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In the discussion of mechanical behavior of materials, we will take up a overview of 

some of the properties, how they arise, the mechanisms behind these properties. And 

further, we will try to discuss how these properties change when we go from the bulk to 

nano materials or nano structured materials. 
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We will also take up issues, regarding artifacts, in testing artifacts, in the properties 

which we observe and try to describe that how we can develop better strategies of testing 

materials. And also coming up with properties which has specifically peculiar to nano 

materials. Some of the properties, which we will be talking about are elastic properties, 

plasticity. We will also talk about strengthening the mechanisms, we will talk about the 

switch over from twinning to slip. We will talk about important properties like super 

plasticity and creep in nano materials and also about the role of green boundaries in a 

structured materials. In the whole process, we will also take up some hybrids like nano 

composites, which are lot of research is being conducted in these areas nowadays. 
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So, we will alternate between the basic property in bulk materials, the description of the 

property, and then take up specific properties of nano materials. Now, it is important to 

start with a broad overview of mechanisms by which a material can fail. Now, this can 

be mechanisms which are physical, they can be electro chemical or they could have other 

origins from which failure can be, material can fail. In this context, failure has been 

defined as a change in the desired performance, which could involve changes in 

properties and or shape. 

As you know there is a component, like a gear wheel, which is meshing into a system 

with other gears in the system, then if there is a change in the shape of the gear, then 

automatically this is constituted as failure. Often, elastic deformation is not included in 

failure, but it is obvious that suppose I have a spring board from which a diver is going to 

take a dive into a pool. If the spring board deflects too much, even though this would 

come under the class of elastic deformation, needless to say this would be a failure of the 

desired performance. And therefore, it would constitute failure by elastic deformation. 

The common other methods are failure would consist of plastic deformation, even if slip 

is one of the important mechanisms of plastic deformation. Fracture where in the 

material cracks propagate in the material leading to failure, fatigue could be one of the 

reasons behind such a failure, and fatigue could also lead to cracking in the material. 



There is creep, and we will see that there are many creep mechanisms, which can 

actually lead to failure. 

Micro structural changes itself can lead to failure. Like for instance suppose I can think 

of twins and stresses related to twins, phase transformations, grain growth particle 

coarsening which we have taken up in detail already. All these can be micro structural 

changes, which would constitute failure. Needless to say chemical or electro chemical 

degradation of material, which includes corrosion, and which includes oxidation etcetera, 

would also can, or can also lead to failure in the material. 

And therefore, because once we have corrosion, that means that the material is getting 

degraded on the surface. And surface being an important part of the whole material can 

lead to desired. I mean undesirable change in the properties of the material. Physical 

degradation, like where an erosion can also lead to failure. And this would be very-very 

important, when you have two components in contact, like the gear wheel, where in 

surface wear could be an important property, which we need to take into account.  

Suppose you talking about blade operating under water, which is propelling a ship, then 

erosion from particles in the medium could be a serious issue. And therefore, that also 

need to be protected against. Having got a broad overview of the mechanisms by which a 

material can be and actually fail. We will take up some of these during the course of this 

lecture, wherein we will see that how some of the properties have a beneficial effect 

when we go to the nano scale. 

And therefore, we can actually improve the properties when you work in nano structured 

materials. Parallely we will also highlight some of the problems in using nano structured 

materials. And therefore putting together this problems and the advantages, we of course 

design strategies for improving the performance of materials and components. 
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The first property we take up is the physical property, which is density, but we take the 

sub, because this is closely related to some of the mechanical properties, like the elastic 

properties. Now, suppose I am taking a bulk material, then the fraction of grain 

boundaries in such material and the fraction of what you might call triple lines is very 

small. And therefore, we can ignore them in terms of the overall contribution to the 

elastic properties. 

Of course, we cannot ignore grain boundaries, when we are talking about plastic 

properties and we will take up those important contributions later, but as far as elastic 

properties go, we can often ignore the grain boundary contribution. The problem with 

nano structured materials or nano structured bulk material is a challenge, because often 

full density or close to the theoretically density cannot be obtained and residual porosity 

can affect the density. 

So, in our arguments, we always have to keep in mind that when you are talking about 

density of nano structured materials, there could be an issue of porosity and this porosity 

could drastically affect the properties, and one, and one of the properties. And we would 

like to get rid of this artifact which is coming from this specimen processing or specimen 

preparation. Now, before we take the elastic properties of a nano crystal, it is important 

to note that, what is a grain? What is a grain boundary? And what are the higher order 

entities in a grain structure? 



Now, I can visualize that of course, we have a single crystal, then you have only one 

defect in the material, which is the surface. Suppose, I have a multiple grain material and 

I draw it schematically here. 
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Then I can notice that, each of this is a grain and one grain can be differentiated from 

another grain. So, this is grain one, and this is grain two, another one grain can be 

differentiated from another one by the orientation difference across the grain boundary. 

Let me highlight the grain boundary by red lines. 

And we have already noted that grain boundaries are regions of lower coordination as 

compared to the bulk. So, both this were FCC copper crystal, then the grain would have a 

coordination number of 12, but the grain boundary would have something less than 12 

and therefore, their regions of extra free volume and lower density. Now, apart from this 

grain boundaries, as you can see there are higher order terms here or higher order 

structural entities, like this is what you might call it triple line. So, in two dimension of 

course, it looks like a point, but in the third dimension, this is a line and therefore, this is 

triple line. So, you have grain boundaries and triple lines. Further you can also conjunct 

their heights that is four grains are meeting at a point, then that would constitute a 

quadruple junction. 

And in terms of the energy and bonding, you can think of the grain interior being of the 

lowest energy. The grain boundary being of a little higher energy, the triple lines being 



of even higher energy and finally, quadruple energy being of the highest energy. If you 

take bulk material, then the volume fraction of each one of them is going to be small and 

it can be ignored, but in nano structured material, this grain boundary. When I am talking 

about a nano structured material, I am talking about a bulk nano structured material. It 

means that the grain sizes of the order of nanometers, so this is of for the instance may be 

a 10 to 100 nanometers. 

