.

9

10
-1 0 1
X (cm)

You can see the Fresnel region, which is the near field region of your transducer. And
then below that would be the far field region. So it's nice to be able to see, depending on
the type of transducer you had. This simulation program would give you what the field
you would expect to be.

You can also plot the on-axis intensity right. So you can just take the column at a point in
space. When we talk about axis, It means that we start at the zero lateral location, which
is the center of your beam, and then you just plot it across the axial depth. So if you want
to create a on-axis intensity profile from 0.5 to 20 centimeters, then you would code it
like this.

On-axis intensity

Create a plot of the normalized ultrasound intensity on axis from 0.5 to 20 cm

MATLAB code:

2z=(0.0005:0.0005:0.2)"; % Vector of z values sampled at every 0.5 cm

points=[zeros(length(z),2) z]; % Matrix of coordinates with zeros for x, y values

[hp, start_time]=calc_hp(piston, points);

[=sum(hp.”~2); %squares each element of hp and sums along columns (similar to integral of pressure)
figure(4); plot(z,1/max(l)); xlabel('cm'); ylabel('Normalized Intensity');

On-axis

Normakzed Intensity

So first you would specify the points in space. So in this case, we're talking about the z-
axis. So we're going from 0.5 centimeters in 0.5 centimeter intervals all the way up to 20
centimeters right here. Again, these are in meter units. And the points can be such that
you can have your matrix of coordinates with zero values for x and y since we're only
looking at the z direction. We use again the calc_hp function to compute the pressure
field at that location. Use start time again. And we would sum the pressure squared, the
hp squared for doing our integral. And after that, we get an | value, which corresponds to
our intensity. And we would plot the normalized intensity to get the output. You will see
that the x-axis normalized intensity as a function of axial depth right and you can see that
when you are in the near field, the on-axis intensity goes up and down really fast in the
spatial dimension in the near field right. But as you go towards the far field, you notice
that the intensity will climb up all the way to the last axial maxima. and the intensity
would attenuate because the beam is also spreading as you go further into the far field. So
this is a nice way to visualize what your field would look like on axis.

So that is an example of a single element circular piston transducer. Now I'll give an
example of what a focused linear array transducer would look like in terms of its beam

pattern. So what we want to do is we want to create a two-dimensional beam pattern of a
64 element focused linear array transducer with 5 MHz center frequency and it's focused
at 5 cm. So here’s just reminding you again of what the coordinates would look like. So
we have our transducer array. We'll have 64 elements in this case. There is only four here
in the schematic, but we'll have 64 elements in our example. So the beam will look
something like this. And you'll have an elevational direction. You have lateral and an
axial direction. Also, just to remind you that if you remember in the transducer array
lecture where we talked about element width, the kerf, which is the space between the
elements, and then the pitch, which is the kerf plus the element width. So these
parameters will become important when you are simulating your linear array transducer.

Transducer array

HININENEnIE|

So let's go back to the parameters that you will define in your MATLAB code. So first
you have your sampling frequency which is, 100 MHz. The center frequency we would
like to be 5 MHz, so 5e6. Bandwidth ratio, we'll keep it at 70%. The number of elements
are defined here as 64.

Focused linear array transducer

* Create the 2-D beam pattern of a 64-element focused linear array transducer with 5 MHz center frequency,
focused at 5 cm

Transducer array

t tel
'[HA\

HINIEEEEEIE]

1ambda ¢/ fo;
el width=lambda/1.12; X Elemen C
el _height=5/1000; Flement height [m

kerf=el width/9; X Xerf width [m) g

And then we also would like to define the elevation focus of two centimeters, so 0.02
meters. Depending on the transducer that you're trying to simulate, the manufacturer of
that transducer would give you what the elevation focus is. Also, elevation f number here
is 6.5. The kerf fraction, 0.05. So fraction of element width that is kerf. So the fraction of
this element width or the pitch that is actually the kerf is the kerf fraction.

And we would like to see the beam at the focus. So here our focal point is 5 cm, so 0.05.
And since we're only looking at a focal point on axis, your X and Y locations are set to
zero. There are also some other parameters here that will be important when you are
going to calculate others. For instance, the wavelength here would be computed by your
speed of sound and your center frequency. Also, to define the element width, you would
need that wavelength parameter here, as well as you can define an element height and the
kerf as well.

