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So in the previous lecture, we have discussed about the equilibrium condition. We said that

equilibrium can be defined as the state in which for every process there is an inverse process

going on at the same rate. So that is the statement of a balance. Then, we talked about the

balance between generation and recombination processes. We talked about scattering of the

electron and holes.

We mentioned that the entire semiconductor under equilibrium at any temperature > 0K can

be visualised as consisting of randomly moving particles namely electrons, holes, phonons

and protons and randomly located impurities all fixed in their place. Now this is the so-called

particle  approximation  where  we  said  that  between  2  collisions  or  between  2  scattering

events, an electron or a hole can be regarded as a particle.

However, the scattering event itself and the mass of the particle between the 2 collisions,

these  2  entities  have  to  be  derived  from quantum mechanics.  We explain  why  quantum

mechanical basis is necessary for explaining scattering and why the nature of randomness of

motion  or  particles  is  very  essential  for  scattering  to  happen.  Then  we  said  that  at  the

microscopic level equilibrium state can be visualised as intense motion but no net motion.

So while the carriers are moving about rapidly they are not contributing to any current in any

particular direction. Then, we began our discussion on charge transport, we said that if you

superimpose on this random thermal motion a directed motion, then we can get current out of

the semiconductor. Now how do we impose a directed motion, so we said there are 3 driving

forces, the electric field, magnetic field and the heat flux.

So we can either talk in terms of the fluxes namely the electric, magnetic and heat fluxes, or

we can talk in terms of the electric field, the magnetic flux and the heat flux. So these 3

fluxes give rise to a hole flux, an electron flux and a displacement current flux. Now the



electron,  hole  flux  and displacement  current  flux  in  turn  give  rise  to  their  own electric,

magnetic and heat fluxes.

Now how does the electron current give rise to or a hole current give rise to electric field,

well  during flow the electrons  and holes can get redistributed and therefore positive and

negative  charges  can  arise  in  the  device.  And  this  positive  and  negative  charges  can

contribute to the electric field. Now this electric field is different from the driving electric

field.  Now similarly when the electrons  and holes are  moving, we know that  around the

current there is a magnetic field.

Also when there  is  voltage  drop across  a  device  in  some regions,  there  can be a  power

dissipation and then the temperature in that region of the device will go up. For example, we

gave an example of a power device near the junction, there is lot of power dissipation and so

junction is at higher temperature than let us say the base or contact of the device. So this is

how the current of electrons and holes and displacement current they give rise to their own

electric, magnetic and heat fluxes.

And these fluxes then interact with the driving fluxes, driving, electric, magnetic and heat

fluxes, and then that is how the whole current can be visualised. Now one important point is

that when we make the particle approximation of the carrier for visualising the equilibrium

state or the carrier transport, we must know the validity of this particle approximation. When

is it valid? Now that is the question that we will defer for the moment, we will take it up later.

Right now, let us visualise how the directed motion can be super imposed over the random

motion. We will do so with the help of an analogy.
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Now here is the analogy, this part of the diagram shows a semiconductor in which the random

motion of a carrier has been traced, a voltage has been applied and there is a current flow.

Now this current can be visualised as directed motion superimposed over random motion.

Now that superimposition principle can be understood with the help of this analogy, where

we have shown a box of sweets on which some insects are hovering.

Now when the box of sweet is stationary we can the system is under equilibrium all  the

insects are hovering around over the box of sweets and there is no net movement of the

insects in any direction. Now when we start moving the box to the right, what will happen is

the insects will keep hovering randomly and at the same time try to follow the box of sweets,

because they would like to remain over the sweets.

So the motion of the insects is actually replicating the motion of electrons or holes in the

semiconductor. So in this analogy, the carrier motion is analogous to the insect motion the

force and the carriers, due to the electric field is longing of insects for sweets. So this is how

a directed motion superimposed over a random motion can be visualised. Now let us return to

the case of 6 couple flows, so visualisation of this directed motion, superimposed or random

motion and the directed motion due to the 6 coupled flows, visualisation of this  is fairly

complex.

Therefore,  we need to make some approximations regarding the 6 flows, let  us see what

approximations  can  we  make.  So  what  we  will  do  is,  we  will  tabulate  the  flows,  their

approximations and what is the implication of the approximations that we are making.



