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Energy band diagrams

In the previous lecture, we have begun the discussion on energy band diagram, which is a

very important tool in the analysis of semiconductor devices. We have mention 2 types of

energy band diagram, which are complementary to each other. One is the Ex diagram, which

tells you the allowed energy levels of electrons as a function of distance within a device. 

Now,  this  diagram;  the  Ex  diagram  helps  you  to  analyse  the  distribution  of  electron

concentrations,  hole  concentrations,  electron  current  density,  hole  current  density,  electric

field and potential within a device. On the other hand, the Ek diagram, where you represent

the allowed energies as a function of the wave vector, which reflects the crystal momentum of

the electron.

The Ek diagram helps you to estimate the effective mass, the group velocity of the electron

and the crystal  momentum and this  Ek diagram is  useful to analyse an interaction  of an

electron or a hole with other carriers, impurities, phonons and photons. We gave a qualitative

model of the energy band diagram, in which there were 2 approaches. On approach that is the

Bloch approach develops the allowed bands of energies in a crystal for electrons from the

single energy levels of electron in an isolated atom.

On the other hand, the Brillouin approach develops the forbidden energy bands for electrons

in a crystal from a continuous band of energies associated with a free electron. 
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Then, we began a discussion of the quantitative model of the energy band diagram, first we

took up the Ek diagram. Now, for the Ek diagram, we consider the rectangular potential well

and this Ek diagram is what we are going to develop further in this lecture. Now, here is the

rectangular  potential  parabola.  The  allowed  energy  levels  shown  here,  where  it  so  the

boundary conditions psi = 0, the wave function at x = 0 that is at the left end of the well.

And the wave function at the right end of the well here, were both approximately 0, because

the height of the potential barrier was really large and because of the boundary conditions you

get and this discretisation leads you to the discretisation of the energy. As a limiting case of L

tends to infinity, you get the picture for free electrons, which are a parabola for E as function

of k, in which all energies allowed. 
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In today’s  lecture,  we want  to  develop the Ek diagram for electron  in  a  periodic crystal

potential  starting  with  the  solution  of  the  Schrodinger  equation.  Now, let  us  look at  the

features  of  the  Ek  relation  for  electrons  in  a  periodic  potential  one  by  one.  This  is  the

approximate form of the periodic potential. The first feature of the Ek diagram of electron in

a crystal is that E is a periodic function of k with periodicity 2 pi/ a.

You can see this here, so Ek relation is a periodically varying function and the period is 2pi/a.

so, you can see from here that this end to this end here is one period or from 0 to 2 pi/ a is one

period, okay. Now, how do we explain this feature? We will see that; first let us list all the

features,  the second feature are that  the Schrodinger  equation  has no solution for certain

energy bands, when k is real. 

Now, these bands are shown here in grey colour,  okay, so they are the forbidden energy

bands.  So,  for  these  energies  the  Schrodinger  equation  has  no  solution.  Finally,  E  is

multivalued functions of k, so you see for any value of k. you have several values of energy;

multiple values of energy, okay. So, these are the 3 features, which we need to explain on the

basis of Schrodinger equation, solved for a periodic crystal potential. 
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Let us look at the first feature; E is the periodic function of k with periodicity 2pi/ a. Now, 

this is the Schrodinger equation for electrons in a crystal, Ucx is the periodic potential. The 

property of Ucx is that it is periodic with period a, which is the distance between the atoms. 

So, Uc of x = Uc of x+a. Now, there is a theorem called Bloch theorem, which says that if the



potential is periodic as considered here, then the wave function, which is the solution of the 

Schrodinger equation is of this form. 

U of x; here the suffix k indicates that this U contains k as a parameter, so U of x * e power 

jkx. Now, for a free electron, you recall that the solution was just e power jkx, okay. So, here 

what is happening is; the periodic potential is multiplying this e power jkx with an envelope 

function, which also is periodic with the period a, like the crystal potential. Now, this is the 

important result that we simply import from the Bloch theorem. 

(Refer Slide Time: 07:52)

Now, based on this important result for the wave function, psi of x, how do we show that E is

the periodic function of k with periodicity 2pi/a? Now, while we do that let us first look at

some graphs of the wave functions psi x, the envelope function or the Bloch function Ux with

the suffix k and e power jkx and so on. Now, here is an example, these calculations are done

numerically and I have picked them up from a figure available in Lindstroms book. 