And therefore, in such a material, the effect of these on a, the density and elastic 

properties cannot be ignored, obviously needless to say their effect on plastic properties 

and fracture and other behavior also cannot be ignored. Therefore, let us see how these 

entities affect my density. The coordination number and packing close to the grain 

boundaries and which also includes triple lines, which I short form call TL, quadruple 

junction the QJs. And this quadruple junction some time in literature is also called corner 

junctions, is and is expected the coordination number and packing is expected to be 

lower than the bulk in or if you compare it to the single crystal.  

This implies that, on decreasing the grain size, the density of the sample will decrease. 

Though this effect is expected to a marginal effect, this is not going to be a drastic effect, 

but nevertheless when you decrease the grain size. In other words you increase the 

amount of grain boundaries and triple lines per unit volume, then you expect that the 

density would actually decrease for a poly crystalline nano structured material. However 

this effect, that is, that is the reduction in density with grain size is expected to become 

noticeable, when the grain size is reduced in the nano scale regime. And this is an 

important effect which sort of like shows this prominence, only when you go to the nano 

scale regime as we shall see shortly. 

Now, how to understand effect of these? The way to understand is that, we assume a 

certain grain morphology and then from that grain morphology, we can assume that there 

is a distribution of triple lines, quadruple junctions and we can. Therefore, now calculate 

the density based on the distribution of these. One of the most common ways of 

understanding grain structure and grain boundaries the way it is modeled, is to assume 

models of the form which I am showing here. In this case you can see that, there are two 

kind of standard packing of grain structures, which are used. 
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This is using something known as the tetrakaidecahedron, sometime also referred to as 

Kelvin’s tetrakaidecahedron, which is a space filling solid and here I have brought 

something known as the rhombic dodecahedron, which is also a space filling solid. Now, 

we can see that how these rhombic dodecahedron, tetrakaidecahedron can monohedrally 

implies using a single tile, a single shape can fill space. 

Now, the reason for using these shapes is that, this is mathematically easier to model. 

That means I have a single shape, and I can use the entire crystal to be made of, grains of 

all the polycrystal, to be made of grain of this shape. And the difference in choice comes, 

because this solid even though it is a preferred choice for a grain structure, some people 

also prefer to use a rhombic dodecahedron, because every phase has identical shape 

which is a rhombus. In this case, there are two type of phases, one is hexagonal phase 

and one is a square phase. 

And therefore, there are two choices which are classically used for modeling grains and 

to calculate effective entities from grain boundaries and also the mechanical behavior of 

grains. But in the calculations as we shall show now, we will use a different kind of a 

shape for a grain, and this shape we are going to use is a cube. The reason to, for us to 

use a cube is to make it mathematically simple, to actually calculate the various 

quantities which we are interested in. 
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As a first approximation, we shall assume that the grain boundaries have a similar 

character in nano structured material. So, this is a very drastic assumption, but we will 

make the assumption that, even though we are going to nano structured material. The 

overall crystal structure of the grain, the grain boundary structure, the grain boundary 

widths, etcetera remain very comparable or very similar to that in a micron size material. 

So, this is a drastic assumption we are making, but this will help us make a simplification 

in terms of the calculation. 

Additionally we will assume that, we will the value of a grain boundary thickness, which 

is now a very, what you might call a quantity which is based on a definition. The region 

close to a grain boundary where there is a disturbance of the atoms from the expected 

lattice position. I call it a grain boundary region, and this is typically less than about 1 

nanometer, but for simplicity here, we will assume that it is about 1 nanometer. And in 

metals typically it has been found that, it is of the order of about three atomic layers. 

So, to proceed further, we will make two assumptions, number 1 is that the grains are all 

cube shaped, which is of course, a very drastic assumption. Because as we said, the 

closest they actually can come to is something like the Kelvin’s tetrakaidecahedron and 

definitely not close to a cube. The second assumption we will make is that, the character 

of the grain boundaries, the character of the triple lines and quadruple junctions do not 

change as we go from a micron size material to a nano size material. The third 



assumption we will make is that the grain boundary thickness is, which is the region of 

disturbance around a grain boundary or triple line is of the order of 1 nanometer. Making 

these assumptions, we will go ahead and make a model to calculate the fraction of grain 

boundaries with decrease in size. 

Now, we had talked about porosity, we will be ignoring porosity in all these calculations. 

But as we pointed out that in some materials, when in so called bulk or fully dense 

material as reported in later age, would actually have about 3 to 5 percent porosity. And 

this 3 to 5 percent porosity would actually dominate over some of the effects we will be 

talking, regarding grain boundaries and triple lines. 

But nevertheless, we will assume for now it is absolutely theoretically dense, except for 

this green boundary and triple lines, etcetera. And there is no contribution of porosity to 

the overall effect of reduction in density or therefore, it is influence on elastic properties. 

Now, therefore, now I have cube shaped grains which is filling space and the region 

between these cube shaped grains, is the grain boundary and additionally we of course, 

have triple lines, which we can plot like this. 

So, these are triple lines. And the region between the grain boundaries, is the grain this of 

course, this is the grain boundary region and this model and we are showing a two 

dimensional cross section of the three dimensional crystal structure. So, this is my size of 

the grain and this is my thickness of the grain boundary. Now, you can see that, this such 

a structure can be described by unit cell, which consists of this yellow region and the 

blue region around it. So, this is the unit cell which is styling to give rise to the entire 

structure. 
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The fraction of grain boundaries and of course, and of course, triple lines and quadruple 

junction depends on the grain morphology. For, simplicity we have assumed that the 

cube morphology is the one to make our calculations very simple. And in cube grains, 

triple lines can also be referred to as triple junctions, as often done in literature. The 

fraction of triple lines and quadruple junctions become important, when the thickness, 

for about thickness of about 1 nanometer, when the grain size is of the order of 10 

nanometer or below, which we shall see very soon from the plots and the way we make 

the calculation. The fraction of grain boundaries as a function of the size of the grain, 

which we have shown here d. And the size of the grain boundary which is t can be 

written as d cube divided by d plus t the whole cube. This is the pure geometrical 

calculation based on the cube morphology. 