(Refer Slide Time: 07:22)

Let us take up the electric field, the magnetic flux B, heat flux Q and displacement current

density. Related to E we make the approximation that the rate of change of E with time is

small,  this  is called the quasistatic  approximation,  so we assume E to be quasistatic.  The

consequence of this would be that JD displacement current is negligible, because you know

that JD is given by epsilon into dou E/dou T.

So if  dou E/dou  T is  small  that  is  the  quasistatic  assumption  JD would  be  small.  Next

consequence is that  B is  quasistatic,  you know that  changing electric  field give rise to a

circulating  change in  magnetic  field  around the electric  field.  Now if  the rate  of  change

electric  field  is  small  then  rate  of  change of  magnetic  field  also  is  small  with  time  and

therefore B is quasistatic.

Now let  us discuss some further approximation of B, in fact what we will  do is that we

neglect B altogether. As a result, the E will be non-circulating and so expressible in terms of a

scalar potential psi. So you know that when there is no magnetic field the electric field can be

expressed as negative radiant of potential and that is psi. Similarly, we shall neglect the heat

flux altogether, this amounts to assuming that the radiant of the lattice temperature is very

small.

Now at  this  point,  let  me clarify what  lattice  temperature  means.  As they are mentioned

earlier we shall talk about 2 temperatures, the temperatures of the carrier and the temperature

of the lattice. Temperature of the lattice is nothing but the temperature of the phonons. So



now let us look at the displacement current. Once we assume E is the quasistatic, we have

already said that the displacement current is negligible. So the implication of assuming the JD

to be negligible is that E is quasistatic.

Now, there is a note here at the bottom of the table which talks about how the JD and the

magnetic field or flux B come into play as you go on changing the rate of change of dou E or

rate of change of electric field. So dou E/dou T rises, first JD will come into play and there

after  you will  get  the  effect  of  dou B/dou T.  So we will  have  to  consider  effect  of  the

displacement current first.

So we can continue to neglect the magnetic field for some high frequencies and that very high

frequencies, we will have to take into account magnetic field, that is the meaning. So what we

are talking about here is as you increase dou E/dou T, how does the approximation that we

have made fail and how we need to incorporate the effects.

(Refer Slide Time: 10:48)

So now our picture is as follows, on neglecting B, Q and JD, we are left with just the fluxes

namely, fluxes or flows, flows is a more appropriate term here, because E is not a flux but the

field.  So we are left  with quasistatic  electric  field E, then Jn and Jp,  and the interaction

between these 3 flows is as shown namely that the quasistatic electric field drives the directed

motion, creates Jn and Jp which in turn set up their own quasi-static electric field.

Because during motion they may redistribute carriers and positive and negative charges may

be created. So those are responsible for this particular electric field and this electric field



interacts  with  driving  field,  okay,  so  that  is  the  picture.  Now  you  can  see  that  this  is

considerably  simplified  picture  from 6 flows, we have come to just  3 flows. So another

alternative way of visualising the same thing is instead of the quasistatic electric field, we can

talk in terms of the potential gradient.

So potential  gradient  drives the current,  which in turn sets  up its  own potential  gradient,

because of positive and negative charges coming from redistribution of carriers and there is

an interaction of these 2 potential gradients.

(Refer Slide Time: 12:39)

So we have now got a simplified picture of the directed motion, superimposed or random

motion and the directed motion being only involving 3 flows. Similarly, this is considerably

simpler than E, B, Q driving Jn, Jp, JD which in turn setting up their own fluxes and so on.

So this  picture  which  is  the  accurate  picture  valid  for  all  frequencies  and all  conditions

namely all temperature gradients, a simplified for our course we are going to use this picture

only, okay.

(Refer Slide Time: 13:13)



Let us now look at approximations related to the current densities, Jn and Jp. So the important

approximations related to these flows are the particle approximation and the effective mass

approximation. Now, the implications of these approximations are that carrier flow can be

visualised as the randomly moving population just like dust particles or insects hovering on a

sweet box, subjected to a directed motion by electric flux or electric field, or magnetic flux

and heat flux.

We have neglected the heat flux and magnetic flux but in general it can be visualised as a

result of these driving forces. Now we are going to neglect the tunneling currents, because if

you  like  the  particle  approximation,  then  you  cannot  explain  the  tunneling  current.  For

explaining tunneling current, you have to regard the electron as a wave.
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Now let us discuss the effective mass approximation. First let us focus on the diagram, now

what is shown here is the electronic potential Uc(x), on the y axis as a function of distance

inside  the  crystal.  For  simplicity,  we  have  assumed  a  one-dimensional  crystal,  so  the

electronic potential means this is the kind of potential and the electron will see. So if you are

deep inside the semiconductor, then you will only see these periodic potentials because of the

atoms.

