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Basics of wave propagation 

Welcome to Biomedical Fundamentals of Imaging and Micromachined Transducers. I'm 

Professor Karla Mercado-Shekhar. In this lecture, we will describe the basics of wave 

equation. What is the acoustic wave equation? This equation governs the propagation of 

acoustic waves through a medium, such as a fluid. It relates to spatial and temporal 

variables and wave propagation. We don't have time to derive the entire wave equation, 

but I will go over three physically intuitive equations that are important into deriving these 

acoustic wave equations. 

You will recall that in the previous lecture, I showed longitudinal propagation and 

animation of this propagation via particles moving inside a fluid. You would recall that 

there are particles that are going close to each other in the compression region of the wave 

and also particles that are moving away from each other in the rarefaction part of the wave. 

So in these parts of compression, the density of the tissues is much more compared to the 

rarefaction part of the wave. So what the equation of state does is it relates the change in 

the density to the change in the pressure of the wave. 

 

We also look into the equation of continuity, which relates the motion of these small 

particles to the change in the density via the conservation of mass. Here, we assume that 

there are no sinks or sources in the medium. Therefore, mass is conserved within the 

medium. The third equation is the equation of motion, which relates the change in the 



pressure to the particle motion through Newton's second law. You would recall in your 

previous physics courses that force is related to the pressure times the area. 

𝐹𝑜𝑟𝑐𝑒, 𝐹 = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ∗ 𝐴𝑟𝑒𝑎 

And this pressure will cause the force that causes the particles to move. So these are the 

three major governing equations that are used to derive the acoustic wave equation.  

There are several assumptions in the acoustic wave equation. First, there's a constant sound 

speed, "c". Mass density is also constant, as well as the ambient pressure. We also assume 

that there's no mean bulk flow in the medium, and there are no losses, such as no viscous 

dissipation of the wave.  

Acoustic pressure is typically denoted by the parameter P in its spatial, x, y, z, as well as 

the time coordinate. 

𝑝(𝑥, 𝑦, 𝑧, 𝑡) 

The three-dimensional wave equation is expressed as a partial differential equation here.  
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On the left side of the equation is the Laplacian operator, which you might have recalled 

from your calculus lectures. And it describes the spatial partial derivatives of the pressure. 
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 On the right side, we have the temporal partial derivative of the pressure. Now you would 

have noticed from the previous lecture where there is a time-space coordinate relationship 

of the wave. And this is a mathematical description that describes how the space-time is 

related in the wave equation. Now this is challenging to solve, but one can simplify using 

several cases, including plane wave and a spherical wave.  



 

Now what is a plane wave? A plane wave is an acoustic wave that varies only in one spatial 

direction and time.So here is what a plane wave traveling in the z direction is denoted as. 

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝(𝑧, 𝑡) 

 

 

 We have this one-dimensional wave equation only as a function of the spatial derivative 

of z on the left side.  
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And we can write a general solution for a wave that's traveling. Here we have the forward 

traveling wave component here, which is a function of the spatial direction z, the sound 

speed as well as time. And we also have a backward traveling wave here. 

 
 

 

So what this describes is that the wave has two components, a forward traveling and a 

backward traveling wave. But in ultrasound imaging, we're typically more interested in the 

forward traveling wave. In the figures below, here's just some example of a forward 

traveling wave in the z direction, the plus z direction. And here is an example of a backward 

traveling wave in the minus z direction.  



 

In ultrasound images, we typically look at a single ultrasound pulse that can have a wide 

range of frequencies. But here is one solution in which we have a single frequency plane 

wave. Typically pulses are assumed to be sinusoidal signals. And here's an example of a 

sinusoidal signal of a forward traveling wave equation right here.  

 

Now the function here, g, it's typically has to be twice differentiable and that will satisfy 

the wave equation. So this equation here is a cosine function. 

It's a solution to the 1D lossless wave equation. So at any given z, the pressure varies 

sinusoidally with frequency of f, which is defined by  

𝑓 =
𝜔
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=
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the angular frequency here divided by 2 pi. Or you can rewrite this equation, the angular 

frequency can be in terms of the wave number k and the sound speed divided by 2 pi.  

And at any given t, the pressure of any oscillating particle varies sinusoidally with this 

spatial frequency, k, which is also known as the wave number and is defined by  

𝑘 =
2𝜋

𝜆
 

lambda, the wavelength here.  

Let's talk about spherical waves. If you assume an isotropic media, meaning that all the 

material properties are the same in all directions, and you perturb the medium at a particular 

point source, so this produces a pressure wave that is spherical in nature, such as the one 

shown here. 