So, if Ucx is periodic having a shape, I shown here, then U of x has the shape something like

this. The points here indicate the location of the atoms in the crystal, e power jkx on the other

hand is like a sinusoidally varying function. You can take either the real part or the imaginary

part. Now, when you multiply these 2; U of x and e power jkx, you get the wave function,

now you see that the wave function is fairly complex, okay. 

This wave function is obtained by multiplying this function and this function. So, this gives

you some idea of the various  functions  that  are  there in  the solution of  the Schrodinger



equation for periodic potential. Now, let us move on to show how E is a periodic function of

k? Now, the first point to note is that the Ek relation is even that is E of k = E of –k. Now, this

is straight forward.

Because if  an electron is moving in the positive x direction or moving in the negative x

direction that is from right to left, it sees the same form of crystal potential and therefore the

energy is associated with these 2 movement should be the same, that is essentially what is

said by this particular relation, okay. So, the k vector here indicates movement in the positive

x direction, whereas –k indicates movement in the negative x direction. 

(Refer Slide Time: 10:23)

Now, we will establish that E of k = E of k+2 pi/ a, based on this particular wave function

solution given by the Bloch theorem. So, psi of x = Uk of x * e power jkx. Now, since Uk of

x is periodic with the period a, let us multiply this right hand side and divide by a function e

power j * 2 pi/ a * x, so I am going to multiply by e power – j 2pi/ ax and e power j 2 pi/ ax.

Note that the product of these 2 is 1. 

Now, since x is periodic with the period a; and this function also is periodic with the function;

with periodicity a, you can see that here when you put x = a, it becomes 2 pi, when you put

x= 2a, it becomes 4 pi. So, you know that for integral multiples of 2 pi, this quantity will be

the same, it will be unity. Therefore, I can clubbed these 2 and write this as another periodic

function, okay, which has the periodicity a, multiplied by this part appears as e power jx *

k+2 pi /a. 
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Now, this new form of the function is also psi of x. This means that energy that is represented

by this function and the energy that is represented by this way function. Both the energies

must be same and therefore we can write the energy which is the function of k, should be the

same if the k is replaced by k+ 2 pi /a, okay. So, this part is energy associated with this

function, here you have k.

(Refer Slide Time: 13:29)

And this part is energy associated with this function where you have k+2 pi/ a here, okay.

This is how we derive the condition that E is the periodic function of k with periodicity 2 pi/

a. Next, the Schrodinger equation has no solution for certain energy bands, when k is real.

Now, let us see how we show this? 
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Now, this is our periodic potential approximate form, the points here indicate the location of

atoms. The potential well here is having a length b, okay, the origin is set up here at the left

end, the height of this potential barrier is U0 and the thickness of the barrier on the left hand

side here is c. The distance between the 2 atoms which is a, is nothing but b+c, so this is the

lattice concept. 

Now, this your Schrodinger equation and this is your solution based on the Bloch theorem.

Let us construct the interval 0 to bx; 0 to b that is this interval here. In this interval,  the

potential is 0, okay; the Ucx is 0 that is what is shown here. The envelope function or the

Bloch  function  Ux,  let  us  indicate  that  as  U1x,  the  suffix  k  indicated  that  this  Ux also

contains k as a parameter, so this is the U1 function in this region. 

The equation for U1 would be obtained by substituting this function writing here U1 instead

of U of x, right here U1x, okay, substitute this here and this differential equation derived this

particular  differential  equation,  where we have used alpha to indicate  this  term,  which is

square root of 2m0 energy/ h cross square, so this term you obtained from this part of this

equation. 

So,  in a  simplified  form, when you write  this  is  the way the equation  will  turn up,  this

differential equation has a solution of this form a* e power j * alpha –kx+b * e power – j*

alpha+kx; because the second order differential equation. Now, this solution can be easily

seen by substitution, you are getting alpha – k because you have alpha square – k square here

as a coefficient, okay. 