These points here indicate the atoms, location of the atoms. The distance between the atoms

is a, and this line, this red line, indicates the potential corresponding to an electron far away

from all forces. This is called the vacuum energy or vacuum potential. These 2 ends here and

here are the ends of the semiconductor sample of crystal surface. So as an electron comes

nearer the end it will experience a potential barrier, it will not be able to escape easily.

Now we will be concentrating on the electron deep inside so that it experiences only this

periodic potential. Let us explain how this periodic potential that is shown here is obtained,

how this kind of a shape is obtained for the potential.

(Refer Slide Time: 16:10)

Suppose I consider an atom which is positively charged at this location, this is let us say x.

Now I want to plot the potential that will be experienced by an electron, so as I move of

electron along this x axis what potential will it experience. Now the formula for electronic

potential  is - q upon 4 Pi into epsilon into x, where let  us say this is origin. So x is the

distance of the electron from the atom.



So the conventional potential is +q divided by 4 Pi epsilon x, where epsilon is the dielectric

constant of the medium, whereas for the electrons you will put a negative sign. Now if I

sketch a curve representing this function, potential function it would look like this. So for

large x this goes to 0 and for small x it goes to - infinity. So your potential function looks

something like this.

Now similarly I can plot the potential function if I am coming from this side, it would be just

a curve that is reflected on this so symmetric, something like this. Now let us bring another

atom nearby so suppose I put another atom somewhere here, now if you sketch the potential

for this atom it would look like this. So between these 2 atoms if I sum up these potentials,

this line and this line, and I show it by a dotted line it would look something like this.

Now if I put an additional atom here, then the potential due to that atom will get added to

this. Similarly, if I put an atom here its potential will also get added here, however since the

potential is rapidly reducing to 0 the effect of the other atoms on this potential would not be

that much. So this is how you get this particular curve for potential between any 2 atoms.

Now if you put a series of atoms like this between every 2 atoms you will get curves similar

to this. Now in an atom, in a crystal you not only have positively charged atoms, you also

have a large number of carriers. We are looking at the picture for a single electron or a single

hole, let us say we look at the picture for a single electron, then the electron is under the

influence of the potentials of all the atomic nuclei and it is also affected by the potentials due

to other carriers, other electrons and holes.

So therefore in  this  diagram that  is  shown on the slide this  Uc(x) includes  not  only the

periodic potentials  of the atoms but also the effect of other carriers.  Now that is what is

written here on the slide, so Uc(x) is the potential of the lattice atoms modified by a screening

factor due to attractive or repulsive forces from other carriers, also the negative gradient of

this potential Uc(x) would give you the lattice forces. So the forces exerted by the atomic

nuclei and other carriers on the electron.
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Now let us apply an electric field so that the electron is accelerated. This diagram shows the

application of electric field; the moment we apply the electric field what you find is that all

these atomic potentials have started decreasing with distance. So the new potential is super

imposition of an externally applied potential or field and the periodic potentials. So clearly it

gives you the feeling that the single electron that we are considering is now on a potential

slope.

So there is potential slope like this and definitely this potential slope is going to accelerate the

electron. The field applied is from right to left, and that is exerting a force from left to right.

So as shown on this slide, in the bulk of the large semiconductor, the periodic potential Uc(x)

alters the carrier acceleration due to the applied force, FA = - of q times EA which is the

applied electric field, as compared to that in vacuum.

So what we are saying is, if the electron was in vacuum, then the picture would have been

like this.
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So in vacuum the potential picture is something like this, so you have this line, this is again

electronic potential and this is x and you have an electron here so it will accelerate in this

direction. So the potential variation like this implies an electric field in this direction and a

force in this direction. So this is a potential picture in vacuum, you do not have these curve

crystal potentials, periodic potential.

So in such a situation if the electrons are accelerating, then this acceleration would be given

by A = the force by the mass in vacuum that is M0. Now let us look at the picture in the

crystal, so here the equation has got modified to FA - gradient of Uc, the so called periodic

potential = M0 dv/dt, in vacuum this - gradient of Uc would not be there, the equation would

be FA = M0 into dv/dt.
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Moving on to the next slide, the modification of the carrier acceleration by Uc(x) is modelled

by assigning the carrier in a semiconductor and effective mass mn assuming electrons, the

effective mass for holes would be m suffix p, and what is the equation for mn, so that is

written  out  here  FA,  which  is  M0  dv/dt+  gradient  of  Uc,  this  is  the  periodic  potential

experienced  when the electron  is  moved in  a  crystal  rather  than in  vacuum, then this  is

actually set = m suffix n into dv/dt.