 

So a spherical wave depends on the time as well as the radial distance from the source, 

which can be noted by the three spatial coordinates.  

𝑟 = √𝑥2 + 𝑦2 +  𝑧2 

And the wave equation in spherical coordinates is denoted by the following here.  
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On the left side, you have the equation in terms of the radial coordinate, and in the right 

side is the temporal coordinate. 

The general solution of this spherical wave equation is as follows, wherein similar to the 

previous plane wave equation, you have a outward traveling wave and an inward traveling 

wave.  

 

And it's a function of the radial coordinate as well as the sound speed and the time.  

So when do these outward and inward traveling waves exist? For a point source where the 

wave is originating from, typically outward traveling waves make physical sense. In a 

vibrating shell, for instance, you have something vibrating, it produces both outward and 

inward traveling waves.  

Now let's describe a characteristic of a wave in terms of attenuation.What is attenuation? 

So it is the decrease in signal amplitude that can be caused by several factors including 



absorption. Now tissues can absorb ultrasound energy and hence convert this mechanical 

wave into thermal energy. Also, scattering can affect depending on differences in the 

material properties. We'll describe later the acoustic impedance of the medium, depending 

on which there could be some reflection or scattering of the ultrasound wave. 

Therefore, the ultrasound will attenuate as it propagates through the tissue due to this 

scattering. Also, diffraction. Now, the ultrasound beam that we create is not uniform in 

nature. There could be some beam spreading, which we'll discuss more in later lectures. 

And this can cause what's called beam diffraction, wherein certain regions of the tissue will 

not be excited or exposed to ultrasound due to this beam diffraction. 

 

Also refraction as well as mode conversion, which can occur and can also attenuate the 

sound. When sound goes through an interface, it can refract, right? And that can decrease 

the amplitude of the ultrasound propagation through the tissue. And there are several cases 

where the longitudinal waves can convert into  shear waves. For instance, as longitudinal 

wave is traveling in a bone, depending on the angle of the longitudinal wave front, it can 

convert into a shear wave. And therefore, this is also a factor that can affect wave 

attenuation. 

 

Now the model of attenuation is defined experimentally. There is an empirical model of 

attenuation. And what we have here is an equation that describes the amplitude decay of 

attenuation.  

𝐴𝑧 =  𝐴0𝑒−𝜇𝑎𝑧 

Where here we have attenuation as denoted by A as a function of distance here, and A0 is 

the original amplitude of the signal. And as the signal is being sent through the medium, 

the amplitude is being decayed as a function of this exponential here, which 𝜇𝑎  is the 

amplitude  attenuation factor and z is the distance within the tissue. 

And this amplitude attenuation factor is defined by this equation here,  



𝜇𝑎 = −
1
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And this amplitude attenuation factor has units of Nepers per centimeters, typically written 

as Np/cm.  

And then we calculate, an attenuation coefficient that is usually denoted by α here. 

α = 20(𝑙𝑜𝑔10𝑒)𝜇𝑎 ~ 8.7 𝜇𝑎  (𝑑𝐵/𝑐𝑚) 

 Now, this term equation can be  simplified as approximated as 8.7 times the amplitude 

attenuation factor. 

So doing this allows the attenuation coefficient to be in units of decibel per centimeter. 

And this is what is typically reported in literature. It's also important to note that attenuation 

coefficient depends on the frequency and typically a power law relationship that is shown 

here. And this power law equation is defined by coefficients such as the a coefficient and 

the b coefficient, which is the power coefficient. One can also approximate b, typically to  

one. 

 

Typically in soft tissues, this b parameter goes from 1-2. Most tissues are much closer to b 

parameter =1. So therefore, here's just an example of a couple of tissues that have their 

attenuation coefficients here in terms of MHz, wherein b is approximated as one. So you 

can see here, there are several tissues that fall within a range of each other.  



 

 

But there are also other tissues such as lungs. Lung is filled with air and we'll discuss later 

how that has higher attenuation compared to the other tissues. Also bone here. Bone is 

considered a hard tissue. It's fairly dense and it typically attenuates ultrasound more than 

the other soft tissues here. Now, how do we measure acoustic attenuation?  

So here I give another practical example using the through transmission setup, which we 

had described earlier for measuring sound speed. 