The fraction of the grain boundary region can be written as d cube by d plus t the whole 

cube one minus this value. The fraction of quadruple junctions can be given as 6 t cube 

divided by 8 into d plus t the whole cube. The fraction of triple lines can be given as 6 t 

square d divided by 4 into d plus t the whole cube. Therefore, I have definite formulae 

for the fraction of the grains, the grain boundaries, the quadruple junctions, and the triple 

lines. 

If I plot these functions as a function of the grain size, you would notice that, this is the 

main function, which is the fraction of the grain and the fraction of the grain seems to 



reduce below as you go down to smaller and smaller grain size. So, that means that, if 

the fraction of the grain is reducing that means that the remaining of the material is going 

to increase, which is now going to be the fraction of the triple lines, the fraction of the 

grain boundary, and quadruple junction, which you can normally see that they are 

increasing. 

The important point to note from this graph is that, it is only below about 10 or 20 

nanometers. So, I can draw some vertical lines around this, 10 nanometer or 20 

nanometer. So, in this regime which is below this size, that grain size effect start to 

dominate on these other entities of the crystal. That means if I am at a larger grain size of 

about 50 nanometers and I am in a larger grain size, then I can safely ignore the 

contribution of these two densities or as a, because the volume fraction is going to be 

small then therefore, I can ignore them. 

Now, what happens to these quantities when you are in the small grain size regime and 

we already defined this small grain size regime to be about less than about 20 

nanometers. You notice that, the grain boundaries already start to play an important role 

when you are already less than about 30 nanometers. While the importance of triple lines 

and quadruple junctions become very important, only when you are below about 10 

nanometers. I can see that these function start to dominate only in this regime. 

This is very-very important, because when you are talking about nano crystalline 

materials with a grain size of 10 nanometers, which are plastically deformed. You will 

notice that, you cannot anymore ignore the presence of triple lines and quadruple 

junctions and they will play an important role in the plastic deformation of the material. 

And of course, first before we reach that stage, we will of course, going to talk about the 

elastic deformation of materials with these kind of entities in them. 

To summarize this slide, and to summarize the lesson so far. With decreasing grain size 

the importance of quadruple junctions, grain boundaries, and triple lines is going to 

increase. So, the grain boundary can be thought of as a 2 d structure, the triple line can be 

thought of as a 1 d structure and the quadruple junction can be thought of as a 0 d 

structure. So, you can see that these 2 d, 1 d and 0 d structures actually start to play a 

prominent role, only when the grain size is below about 50 nanometer or more 

specifically about less than about 30 nanometer. 



The grain itself is a 3 d entity as we know, but more specifically the role of triple lines 

and quadruple junction the 1 d and 0 d entities in the structure start to dominate only 

below about 10 nanometers. And the important point is that, we can actually, these 

calculations are coming from assuming a queue morphology and we are assuming a grain 

boundary thickness of about 1 nanometer. And then, we can write down the fraction of 

these various entities given by these formulae by a pure geometrical calculation, which is 

easy to perform. 

Therefore, I can have a fraction of these entities and I can actually calculate how these 

fractions start to change. And the overall trend is that whenever, whatever fraction is lost 

from the grain, goes into either the grain boundary, or to the triple line or to the 

quadruple junction. Now, what effect does this have on the density of the material, 

because we already noted that the bonding the coordination number are actually small 

are lesser as compared to the bulk in the grain boundary or the higher order entities. 

Therefore, now this is going to affect my density and as expected, this density is going to 

be, this effect is going to be prominent about 10 nanometers or of that order. 
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Now, I can write down the density of the material using the formulae that rho is equal to 

1 minus fraction of grain boundary, fraction of triple line, fraction of quadruple junction, 

into density of the grain. That means if I take out all the other entities, what I am left 



with the fraction of the grains, and that fraction I can multiply by the density of the 

grains.  

And then I can multiply the relative fractions of all the other entities, like the grain 

boundaries, the triple line quadruple junction with respect to their relative densities. And 

I will get the density of the entire composite of or now the polycrystal, so nanocrystal I 

will get. I will get the density of the nanocrystal. Now, to get this number I need to know 

the values of f GB, f TL, and f QJ. I need to sorry, I need to know the value of rho GB, 

rho TL, and rho QJ. Having I have already calculated the f', the volume fractions already 

in the previous slide. 

So, I need to know these entities, and this can be, for this of course, you need to do 

some detailed modeling, may be some kind of an atomistic modeling or molecular 

dynamics modeling. But from some kind of a reasonable estimate, which is arrived at by 

looking at various models and also experimental results is that, it is assumed that the 

grain boundary densities about 0.95, the density of the grain. That means now I am 

talking about the relative density of the entity with respect to the grains. 

So, both the relative density implies the density of the polycrystal divide by the density 

of the grain. So, for the individual entities, grain boundary has a 0.95 relative density 

with respect to the grain, the triple line is about 0.90 and the quadruple junction is about 

0.81. That means, as you go reduce the dimensionality from grain boundary to quadruple 

junction. So, this is 2 d, this is 1 d, and this is 0 d, then I see that the density actually 

decreases. 

Now, these numbers of course, as you, as I just pointed out, are not sacrosined numbers 

and it depends on the model depends on the material system, it depends on the what you 

define as a the grain boundary region etcetera, and how you calculated the density. But 

for now, we will assume some kind of a numbers to arrive at, what you might call a 

qualitative picture of wherein can I see a change in relative density which finally, of 

course, I want to correlate with the reduction in the modulus of the material. 

And again I want to point out that, we are actually ignoring porosity in this whole 

calculation, because if porosity is present, that is going to be the dominant factor as 

compared to some of these effects which we are talking about. Needless to say the 



fractions of all these put together has to going to be one from which we have actually 

used to calculate this number at the top. 

Now, if I plot this relative density using these values for the grain boundary triple line 

and quadruple junction, I notice that the relative density actually decreases with grain 

size and you see that below about 20 nanometers, this effect tend to dominate. So, when I 

am below about 20 nanometers I see that I have to worry about the presence of grain 

boundaries and triple lines in the calculation of relative density. That means now the 

density of a bulk crystal if I is 1, then the density of a 10 nanometer grain size crystal, is 

going to be about or let me take a little smaller number. 