So this is how the effect of delta UC is captured in Mn. The next slide points out that Mn is

different from M0 and can even be negative.  Now this is the important  point that Mn is

always different from M0 because it captures the effect of electronic potentials and it turns

out  that  when you do a  detailed  quantum mechanical  derivation,  for  some situations  the

effective mass can even be negative.

One more point about the effective mass approximation. Ucx varies over a small length scale.

So the interatomic distance a is much less than the thermal average de Broglie wavelength of

a carrier at any temperature, which is given by h/MnV thermal. So since this a is very small,

then the de Broglie wavelength, notice here that MnV thermal is the momentum of electron at

any temperature because of random thermal motion. 

So because of this condition, you have to treat the situation quantum mechanical. You cannot

regard the electron as a particle in this case. For example, in silicon, at 300 K the interatomic

distance are lattice constant A is 5.43 Angstrom whereas the thermal average wavelength of

the electrons at 300 K is 120 Angstrom, so you can see that 5.43 is much < 120. So therefore,

Mn,  which  captures  effect  of  Ucx  on  carrier  acceleration  has  to  be  derived  from

Schrodinger’s equation rather than Newton’s law.

So this tells you why we need to derive the effective mass quantum mechanics. So when we

read on the equation for effective mass earlier, when we wrote the force equal to effective

mass into acceleration, it appeared to be like a Newton’s law, but when you want to find out

that  effective  mass  Mn,  you  have  to  do  a  quantum mechanical  rx.  This  is  because  the

potential variations are very rapid over very small length scales.

Small length scale meaning length scales much less than the de Broglie wavelength of the

electron.
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Some more important points about the effective mass approximation, thus Mn is a quantum

mechanical concept and very importantly it is valid in the presence of applied fields only. So

please look at the situation in which we have derived this Mn, so we are applying an electric

field and then finding out the acceleration and that acceleration in a crystal, we are using to

get the effective mass.

So it is a concept that is only applicable under applied electric fields or magnetic fields or

applied forces. Now, if there is no applied force, what effective mass would the carrier have?

We can only make a guess, so for simplicity, use it as a limiting case of zero applied force and

use the same effective mass that we use in the presence of the applied force.
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Let us discuss the effective mass approximation further. In a 3-dimensional crystal, Mn is

non-isotropic  due  to  different  potential  variations  in  different  directions.  So  here  is  a  2-

dimensional array of atoms and 2 directions or shown. Supposing you move in this direction,

then the distance between the atoms is less than the distance between the atoms that you get if

you move in this direction.

Therefore, the crystal potential in this direction would be different than the crystal potential in

this direction. So potential variations would be different depending on the direction, because

the arrangement of atoms is different, so this is why the effective mass would not be same in

a crystal in all directions. Next important point about effective mass is that it is a tensor. Since

the carrier acceleration is not collinear, but at an angle with the direction of the driving force.

So diagram below illustrates the situation in vacuum, suppose force is in this direction, the

acceleration would be along the direction of the force and the equation would be = F divided

by  M0.  However,  because  in  a  semi-conductor  the  electron  is  influenced  by the  crystal

potential. It turns out that analysis shows that if the force is in this direction, the acceleration

would be in a different direction, say something like this.

And  now,  this  is  a  tensor,  because  for  force  in  this  direction,  you  are  producing  an

acceleration along the direction of the force as well as in a direction perpendicular to the

direction of the force. So here, aj is a matrix, mij is also a matrix. Now let us illustrate this

idea of the tensor nature of the effective mass with the help of an analogy.
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Let us look at a situation where the acceleration is not in the direction of the force. So here is

a block on an inclined plane and suppose we apply a force vertically downwards, now this

force could be because of gravity, but let us now not restrict ourselves to gravity, it could be

any reason. Suppose a force is applied in the downward direction, now the acceleration would

be along the inclined plane in this direction.

So you see the force and acceleration are not collinear. Now what is the reason, the reason is

inclined plane guides the motion. So it is this force R, which is preventing the mass from

accelerating in the direction of the force entirely.  Now let  us write an expression for this

acceleration, how would it look? We will choose vertically downward direction as x and the

horizontal direction towards right as y.