So, you get alpha – k as well as alpha +k, the 2 things. If you do a similar solution for x line

between 0 and –c, that is this region. Now, here your Uc of x = U0, so this U0 is the value of

the crystal potential in this region. The Bloch function is U2x, now we define a parameter

beta, which is different from alpha in this term that here instead of energy for alpha, you have

energy – U0, which is the potential here. 
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Now, in terms of this beta, if you write the differential equation for U2 of x, obtained by

substituting this function into this Schrodinger equation, then this is your differentia equation

and this is your solution, this similar to the solution U1 x with alpha replaced by beta. So, this

is the summary of the solution for U1 of x and U2 of x valid for the 2 ranges x between 0 and

b and x between – c and 0. 

Now, the coefficients A, B, C and D are to be determined by using the following boundary

conditions. Now, look at this boundary conditions; the boundary condition U2 at x =0, should

be = U1 at x =0, because the wave function should be continuous across the boundary here,

that is the statement, which is being made by this equation. Similarly, the derivative of the

wave function should also be continuous here, now that is what is reflected by this equation. 

So, d/dx of U2 at x = 0 = d/dx of U1 at x = 0. Now, exactly similar condition should apply at

the other end either here or here. Now, because the function is periodic, we can say that the

value of the wave function at this end should be equal to the value of the wave function at

this end, right. This is the same as saying the value of the wave function when you approach



this point from right should be the same as the value of the wave function, you approach the

same point from left, okay. 

So, this region is identical to this region and this region is identical to this region, so that is

why this condition formulated, U2 at –c that is here = U1 at x = b, so U1 at x = b at this end,

so value at  this  end here should be the same as the value  at  this  end.  Similarly,  for  the

derivatives,  okay.  The  derivatives  should  also  be  the  same as  at  these  2  points.  So,  we

substitute these boundary conditions in this equation to get A, B, C and D. 
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Now,  when you do that  you will  find  that  nonzero  A,  B,  C,  D is  possible  only,  if  this

particular condition is satisfied, okay. So, this equation is obtained as follows, so you apply

the boundary conditions that we have just talked about and write equations for A, B, C and D.

Now, in these 4 equations, if you want nonzero A, B, C, D the only way it can be done is by

getting this particular relation, so let me explain that. 
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So, the equations will turn out to be of this form, something * A+something * B+something *

C+something * D = 0.  Now, all  the 4 equations  will  have the same form with different

coefficients coming here, so you have 4 such equations, okay you have 4 such equations.

Now, evidently A = 0, B = 0, C = 0, D = 0 is the solution but it is the trivial solution, that

solution would not work for you, okay. 

So, only other solution that you can get, how do you find that? Well you take you express A

in terms of B, C and D and substitute here, then you express B in terms of C and D, substitute

in the next equation, then you express C in terms of D and that is how you can convert this

entire equation to an equation of the form something * A = 0 or something * B =0, so all

these 4 equations can be converted into this form, right.

Something * C = 0, or same thing = 0, so if you do not want to a solution A = 0, the only

other nonzero solution for A is possible, if you set this term in the bracket to 0, now this is the

term that  we are talking about here,  okay. So, when you set that  term to 0,  you get this

equation, okay. So, the coefficient of A or you can take coefficient of B, right, you can take

coefficient of any of these. 

Now, this is the key result, based on which we can show the existence of forbidden bands, let

us see how? Now, first point to note is that for E less than U0, so U0 is the height for energy

less than U0, beta is  imaginary you can see here,  if  E is less than U0 this  negative and

therefore beta is imaginary but the right hand side of the above equation is real. So, here even

if beta is imaginary, this will be real; this is an important point to note.
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Now, how do you get this? Because beta square is real even though beta is imaginary, now

here this  beta  you can write  it  as some j  times some constant,  now sin of j  times some

constant is nothing but j times sin hyperbolic of the same constant, sin of j * some gamma let

us say is = j * sin hyperbolic gamma, you can show this very easily, right using exponentials. 

So, what will happen is that, similar condition can be shown for cos of imaginary constant

here, so a well, we actually do not need that part, we need only this part here, so here you will

get a j out; out of the sin and this beta will also contain a j and this j and the j coming out

here, when you write this in terms of sin hyperbolic function of a real quantity, so that j will

cancel and that is how this part will be real, okay. 
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In fact, this part is real even when this j is imaginary. Now, let us look at this function on a

plot, so the right hand side of the function that is this part has been plotted as a function of

energy because alpha and beta, alpha and beta here, alpha beta, these are functions of energy,

which we have defined in the previous slide. So, therefore this whole thing is the function of

energy.