So, that here is a going to be about a 98 percent, that means point about 2 percent 

reduction in density has taken place. Purely from the fact that now I have a polycrystal in 

which there are going to be a higher density of grain boundaries triple lines etcetera. 

Therefore, now I have a polycrystal what you might call a porosity free or an artifact free 

polycrystal, purely from the internal geometric structure, which involves grain 

boundaries. There is a reduction in the relative density and this relative density reduction 

can be pretty high, if we are going to smaller and smaller sizes. 
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So, now what is the effect of this on the elastic properties, we will try to study that and 

for that we will have to invoke the concept of what is called the elastic properties of a 



composite. Because now I can think of my polycrystal as a composite between a grain 

and all the other structural entities we have just now talked about. 

But before we go to that, let us talk about elastic properties as certain other 

nanostructures before we take up the elastic properties of the polycrystal as we just said. 

And there are some very interesting examples of nano structures and nano composites 

wherein elastic properties seems to play a very important role. We for start will assume 

an isotropic material that means the properties of the material do not change either with 

position or direction. And we know that for an isotropic material we can describe the 

elastic properties using two independent constants e and u or g and u. 

And therefore, it makes our overall understanding pretty easy. If you, the introduction of 

an isotropic properties of course, brings richness to the system, but makes our 

understanding more difficult. Therefore, we will stick to isotropic properties for now. For 

a cubic crystal, we know that for instance in a, if you actually talk about the, you need 

three independent elastic moduli to describe the elastic properties of a cubic crystal. And 

if you go down to lower symmetry crystals, then you need more and more elastic moduli 

or elastic constants to describe the properties of an isotropic crystal. 

And this assumption is drastic as we shall see for now, because we already noted that, if 

you take a polycrystal a nano polycrystal, the actually the density. And therefore, the 

modulus will vary from position to position, as you get close to a grain boundary expect 

a different modulus as compared to that in a bulk of the grain. Often, modulus of some 

nano structures as are, as reported below. It should be noted that moduli are bulk 

macroscopic properties and the definition is extended to be applicable to these structures.  

So, we should note that modulus as, such as a property, is a bulk macroscopic property. 

That means it is an average over a large number of atoms or a collection of atoms. And if 

I am going to be describing modulus of a small entity, like a nanostructure, like a carbon 

nanotube, which could be a single walled or a multi walled carbon nanotube or I am 

talking about a zinc nanowire wherein the number of atoms are much limited. Then I am 

actually extending the definition of what is might call the bulk elastic modulus to some 

of these smaller entities. 

But nevertheless having extended this definition, let us note that what are the interesting 

properties we can get by working with these nanostructures. Some of the values reported 



in literature, that I am showing here below. Silica nanowires have found to have modulus 

variation in the order of GPa 20 to 100 GPa, zinc oxide nanowires from 140 to 200 GPa. 

Multi wall carbon show the range of 11 to 63, and this obviously depends on the number 

of walls that the modulus is going to change. Single wall nanotubes have modulus which 

are very high, and which approach that of diamond. That means now, even though single 

wall carbon nanotubes can be thought of as folded graphing sheets. But their modulus 

when of course, pulled in the direction of the length, is get pretty high and in fact 

challenge that of diamond. 

That means now I have a entity which is extremely strong, which is a single wall carbon 

nanotube, and people have even envisaged making ropes out of these single wall 

nanotube which can actually take lot of load, which is extremely, which is has very high 

modulus. That means that I can use it as a reinforcement in composite, and we will call 

such composites as nano composites. Even though we understand that the grain size is 

not in the nano, it is the reinforcement which is in the nano to actually obtain very good 

properties. 

Now, to understand the modulus of composites, we need to understand that how if I mix 

two phases, then how would the overall modulus emerges. There are two ways of 

understanding this and this depends on if the state of stress in the presence of the 

composite.  
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So, now let me draw some schematics of composites that actually I could have a second 

phase, which is in the form of spheres. Or I could have a composite, in which the second 

phase in the form of long rods and these rods of course, could be aligned or they could be 

in other forms. And we can also think of laminates which form the composites. Now the 

important thing of course, is the interface between these first phase and the second phase, 

which I mark in red here. So, I have an interface. 

So, it depends if this interface is actually transmitting all these strain, which means that it 

is in a state of isostrain condition, which means the strain in the metrics is the same as 

the strain in the fiber or the other extreme could be an isostress condition, in which case 

the stress in the metrics is same as the stress in the fiber. In the case of isostress, we can 

think of the two materials. Now, suppose this is material one and material two, which I 

draw in two different colors. 

So I can think of two configurations, wherein the metrics and the fiber materials are as if 

in a parallel configuration. Another possibility is that the metrics and the fiber, which is 

the one of them is are in a series configuration. The parallel configuration is like an 

isostrain configuration, and the series configuration is like an isostress configuration.  
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And therefore, using either one of these two configurations I can calculate the modulus 

of the composite given the individual moduli of the fiber and the metrics. In the case of 

isostrain conditions, that means the strain in the metrics is same as the strain in the fiber, 



which is a strain in the composite. I get a formula that E c is equal to E f V f, which is V 

f is the volume fraction of the fiber and V m is the volume fraction of the metrics, which 

is nothing but the 1 minus the volume fraction of the fiber. Assuming that there are only 

two phases in a material, there is no porosity etcetera. 

And this resistance in series configuration gives me a resistance the, what you call the 

modulus of the composites this kind of an averaging is called Voigt averaging and where 

I can get the modulus of the composite. The other extreme of a possibility is the isostress 

condition which I pointed out, which means the stress in the metrics is same as the stress 

in the fiber, which is the stress in the composite. And therefore, this is like resistance in 

parallel configuration which I pointed out, and this leads to what a formula like 1 by E c. 

The E c being the modulus of the composite is V f by E f, f, the subscript refers to the 

fiber plus V m by E m, m being the subscript referring to the matrix. And this kind of an 

averaging is called Reuss averaging.  