Now the acceleration can be shown using this diagram. The actual acceleration along the

inclined plane is a = Fx/M into sin theta where theta is the angle of the plane. Now if you

divide it into 2 components, one in the direction of the force, that is ax and the perpendicular

direction ay, then we can say as shown in the slide here a of the block is due to both Fx and

R.

Similarly, or analogously a of the electron is due to both F=-qE that is applied force and

lattice forces. So lattice forces are analogous to R. As this slide shows, we can model a of the

block as the effect of x alone absorbing the effect of R in an effective mass. So we are trying

to apply the effective mass concept to this particular situation, right. Now this is analogous to

the statement, we can model a of the electron as the effect of applied force F alone absorbing

the effect of lattice forces in an effective mass.

Now let us carry out this exercise for the inclined plane. Effects causes both ax = Fx/M into

sine square theta and ay, which is = Fx/M into sin theta cos theta. How do we get this? So

Fx/M into sin theta is the acceleration and you want to get ax component, it would be a into

sin theta and ay would be this a into cos theta. So that is what is shown here.
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Now you can extend the above to a general 2-dimensional case and rewrote the statement as

when a is not collinear with F, each of ax and ay can be caused by both Fx and Fy, so leading

to an equation such as that shown here, a matrix type equation. So ax is caused by both Fx

and Fy. So the mass that comes here is a tensor. This is actually the inverse effective mass

tensor, because you have reciprocal of the mass.

So these 4 entities here are represented as Fxx because this mass helps you to find out x due

to Fx and this is Mxy because this mass helps you to find out x due to Fy. So that is how you

have the other 2 elements also. Now, this gives you an idea as to why, when the acceleration

is not in the direction of the force,  the effective mass concept  leads you to a tensor like

representation for the effective mass.
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Now here is an assignment for you on this  analogy. In the inclined plane analogy of the

previous slide determines the expressions for Mxx, Mxy and Myx and Myy. Moving on to the

next slide:

(Refer Slide Time: 36:20)

Let us discuss some further approximations for Jn and Jp. Now this approximation is that

particle attributes namely density or concentration of carriers, momentum density of carriers

and energy density of carriers within a local volume. There is an underline here, we will

shortly see what local volume means. It is given in the foot note. So these 3 quantities of

carriers, carrier density, momentum density, and energy density.

So within a local volume are uniform at their average values. In other words, the distributions

are ignored. Now, we will shortly explain this in detail, but before that what is the meaning of

local volume, let us see. So it is a volume, which is much > a volume with a linear dimension

equal to the thermal average wavelength of the electron. Because only then, you can treat the

electron as a particle.

So  local  volume  should  be  much  more  than  the  volume  derived  from  the  de  Broglie

wavelength, but at the same time, if it is too large then you will not be able to capture any

variations in these quantities, like carrier density, momentum density and so on. Therefore,

the volume that you choose that is the local volume should be much less than the device

volume. So now what we are saying is the following:
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Suppose this is the device that you want to model. In this the quantities namely, the carrier

density, momentum density and energy density and so on all associated with the carrier can

vary, spatially. Now you want to capture those variations because that variation will affect the

current flow for any given voltage. So since you want to capture the variation, you would like

to divide this device region into parts, which are sufficiently small.

So that in this region, if I assume a constant parameter, constant value for the carrier density,

momentum density and energy density, then this is another constant here, another constant

here,  so even if  I take these constant values,  the changes in this  value should reflect the

overall variation in the device sufficiently accurately. Now what we are saying is each of

these volumes however, should remain much greater than lambda thermal cube.

So that you can treat the electron as a particle. In 3-dimensions, it would look something like

this. This is the meaning of the statement; local volume is much > lambda thermal cube. So

this is the local volume. But this quantity should be much less than device volume. So device

volume is  this  whole volume of this  device.  Now let  us illustrate  the statement  how the

various  quantities  can  have  distribution  and  what  is  the  meaning  of  the  average  of  this

distribution.
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Now here is an analogy illustrating uniform approximation of randomness. So here we have

taken  500  randomly  located  particles  and  we  have  divided  this  area  in  which  this  500

particles are contained into 9 smaller areas. So you can say these are local areas analogous to

local volumes. Now, let us count the number of particles in each of these local areas, 9 local

areas. Now if you do that exercise, picture would be something like this as shown in the table.