So, when you plot, you get a periodic function of energy, the right hand side is a periodic

function of energy. Evidently, because sin, cosine and so on these are all periodic functions.

Now, what is important here to note; is that the amplitude of this variation goes beyond 1,

okay, so it go below -1 and above +1. Now, this is the important result that tells you why

certain energies are not possible, okay for electrons in a crystal.

Because if the right hand side here goes either less than -1 or more than 1, then that is not

allowed  because  the  cos  function  has  a  maximum  value  of  1,  if  I  take  the  amplitude,

magnitude of this function it cannot exceed 1. Therefore, for those values of E for which the

magnitude of this function exceeds 1, that is indicated by this boundary, okay; -1 and +1 here.

So, when this function goes beyond process these boundaries, in that region the solution of

the Schrodinger equation does not exist, okay.

Because, k is no more real for this regions. So, these regions are therefore shaded to show the

forbidden bands, so these bands of energies, here. Similarly these where the right hand side is

going the magnitude of the right hand side is going beyond 1, these energies are not allowed

because for these energies the k is not real, so the E values for which the modulus of right

hand side is more than one forbidden as, k becomes complex. 
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Now, these are the bands that are shown on the Ek diagram here, okay so each of this bands

shown here actually  correspond to these bands, which arise from this particular  equation.

Now, let  us look at  the final feature of the Ek diagram, this  is  that  E is the multivalued

function of k, how do you get this? Well that is also obtained very easily from this graph,

which clearly shows that for a given k or a given right hand side; for a given k or a given

value of the right hand side there are multiple values of E.

We can see that here for any given k, there are many values of E, that is again because of the

periodic nature of the right hand side, okay and that is why here E is the multivalued function

of  k,  so for  any k,  you have multiple  values  of  E.  So,  that  is  how one can show the 3

important features of the Ek diagram of an electron in a periodic potential. 
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Now, here is an assignment for you, simplify the equation cosine of b+c * k = - of alpha

square+beta square / 2 alpha beta * sin of alpha b * sin of beta c+cos of alpha b * cos of beta

c, where alpha and beta are given by these quantities for the following conditions. A; the

energy of the electron is much greater than U0, which is the height of the rectangular periodic

rectangular potential distribution, okay.
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And therefore from your result show that the forbidden band becomes progressively thin as

energy becomes more and more; as energy becomes higher and higher. Part B; assume U0 * c

is a constant, so U0 * c, let me draw that potential distribution for you here, now this distance

is c and this height is U0, okay and this distance is b, so this your rectangular potential. This

is x and this is Uc of x.

So, we are saying; assume U0*c that is the area under this as a constant and let U0 go to

infinity, okay. So, U0 is going to infinity that means this region will become a delta function,

so for this limit, when you maintain the area constant but make U0 infinite here, this will be

replaced by delta function. Similarly, we will have another delta function here, somewhere

here, so you are replacing this rectangular potential periodic potential distribution by a train

of delta functions. 

So, for this case, Ucx reduces to a train of delta potentials, okay. So, find out if you use this

approximation, what is the simplification that results for this particular equation? It will turn

out be much simpler and easier to interpret. 
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Now, let us point out what happens if instead of an infinite atomic chain you have a finite

atomic chain, so you have a periodic crystal potential but you have a finite number of periods

in the potential as against the infinite number of periods for which we have just now derived

the Ek relation and energy band picture, so what differences will arises if the atomic chain is

made finite? 
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For  an  infinite  atomic  chain  in  the  allowed  band  the  energy  E  varies  continuously  and

periodically with k, this what you can see, so this is the allowed band of energy, is the another

allowed band of energy, this another allowed band and in the allowed bands, the E varies

continuously and periodically  with k. Now, what will  happen if  you have a finite  atomic

chain? 