Therefore, I have two extremes of the modulus of the composite with respect to the 

volume fraction of the material. Suppose I take any given volume fraction f, just for the 

sake I will call this f 1 here, this volume fraction is f 1. Then I have an upper bound 

given by the isostrain condition, which is nothing but the Voigt averaging and have a 

lower bound given by the isostress condition which is the Reuss averaging. Therefore, 

my modulus of the composite is going to lie between the upper and lower bound of the 

composite. 

The reason that the real composite is not exactly one of the two is that, actually the 

matrix fiber interface could actually be partially be slipping, could actually not be 

contiguous in places. And therefore, not knowing fully what is fiber, each one of those 

fibers and their orientations, and their characteristics of the interface, I can only tell that 

the overall average has to be between the upper bound given by the isostrain condition 

and the lower bound found by the isostress condition. 

And of course, in typical composites, you do not add upto 100 percent of the fiber, 

usually the fiber concentration is about 5 percent, 25 percent, it is a smaller fraction as 

compared to the overall matrix in. Of course, exceptions we may go to higher volume 

fractions. 



Therefore, for a given fiber fraction f, the modulus of various consumable composites lie 

between the upper bound given by the isostrain condition, and a lower bound given by 

the isostress condition. Therefore, now if I am making a composite, the modulus benefit I 

get, has to be between these two limits. And the composite we will be referring to very 

soon is going to be the nano composites, wherein we will be using reinforcement which 

is in the nanoscale. Now, one such example is the case of the multiwall carbon nanotube, 

reinforcement of alumina.  
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Of course, it is better as you have seen that you reinforce the system with system wall 

carbon nanotubes. But it is easier in many cases to actually manufacture multi wall 

carbon nanotubes and reinforce that, and you can see that the grain size itself is in the of 

the order of microns. So, this is not a nano grain size alumina, but it is a micron grain 

size alumina and what is nano in this whole nano composite, is actually these carbon 

nanotubes which you see here in high magnification. 

So, this multi wall carbon nano tubes have been used to reinforce alumina. The Young's 

modulus of such a composite has been found to be as high as about 570 GPa and the 

range typically has been found between 200 and 570 GPa. And this of course, depends 

on the nanotube geometry, its length, it is number of layers in the nano, multi wall 

nanotube, the quality of the nanotube and the porosity in the alumina. But if you note 

that the Young's modulus of alumina is actually smaller, then you actually can get a 



considerable benefit in the modulus by adding a nanotube reinforcement to the ceramic. 

This additionally has been found to also give fractured toughness increment, which of 

course, we do not deal with here, but it is important to note that when you add nanotubes 

to alumina, there are other benefits which you get in the overall process. 
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So, this example of a carbon nanotube is nothing but a example of making a composite 

and therefore, enhancing the modulus of the material by making a composite. 
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Of course, the reason for making a composite as you are aware, is that one or more of 

the properties see a beneficial effect with respect to just the individual components. 

Suppose, I use just alumina or just carbon nanotubes, then what about the properties I 

get, the composite actually gives me added beneficial property up and above each one of 

the components. And that is why I am justified in using a composite, because some of 

these composites are actually difficult to process and synthesize and actually use in 

routine industrial production. 

Now, we had told that a nano polycrystal can be thought of as a composite between 

grains and grain boundaries and triple lines and other kind of a defects. Now, for a first 

order they can actually think of a nano polycrystal to be having, be a composite of the 

grains and these other defected regions in the polycrystal, which we saw just now, that 

has a lower density as compared to the bulk of the grain. These regions obviously are 

also expected to have a lower modulus, because the bonding is inferior as compared to 

the bulk of the crystal. 
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Now, we notice that there is a bulk change in modulus, only when the grain size is about 

below about 20 nanometers. And we had, we continue the modeling which we did 

before, we assume a cubic morphology and we also assume that the grain boundary has a 

modulus about 0.7 that of the grain. Here again, if to really determine the correct 

modulus of the grain boundary is a difficult task. There is obviously no such single 



number which can be thought about, because grain boundary itself we have seen is not a 

single plain, but it is a region in the material. And therefore, we have to assume some 

kind of number, and for now we assume that the E grain boundary is about 0.7 E grain. 

And as before we ignore porosity in the material, because we as we shall see in the next 

slide, porosity could be a serious issue in very many problems and cause very many 

problems. Early result showed that, if there is a reduction in the modulus about, for about 

below even about 200 nanometers. That means that the region we already seen that 

where grain boundaries and other kind of entities do not play an important role, but they 

did observe some reduction in modulus when they were already below 200 nanometers. 

And if you remember the slide from before, all the drastic changes need to happen only 

below about 30 nanometers, and not below about 200 nanometers. And in fact in the 

context bulk modulus of a polycrystal 200 nanometers can even be thought of as a bulk 

material, you can safely ignore most of the other entities in it, other entities implying the 

grain boundary, the triple lines etcetera. 

These samples were perhaps, this result was perhaps, because of porosity in the samples 

and the investigators actually did not characterize a fully dense sample. So, we now can 

understand, perhaps in hind side that these were not really bulk sample, fully dense 

samples and that was giving rise to the change in modulus below 200 nanometers. And if 

you really using the value of E GB 0.7 E G, I, and I have a relative modulus defined as a 

E polycrystal by E grain. That means it is the reduction in modulus with respect to that of 

a grain and a plot the relative modulus with respect to grain size. I see that most of the 

changes seem to take place when you are around about 20 nanometers or below. 

So, this seems to be the region, where actually these other entities seem to play an 

important role and there is a reduction in modulus. Since, I am assuming composite, I 

obviously have to have an upper bound and lower bound as shown here, the upper bound 

corresponding to isostrain and lower bound corresponding to isostress. And I see that for 

a 10 nanometer crystal for instance I can draw dot line like this. 

The lower bound is about 0.9 and the upper bound is about 0.92 or 0.93. Therefore, by 

using my understanding of composites. I can actually calculate the modulus of a 

polycrystalline material and I see that the modulus of a polycrystalline material is 



actually lower by about 10 percent, when you go down to small sizes which is about 10 

nanometer or below. 