So local  area  number  1,  number  of  particles  is  48,  local  area  number  2,  it  is  again  48,

however, in area 3, it is 44. Area 4, here you have many more, it is 65. It goes on like that.

Why because this  random location.  The particle  location is  random. Now let  us take the

average of all these 9 areas. So I get an average of 55.6, so average particle count in these 9

areas is 55.6.

Now  if  you  calculate  the  standard  deviation  of  all  these  9  quantities,  you  get  standard

deviation of 7.5. The ratio of standard deviation to average is about 0.13 that is 13%. So in

other words here, the standard deviation is fairly small compared to the average value. Now,

if such as situation is there, then I could assume the average value to represent the particle

count in every local area.

So particle density in a large local area, example areas 1 to 9, has small standard deviation by

average and so can be approximated to uniform at the average value. Now let us consider an

example where this kind of an approximation will fail. In other words, it will not be good. So

let us take the same picture of 500 particles located in random fashion, but now let us choose

a smaller local area.
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So here, the same area has been divided into a very large number of local areas. So if you

count the local areas now here, 1, 2, 3, 4, 5, 6, so 36 local areas, out of which let us pick some

9 local areas and let us do the same exercise of calculating the average and standard deviation

for these 9. Now the picture would be something like this. So local area 1, you now have a

smaller number of particles than the previous example. They are only 15.

Local area 2, here 14, and so on. Local area number 5, that this, there are many particles

about 20. Now the average of all these is 15.3, whereas standard deviation of these numbers

is 3.86. The ratio of standard deviation average is now much higher, 25%. Now that is why

particle density in a small local area as compared to the previous case, has large standard

deviation by average and so cannot be approximated to be uniform at the average value.

So this  should explain  to  you the concept  of  using an average  for  quantities,  which  are

randomly distributed. We can extend this idea to random distribution of momentum, random

distribution of carrier energy, and those quantities can also be replaced by their averages. So

why is the distribution random, well that is how the nature is. When you have a large number

of people, all of them will not have the same height.

Similarly, if you take a large number of electrons in a crystal, all of them will not have the

same speed, at a given temperature. So-called thermal velocity or thermal speed is an average

value. You know it is root mean square average. Similarly, momentum will also be distributed

and the energy also will be distributed.
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Here  is  some  example  of  uniform  approximation  of  randomness.  The  randomness  in

distribution of the dopants in semi-conductors is such that if N is the average number of

dopants in a given volume, the standard deviation in the number of dopants is square root N.

That is the actual number of dopants in the volume considered may range between N+/-root

N. So if you look at the diagram here, if you take this local volume, which looks something

like this.

And in this, if you count and you have N impurity atoms, now you take another local volume

of the same magnitude, somewhere else, and you count the number here, it would not be the

same N. Now what could this value be? So it would lie most likely between N+square root N

or N-square root N.

So you can see if N is 10 power 15, then 10 power 15 average value means that different

parts of the device of 1 cm cube volume, so 10 power 15 per centimetre cube, if that is the

doping that we are talking about, then we are actually saying that if you consider 1 cm cube

volumes of the semiconductor of different volumes, actually the value could be anywhere

between 10 power 15+square root 10 power 15 and 10 power 15-square root 10 power 15.

Now square root 10 power 15 is very small compared to 10 power 15, right. On the other

hand, if this number is changed to say 25 in some volume, a much smaller volume i take, then

different regions of the device having the same small volume will have number of dopant



atoms between 25 and + square root 25 and 25 - square root 25 that is 25 +/- 5. Now you see

this 5 now is not negligible as compared to 25.

In fact, your particle counts or impurity count is anywhere between 20 and 30, right that is

how you see you are getting a much larger variation, if you consider small volumes. So that is

why the randomness is very important. When your device size is large, we can ignore the

randomness.  Whereas  when  the  device  size  is  small,  you  have  to  take  into  account

fluctuations in the different regions of the device, because of randomness.

(Refer Slide Time: 48:23)

Here is an assignment. Explain why it is acceptable to regard 1 cm cube of a semiconductor

block as doped uniformly with 10 power 10 dopants per mm cube, but inappropriate to regard

1 mm cube of the same block as doped uniformly with 10 dopants per micron cube, though

10 power 10 per mm cube = 10 per micron cube. Let us move on to the next topic.