 

So we can use the same setup here, and I described this earlier in the previous lecture, 

where we can measure the ultrasound signal that is transmitted through water and detect it, 

and then put the tissue sample. When the signal is transmitted, it goes through the tissue 

sample, what is received is actually being attenuated. And we see the signal that is being 

received, such as this in the figure, where this dark green represents the signal without the 

sample, and it just propagates through the water. And the one when the sample was placed 

inside the experimental setup, you can see that it also has a decrease in the amplitude 

compared to the one without the sample. So here, we take these time-varying signals and 

then we compute the frequency spectra of this signal. 

 

So here I denote the Vref here as a function of f, where is f is the frequency. This is the case, 

the frequency spectra of the signal without the sample. And here Vsample corresponds to the 



frequency of the spectra with the sample. And we calculate attenuation using this equation 

right here, and this is the frequency-dependent attenuation coefficient. 

. 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,  

𝛼(𝑓) = 10 log10 (
|𝑉𝑟𝑒𝑓(𝑓)|2

|𝑉𝑠𝑎𝑚𝑝𝑙𝑒(𝑓)|2
) /ℎ 

The thickness of the sample h, can be measured using a caliper or a ruler. This is how you 

can estimate acoustic attenuation.  

Now, moving on to another parameter of the tissue, the acoustic impedance, which is a 

characteristic of the tissue itself. It is analogous to the Ohm’s Law in  an electronic circuit. 

In Ohm's Law, we have the impedance equals the voltage by the current. 

We can relate the pressure P as equivalent to a voltage. We can relate the particle velocity 

u as related to the current and the acoustic impedance related to the impedance of the circuit 

The acoustic impedance is, pressure divided by the particle velocity right. And we can 

rewrite this equation as a function of the density rho and the sound speed. 

𝑍 =
𝑃

𝑢
=  𝜌𝑐 

Typically for soft tissues, since it is mainly composed of water,  the density is typically on 

the order of 1000 kg/m3. And the sound speed on average is 1540 m/s. Now the units of 

acoustic impedance is known as the Rayleigh. Rayleigh is inspired by Lord Rayleigh who 

developed the or who published the theory of sound and it has units of kilograms by meters 

squared by  per second(kgm-2s-1) 

And a Rayleigh is very, very small. So what we typically use is Mega Rayls. So one million 

Rayls, which is a more practical unit in ultrasound. The acoustic impedance has, a factor 

of the density of the tissues. So what we have here is the list of the different densities of 

various soft tissues in the body. As you can see here, most of them fall within very close 

to the density of water, 1,000 kg/m3. We have bone here that is much, much more dense 

than these other soft tissues. 



 

We have the acoustic wave speed in tissues right here. So I have described some of these 

earlier and you can see how much they can vary in a range, with bone being the highest 

since it's a hard tissue.  

 



Now putting these parameters together, we get the acoustic impedance. And the importance 

of acoustic impedance is that any reflection or scattering that you can get from the tissue 

is because there's a difference in the acoustic impedance between different structures of the 

tissue. 

So if there are discontinuities in the material, that can cause a reflection or a scattering. So 

for instance if I have two media with different acoustic impedance, let's say the top medium 

here has acoustic impedance of Z1 and the bottom one here as Z2. If I send an incident 

pulse, once it reaches the interface between those two media, some of it will get reflected 

and some of it will get transmitted. And that's because there's a difference in the acoustic 

impedance between these two media. Now if the acoustic impedance of these two media 

are the same, or these two organs have the same acoustic impedance, then you won't receive 

any reflection. The ultrasound will just travel through the rest of the organs. 

 

 

 

 

 

 

 

 

 

 



And here is an example of the average impedance of different materials.  

 

So air has a very low acoustic impedance compared to soft tissues of the body. And this is 

what also impacts the acoustic impedance of lung, because lung is typically inflated with 

air. Therefore, the acoustic impedance of lung is very, very low. 

And you will see later in the subsequent lecture how this can impact the type of reflection, 

the type of signal or image that you will get from ultrasound. And you can also see from 

the table how bone has a really, really high acoustic impedance. So if I show you an 

ultrasound image of bone, then you can see how a really bright echo can be received from 

that bone interface.  

In summary, we have discussed the acoustic wave equation that governs wave propagation. 

We've also looked at two cases wherein the acoustic wave equation was presented in case 

of plane waves and spherical waves. We also talked about a phenomenon of the medium 

called acoustic attenuation, which is a decrease in the wave amplitude as the sound is 

propagating through an attenuating medium, as well as an important characteristic of the 

medium that defines the echoes that are being reflected from the tissue, which is acoustic 

impedance. So in the next lecture, we will talk more about reflection and scattering and 

how these are used to form an image. 