But again I have to re emphasize that in such, in such cases actually synthesizing a 

porosity free material is actually difficult. And whenever porosity is present that is 

actually going to dominate the effect and not these other effects which I just now 

described. 
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There is another important clarification, which is required, because if somebody reads 

some old literature, it, there is some effect which is described as super modulus effect, 

which was observed and there was lot of excitement related to that. And this was these 

observations told that elastic properties as large as more than 100 percent enhancement 

elastic modulus multi layers. 

.So, I am talking about thin film multi layers and they saw a huge increment in the 

modulus and they called this a super modulus effect. Now, later investigators of course,, 

could not confirm this super modulus effect, and this work showed that these could be, 

because of artifacts and anomalies. 

These are not perhaps true effects coming from the multi layered moduli, but there could 

be other effects coming, and a reasonable assumption perhaps today would be that there 

is an enhancement perhaps in these multi layers, but that is much smaller than the super 



modulus effect, which is originally described. But more work has to actually clarify that, 

how generally this trend of about increment in modulus, is it only related restricted to 

multi layers, or there are other effects which we need to take it into account? But clearly 

the super modulus effect is no longer attributed as a real effect in nano materials and 

therefore, it can be ignored. The next topic we take up after elastic properties is plastic 

deformation of crystalline materials. 
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And often slip is considered as the most important plastic deformation mechanism. But 

we should note that, there are other important mechanisms as well. And some of these 

become important, like for instance twinning at low temperatures especially in materials 

like BCC materials, where in slip can be limited at low temperatures. 

Additional mechanisms could be phase transformation, and here when I am talking about 

plastic deformation. I implying that there is permanent deformation in the material, that 

means even in the absence of the load, there is a deformation that is caused which is 

going to be permanent. And therefore, phase transformations can lead to permanent 

deformation and the shape of a material. There are creep mechanisms, like grain 

boundary, sliding vacancy diffusion and dislocation climb. And there are other 

mechanisms as well which can give rise to fine permanent or plastic deformation in a 

material. 



Initially we will of course, start with slip, try to understand the role of dislocation motion 

in slip. We will understand also why crystals are weak, in for instance in a tensile test. 

And then later on understand how the behavior and of nano crystalline materials and 

nano single crystals are different from that of the bulk materials which we have been 

discussed. 

We have to of course, note that in amorphous materials that the plastic deformation 

mechanisms could be very different. And this could involve sheer banding or even 

discuss flow, which is like almost like a Newtonian flow, liquid flow. And this typically 

in for instance bulk metallic glasses, it takes place above the glass transition temperature 

of the bulk metallic glass. 

So, we have looking here at a broad overview of all the plastic deformation mechanisms 

and crystalline materials, but we will essentially focus on two or three of them. Initially 

on slip later on, on little bit on twinning and further down the lectures on creep 

mechanisms. 
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If I want to understand the plastic deformation by slip, the simplest test I can do on a 

material is the what is known as the uniaxial tension test. And when I perform a uniaxial 

tesion test of course, I get what is called a load stroke data that means I apply a load and 

I get basically some kind of an elongation or increase in length of the material. 



Initially this load stroke data of course, can be plotted, as something known as an 

engineering strain versus stress plot, or it can also be plotted as a true stress versus true 

strain plot. There are two ways of plotting this data, and the way it is plotted can make 

the curves look very different, as you can see this curve on the left goes up the 

engineering stress strain curve goes up, then it finally starts to come down. And finally, 

there is a fracture while the true stress strain curve always keep going up and finally, till 

there is fracture. 

Now, there are lot of important properties you can actually calculate from this uniaxial 

tension test, which includes for instance the yield strength, the ultimate tensile test 

strength, the fracture strength. And whenever the word strength is used in this context, it 

implies a fracture stress or ultimate tensile stress and you can also calculate for instance 

the elastic elongation, the elongation to the ultimate tensile strength. And finally, the 

elongation beyond which the material fails, which is called a elongation for fracture. 

Now, the important things to note from this curve are, initially there is a linear region in 

this curve, which we call the elastic region and there is a corresponding elongation which 

is now my elastic elongation given by this value e u. Now, the value of e u and epsilon 

elastic, e elastic and epsilon elastic is very-very similar, because in small strains I can 

actually use the engineering strain as well as the true strain and they are equivalent. Only 

when the strains become large that I have to differentiate between engineering strain and 

true strain. 

Now, if you want to divide this curve into parts, the linear part can be thought of as what 

is called the elastic region. But we have to note that, this elastic region is 

macroscopically elastic. In other words, if I really want to know truly microscopically 

elastic region, then that is related, that is only occurs to a very small strains of the order 

of about and I mark a point A here and this is the strain of truly elastic. 

This strain is extremely small and therefore, beyond that the region, though the curve 

appears straight from A to Y. So, the point A to Y, the curve is straight, so this is 

macroscopically elastic, but at microscopic scale, there is actually some plasticity which 

is already taking place. The reason behind this plasticity we will see soon, is motion of 

dislocations leaving the crystal or the grain boundary. 



Now, if I carry on my uniaxial tension test beyond this point Y, then I see that the curve 

goes up in the case of the engineering stress strain diagram and comes starts to come 

down. This peak is where we attribute the formation of a neck and this neck is forming, 

because there is localized deformation, that means that the deformation is not spread 

across the entire gauge length, which I can call L 0. 

So, there is a localized deformation, and this localized deformation finally leads to 

fracture and the material separates into two halves. And then the ductile material 

typically you will observe something known as a cup and cone fracture and of course, an 

extremely ductile materials, you may even observe something known as a rupture where 

in the specimen thins down to a point and then it fails 

Now, this region, blue region and the curve too often it is casually called a plastic region, 

we have to note that is actually elastic plus plastic and that it becomes obvious if I load 

from any point, like a point, like n or a point like n here. Wherein if I unload this curve, 

then the curve will unload parallel to my y axis and I will get an elongation. So, let me 

go down to the board and draw this again hence to avoid cluttering this diagram. 
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So, the elastic deformation I will exaggerate here, so that it becomes easy to visualize 

this straight region of the curve, this is the exaggerated actually the slopes are of the 

order of giga pascal. 