(Refer Slide Time: 49:00)



What is the implication of our approximation that you can replace the actual distribution of

momentum density and energy density by an average value. The implication, now is that the

device  behaviour  is  visualized  as  a  result  of  conservation  or  balance  of  each  of  these

attributes during carrier flow. So now, we can analyse the device in terms of the balances of

the carrier concentration, the balance of the momentum density, and the balance of the energy

density during flow.

So it allows you to invoke conservation laws that is the very important achievement of this

approximation.

(Refer Slide Time: 49:57)

Now we are towards the end of the lecture. So let us make a summary of the important points.

So in this lecture, we talked about how driving forces can superimpose a directed motion over



random motion. The actual picture of this carrier motion is complex because it involves the

interplay of 6 different flows, the electric field, the magnetic flux, the heat flux, the electron

flux and the whole flux, and displacement current density.

So we discussed a series of approximations, which help in simplifying the problem of the

flows for the purpose of our course. So the approximations we discussed were that we will

neglect the magnetic flux B, the heat flux Q and we will assume that the electric field varies

very slowly with time. In other words, we make the quasistatic approximation for the electric

field. Consequently, the displacement current also goes out of the picture.

So once the flows namely B, JD and Q go out of the picture, we are left with a very simple

situation  where we need to consider the interplay  of electron flux JN, the whole flux or

current JP and the quasistatic electric field. So the modelling problem becomes reasonably

simple. Then we discussed some important approximations related to the modelling of the

fluxes JN and JP.

So we said that one important approximations that we make is the particle approximation. We

regard the electrons and holes as particles. Now this approximation was discussed in detail in

early lectures.  In this  lecture,  we spent considerable amount of time discussing about the

concept of effective mass of electrons and holes. So between 2 collisions, a carrier behaves as

though it had a mass different from that in vacuum.

If you apply a force, the carrier  accelerates between 2 collisions as though it had a mass

different  from  that  in  vacuum,  because  it  is  influenced  by  the  crystal  forces  or  crystal

potential.  Now,  we  explained  why  this  effective  mass  has  to  be  derived  from quantum

mechanics and it cannot be derived from Newton’s law. So we need to derive the effective

mass  from  Schrodinger’s  equation  because  the  effective  mass  is  a  result  of  potential

variations, which are very rapid in small length scales of the interatomic distance.

And this interatomic distance is much smaller than the de Broglie wavelength of the electron.

In  fact,  we  now  have  an  explanation  why  the  carrier  transport,  which  involves

superimposition  of  directed  motion  or  random  motion  is  called  semi-classical  transport,

because  though  between  2  collisions,  the  movement  of  the  electron  can  be  treated  by

Newton’s law.



The  collision  itself  or  the  scattering  event  has  to  be  treated  quantum  mechanically  as

discussed in the previous lecture and the effective mass of the electron, which helps you to

get the acceleration because of applied force between 2 collisions also has to be determined

quantum  mechanically.  So  you  cannot  have  a  completely  classical  treatment  of  carrier

motion. We discussed some more important points about the effective mass.

Namely that it is non-isotropic that is depending on the direction of motion of the electron in

a crystal,  it  changes, because the potential  variation of the atoms is different  in different

directions, interatomic distances are different. Then, effective mass is a tensor because when

you apply a force, the electron does not move in the same direction as the force. So since the

force  and the  electron  motion  are  non-collinear,  therefore,  the  effective  mass  becomes  a

tensor.

Also, the effective mass concept is only applicable under applied fields because it helps you

to find the acceleration. As a limiting case, we use the effective mass also for the situation

when  there  is  no  electric  field  or  magnetic  field.  Finally,  we  discussed  the  important

approximation related to JN and JP namely that the carrier density, the momentum density of

the carriers and the kinetic energy density of the carriers is assumed to be uniform in a local

volume, even though these quantities are randomly distributed.

So we are ignoring the random distribution of the density, the momentum density and the

energy density and we are assuming these parameters to be uniform over local volumes. So

we are dividing the device into smaller local volumes for the purpose of analysis. Now what

is the great advantage of this approximation, that it allows us to treat the carrier motion or

analyse the carrier motion in terms of conservation of carrier concentration, conservation of

the momentum density and conservation of the energy density.

We  are  very  familiar  with  treating  phenomena  in  terms  of  Newton’s  law  and  these

conservation  principles.  So  mass  conservation,  energy  conservation  and  momentum

conservation, which is exactly what we are going to do in semiconductor devices.