Now let's create the transducer handle. To create a focused linear array transducer, we
would use this command, xdc_focused_array. Depending on your transducer, you would
go back to that table that | had described earlier, which looks at the different commands
for the transducer type. So the inputs for this function will be the number of elements, the
element width, element height, as well as the kerf, elevation, focus, and there are two
others here that relate to the number of subdivisions, so simulation elements within that
transducer element. So here | type 10 in the X direction and 10 in the Y direction,
meaning that for one element I'm dividing it into 10 smaller mathematical elements in the
X as well as in the Y direction. And another input is the focus.

Focused linear array transducer

001 : 0.0005 : 0.1; rdinates (s g
s(length(z), length(x)); t te ty mat ¥ \:;‘
P
So after we create the handle to our transducer, in this case my handle is now called tx,
then we will set the impulse response, similar to what it was previously. So in this case,

Gauss pulse cut off is 5 MHz.

Then you should add -6 dB, Similar to how Gauss pulse was in the single element
transducer part. So we would create the impulse response here, from -tc to 1/fs. to tc , 5e6
and the bandwidth ratio. Afterwards, let's say you wanted to weight the type of pulse.

So here in this case, you would like to apply a Hanning window. So we would just
multiply that impulse response with the Hanning window of a similar length. Then we
would calculate the impulse response again using the xdc_impulse. So after you set your
impulse response, then you can generate an excitation pulse.

Here, the number of cycles is set to 10. So I'm exciting the transducer with a 10 cycle
sine burst or sinusoidal excitation pulse. | also like to weight that sine pulse using a
Hanning function and then calculate the excitation signal by inputting the transducer
handle and the excitation pulse that we sent to the transducer. So setting the impulse
response, creating the handle, generating the excitation pulse, these are the common steps
you would do first before viewing the beam of the transducer. So then we'd also like to
define the spatial grid for the simulation.

So in this case, the spatial grid would go from -1 to 1 cm with at 0.5 cm spatial intervals.
And the Z direction will be simulating from 0.1 cm or 1 mm all the way up to 10 cm. The
variable, Tp, the post duration will be relevant for the next stage of the simulation. We
then also initialize the intensity matrix because here we'd like to plot the beam intensity
of the focus linear array transducer.

Initializing variables helps to make the computation faster. So then now here, we're
calculating the beam pattern right here, where similar to the 2D beam pattern of the single
element transducer, we would have, it loop through the different lateral locations, and
look at the points as a function of the axial locations as well.

[length(z), 1) * x(nn), zeros(length(z), 1), z']; yefine points along the z-axis at each x
[hp, start_time) calc hp(tx, points); Calculate the pressure field at the points
I(:, nn) sum(hp.22) / (2 * 2 * Tp)";
I I / max(I(:)); Normalize intensity
Plot the beam pattern
imagesc(x * 100, z * 100, 1);

colormap(gray);

So using this code, we will be defining the points along the Z axis at each lateral x
location. Then we would compute the pressure field at these points here using the calc_hp

function again where we put the transducer handle and the points variable that looks to
the locations in the field.

Afterwards, we would like to compute the intensity. If you would like close enough
values to the intensity based on the pressure, you can divide by two times the acoustic

impedance and the pulse duration right here. And then you would get the intensity that
would be close enough based on a plane wave approximation. Then here you would
normalize intensity. You would get a normalized intensity variable in I.

Then you would plot the beam pattern according to your spatial coordinates. So this is
how a focused linear array transducer intensity beam would look like, where you can see
that there's a nice focal spot at 5 cm, which would we have defined.

Focused linear array transducer
+ Output: Wim

1 log 2D intensity beam pattern for a 5 MHz focused linear array
2 I transducer driven with a 10-cycle pulse with a focus of 5 cm
3 0.7
4 06
5 05
6 04
7 03
8 0.2
9 0.1 o AN i
|~
10 7
4 0 1

'y *

And for any focused transducers that you would simulate, you would see a really high
intensity beam, and the beam would be much thinner at the focal spot right. You can also
see the focal region, the near field and the far field would be farther in the axial direction.

z (cm)

So | hope this lecture gives you a good overview of how to use Field Il, how to set up the
program in your MATLAB environment. We have defined the transducer. We also know
how to define the impulse response as well as the excitation signal to the transducer. We
learned how to generate 2D intensity field maps of a single element transducer and a
focused linear array transducer. So based on these, the coding is very similar to what it
would be for other types of transducers that is supported in the Field Il environment. If
you want to know more about how to code for different types of transducers, then |
recommend going through the Field Il website, as well as looking through the user guide
to help guide you on how to code. We will see you in the next lecture. Thank you.