And now, if I unload from a point say m in the curve, then of course, I can draw a 

vertical line and this is now my engineering strain, true strain, sorry engineering, true 

strain, true stress diagram. And I will now unload from point b and I can, I will notice 

that the unloading will take place parallel to this line that slope of these two lines will be 

same. And if I notice, then these are two similar triangles. At this implies that, this 

implies that, actually this region, which is the blue region.  

That means by drawing similar triangles and unloading and unloading curve being 

parallel to this original elastic line. I observe that actually I recover more strain here as 

compared to if I unload from point y. So, in some sense, in the sense of the strain 

obtained, the so called plastic region is more elastic than even the elastic region. 

Therefore, I need to call this plastic, so called blue part of the curve as actually elastic 

plus plastic and not merely plastic. 
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There are few things we of course, we need to ask is that why is that this curve going up, 

the blue curve, and this phenomena that does stress actually required for flow increases 

with strain is called work hardening or strain hardening. And that means the material is 

getting harder and harder as I am plastically deforming it, till of course, we reach a point 

like fracture. The reason is as we peak ahead is, because of motion of dislocations and 

the increase in dislocation density that and this intersection of dislocations making 

dislocation motion difficult 



Therefore, this is an result of what is known as a uniaxial tension test and to summarize 

the important points, there is truly elastic region from origin O to point A, there is a 

linear portion which we call the macroscopically elastic region. But between point e and 

y, this is, this specimen is actually microscopically plastic also. From Y to F, the material 

is undergoing strain hardening, which is nicely seen in the case of the true stress true 

strain curve, wherein the curve is constantly going up. There is a point n in the 

engineering stress strain curve after which the curve starts to stoop down and this is the 

point of onset of making, that means the deformation is very local. 

And we will see that what are, later on the strain hardening exponent is going to play an 

important role in determining the amount of strain you are going to get after necking. 

That means the overall ductility is going be dominated by a factor, which is n, which we 

will see later, which is called the strain hardening exponent. Now, what are the variables 

in a plastic deformation. 
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So, here we are sort of like getting a broad overview and a general feel of the plastic 

deformation and materials the details of which of course, can be consulted to a basic 

course in the area. Stress, strain, strain rate in temperature, and normally the effect of 

strain rate comes into play, only when you increase strain rate by a few orders of 

magnitude. That means suppose I am conducting a test that is a strain rate of 5 per 

second and the double the strain rate into 10 per second, then this is not expected to 



affect many of the properties including ductility or the ultimate tensile strength. But 

suppose I increase the strain rate by a few orders of magnitude from 10 to say 10 power 

four, then I do expect that the overall behavior of the material is going to change. 
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Temperature is a very important parameter in plastic deformation and when I am 

drawing curves like these, I am assuming that the temperature is constant. That implies 

that I am and this temperature at which that those stress strain diagrams are seen are 

typically at room temperature, and at elevated temperatures, you would notice that the 

behavior of the material is going to drastically change. Now, there are some standard or 

there are some standard equations, some kind of an empirical equation which can be 

written.  
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Connecting some of these variables important in a plastic deformation, at low 

temperatures you can write and this is one of the standard equation, stress sigma, which 

is now true stress can be written as a constant into epsilon which is the strain power n. 

And this we are assuming is conducted at constant strain test at constant temperature K is 

called the strength coefficient and n is the important parameter, which is called the strain 

or work hardening coefficient or the work hardening exponent. 

For copper and brass n is about 0.5, that means that this material can be given large 

plastic strain much more easily as compared to steels, which is, which has a smaller 

strain hardening exponent. Now, what is the importance of the strain hardening exponent 

is that, if there is a localized deformation like necking, then there the strain there is 

larger. And that implies, because this, it is end it is exponential, that means the stress is 

going to be larger therefore, further plastic deformation. And this implies that the softer 

region of material adjacent to the region where you actually put more strain which 

became harder that means to draw schematically here. 
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Suppose I had a material like this with a neck, so this region has undergone more plastic 

deformation as compared to this region, and this implies if with larger end. This material 

be harder as compared to this region of material, that means this if, because this region is 

softer, the plastic deformation will tend to spread here rather than get localized here. 

Therefore, I will get more tensile elongation.  
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If I have a larger end, that is why a material like brass with a higher strain hardening 

exponent like 0.5 gives you more plastic strain in uniaxial tension as compared to steels 



with a lower strain hardening exponent. At high temperatures, now when we are talking 

about high temperature, we are talking about a temperature above the re-crystallization 

temperatures of material. It is not strain, which is the important variable, but it is strain 

rate which becomes the important variable. And therefore, I can write an equation at for 

high temperature deformation as sigma is equal to C epsilon dot power m and of course, 

when I do these tests, I keep the strain and temperature constant. 

For two specimens which have undergone tests, to have comparable values. C is a 

constant and m is another important index, which is called the strain rate sensitivity. This 

is very, very similar to m for low temperature tests. So in low temperature, the important 

variable is strain, and the important exponent is the strain hardening exponent. At high 

temperature it is the strain rate, which is the important variable and it is the strain rate 

sensitivity which is the important exponent. 

Now, if m has a large value, then you would expect a behavior at high temperature, 

which is similar to having n having a higher value in the case of low temperature 

deformation. If m is equal to 0, that implies the stress is independent of strain rate and 

the curve would be same for all strain rates. If m is higher and typically for metals it is it 

has a value of about 0.2, then you expect that the material would strain rate harden more 

compared to the material of with lower strain rate sensitivity. 

If m is in the range of over 0.4 to 0.9, the material may even exhibit super plastic 

behavior. We will of course, see what is super plasticity and under what condition do we 

will obtain super plasticity later. But essentially super plastic behavior implies that you 

are getting very large elongations of the even of the order of 400 percent, or 500 percent 

or 1000 percent, which is not seen for the case of a normal material like steel or even for 

aluminum. 

That means strain rate sensitivity is going to be an important parameter for me in 

controlling, giving me the dictating, the amount of elongation I am getting at higher 

temperatures. If m is equal to 1 which is the extreme case, the material behaves like a 

viscous liquid or a Newtonian liquid which just flows.  
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Therefore, if the effect of strain rate sensitivity is very, very similar to that of strain 

hardening exponent, which is at low temperatures. To understand this effect of strain rate 

sensitivity, we will dwell well little deeper now. Now, we have already seen that, stress 

can be written as C epsilon dot power m and the test being conducted at constant range 

and temperature. Now, in some materials due to structural condition and high 

temperature, necking is prevented by strain rate hardening. 

So, the effect as I told you about n at low temperature is the effect that, it actually 

uniformly spreads your deformation and therefore, localize necking is reduced. Similar 

role is played by m at high temperature, and we will try to understand that how it 

happens. So, we can of course, write C epsilon dot per m, load per unit area, which is the 

definition of stress of course. 

And I can rewrite the same equation of, using this equation I can put sigma is equal to C 

epsilon dot power m. And therefore, I can write epsilon dot power m is P by C into 1 or 

power 1 by m and into 1 by a power 1 by m and from the definition of true strain rate, 

which is epsilon dot is sorry, this m should be cut out. 

So, epsilon dot is 1 by L, dL by dt and therefore, putting these two equations together, I 

can get a relationship of dA by dt, which is nothing but the decrease in the cross 

sectional area per unit time. So, that, because a negative sign there is a decrease, so it is a 

decrease in cross sectional area per unit time. That means, how fast is the necking 



proceeding if, of course I the, if the overall specimen remains without necking. That 

means that the decrease is going to be small, but, because there is a necking taking place 

in a selected region. This implies that there is going to be a increased reduction in area in 

the localized region which we call neck. 

Of course, dA by dt depends coming from these two formulae, putting these two 

formulae together, and arriving at this derivation is P by C power 1 by m, which are all 

constants of course, and 1 by A, power 1 minus m by m. If m is small, smaller the cross 

sectional area, the more rapidly the area is reduced. That means if I have a small strain 

rate sensitivity, then the smaller cross sectional areas will decrease even more rapidly 

and that is not a good condition for obtaining long elongations. Of course, if m equal to 

1, we see that it becomes like a Newtonian viscous liquid, but between the value of small 

m to large M. 
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We will try to understand how this relationship can be understood better using plots. So, 

I have seen from previous relations of dA by dt can actually be related to A with the 

power 1 minus m by m. 

So, if I plot dA by dt, which is the left hand side of this equation, which is the reduction 

in area per unit time versus A, and try to compare different materials with different m 

values. And these are of course, actual materials will have, will be close to one of these 

curves. If m is 1 by 4.25, and we said that this is something in the range where typical 



metals lie, which is about 0.25. We see that for a given area, the reduction in area is 

large. 

On the other hand, if I had m of the higher value, that means that the increasing m curves 

are going from here, to here, to here along this dotted line, as you can see. That means 

for a given value of A, say for some value A 1 for instance and if I have a higher material 

with higher strain hardening strain rate sensitivity, then the reduction area would be 

smaller. 

So, we will actually be on the lower curve rather than the higher curve. And if it is even 

higher like 3 by 4, then you will be on the even lower curve. This implies if I am going 

to compare different materials with different strain rate sensitivities, it is better for me to 

have a higher strain rate sensitivity, because in that case the reduction in area per, that 

means dA by dt, which is the reduction in area per unit time would be smaller. That 

means that now my deformation is not going to be localized. 

And therefore, the deformation is going to spread across the sample and therefore, I can 

get higher elongations. Now, if you look at experimental results done on various 

specimens, you would notice that the curve on the left which I have drawn in the box 

here. You can see that the percentage elongation versus m, you see that, if m is larger. 

And now, this is now comparing various materials under various conditions there you 

can arrive at a schematic trend line that, if m is larger then you get larger percentage 

elongation 

So, to summarize these few slides. Plastic deformation means permanent deformation, 

slip and twinning are two important mechanisms of that. In normal deformation like 

pulling of aluminum rod under tension, it is slip which is the dominant form of 

deformation. One of the simplest test actually we can do to understand the mechanical 

behavior of a material is a uniaxial tension test, which is typically plotted as a 

engineering strain, engineering stress diagram or a true stress true strain diagram.  
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We can get important parameters regarding the mechanical behavior like elongation to 

fracture ultimate tensile strength etcetera from these curves. The curve can be understood 

as macroscopically elastic and elastic plus plastic regions. 
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The important variables in plastic deformation are stress strain, strain rate and 

temperature. At low temperatures, it is strain, which is the important variable, at high 

temperatures it is strain rate which is the important variable. That means that I do not 

have to worry about the neck strain, the material does not accumulate strain, the material 



is constantly replenishing its microstructure. Such that, at high temperatures you can, you 

do not have to worry about the strain in terms of hardening, it is the strain rate which is 

going to give you hardening. 

Therefore, there are two empirical formulae which commonly used in literature, which is 

gives you the connection between these variables which is sigma is equal to K epsilon 

power n, where n is the work hardening or the strain hardening exponent. At high 

temperature, you can write down as C epsilon dot power m, which m is the strain rate 

sensitivity. And if I want to study the effect of strain rate sensitivity I can actually talk in 

terms of reduction in cross sectional area per unit time. And if I look at reduction in cross 

sectional area per unit time.  
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One of I can I would have a curve for each one of the material I am studying and for a 

given cross sectional area, the reduction would be more for a material with a low m as 

compare to a material with high m. Therefore, higher the m, the smaller would be the 

reduction in the cross sectional area with time. Now this also can be understood by 

plotting experimental results for various materials, and you see that with increasing m, 

actually you are seeing that there is an enhanced ductility, which is obtained.  
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And the explanation which is very-very similar to what I told you for n for small 

numbers, n for small low temperatures can be now thought of as m for high 

temperatures. That means, if necking is going to take place, there is reduction in area, 

there is a dA by dt term here, and if the, since there is a reduction here, the dA by dt here 

is going to be larger than the dA by dt here, where there is smaller reduction in area. 

And this imply this region is going to get harder with respect to this region. If m is has a 

high value, which also implies that this the necking would now spread to other regions or 

the deformation would spread to other regions, and will not be localized to a region 

where the original reduction in area took place. That means now I will get longer 

elongation, and therefore I can understand the schematic trend line which is been drawn 

here for these materials. 