In this case, in the allowed band the energy E varies in discrete steps and the number of

discrete steps is equal to the number of atoms in the chain. So, here is an example shown for

this band. Now similar discretisation will happen for each of the other bands which have not

been shown in this figure. So, you can see here that this allowed band there are 5 discrete

energy levels; 1, 2, 3, 4, and 5, why? 
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Because there are 5 atoms here,  1, 2, 3, 4, 5, so 5 atoms in the chain and therefore this

allowed  bands get  discretised  into  5 energies.  Now, let  us  come to  some aspects  of  the

representation of the Ek diagram. Because the Ek diagram is periodic, it is not necessarily to

show many periods of the diagram because information is contained in one period and in fact

because the Ek relation is E1, you can even take one half of the period, okay.

And that will give you all the information that is required to construct the entire periodic Ek

diagram. So, let us look at this. Now the way we have shown the Ek diagrams so far, it is

called the periodic zone representation, okay. Let us look at this various features once again,

so here the periodicity = 2pi/ a, so you have marked here 0 pi/ a 2 pi/a and so on. Now, this is

the kind of Ek variation which results from the Kronig Penny model, which assumes the

rectangular potential distribution; periodic rectangular potential distribution. 
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Now, something that I have not mention earlier what is this curve here? Now this curve is a

parabola that you would get for the free electron, right. So, for free electron, the Ek relation is

a parabola. So, that is what is shown here superpose just for you to be able to compare, the

picture  for  a  free  electron  and the  picture  for  electron  in  a  periodic  potential.  Now,  the

reduced zone representation represents the Ek behaviour in just one period okay, 0 to pi/ a

and 0 to – pi/a, this is called the first Brillouin zone, okay. 

This is called the Brillouin zone because this Ek diagram the way we have determine it the

procedure that we have just outlined the Kronig Penny model happens to be the procedure

suggested by Brillouin, where you derive the forbidden bands starting from the continuous

energy band for free electrons. Now, let us consider the Ek picture for a real crystal, this was

an ideal picture.

The Kronig Penny model is the ideal picture where you are assuming the potential; crystal

potential to be periodic and rectangular of the shape, actual crystal potential is much more

complex. Now, people have done calculations, okay for various real crystals. Let us look at

the calculations for silicon, how do they look like? Now, this is the Ek diagram that you will

come across in books shown for silicon. 

First, let us explain the various aspects of this diagram, now this 100 within brackets, this

actually  shows a  certain  orientation  of  the  crystal,  you know silicon  is  a  3  dimensional

crystal, so there can be many directions, which you can consider and you can consider the Ek



diagram in various directions, right. It is not a one dimensional situation like what we have

analysed so far. 
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So, for example this is the crystal, now you can move in these direction or you could move in

the diagonal directions, so let us say from something like this, right and you will get some Ek

diagram because you will get some periodicity of the potential and you will get a different

periodicity, if you are moving in this direction, right. Now, this is the direction that is called

100, it is perpendicular to the phases of the cubic of the unit cube of silicon. 

Now, we will not discuss the orientation further, this is just to help you understand that Ek

diagram is different in different orientations, so you can show the Ek diagram for k vector in

this direction, you can show Ek diagram for k vector let us in this direction, these direction

would be called 111, okay, why this is called 111 and why this is called 100? This is beyond

this course, okay this you can if you are more interested in this, you can read up the books. 

So, now for this 100 direction, from 0 to pi/a/2, now why is it a/2 here? Well, as we have said

since the Ek diagram is E1, instead of showing from – pi/ a2+pi/ a in the entire first Brillouin

zone, you can show even for half of this zone that is from 0 to pi/a, because this part and this

part, they are symmetric, so that is what is done here, the diagram is shown only for this half

of the Brillouin zone. 

Now, the reason here you are using a/2, instead of a, is that,  this is the one dimensional

crystal, okay. Whereas, here the results are shown for a 3 dimensional crystal, where A is the



lattice constant, it turns out that in when you are moving 100 direction that is the direction

shown here, the periodicity is related to the location of the various planes atomic planes and 2

successive atomic planes, the distance is a/2; this is a and the successive 100 atomic planes it

is a/2, so that is why the a/2 is coming here. 

So, as against this kind of variation of Ek relation, here the Ek relation in silicon is something

like this, this for the conduction band. In the valence band, this variation looks similar to this

variation, right. So, this is conduction band and this; a valence band that is what is shown

here. These are lower bands, so you have as you know you have many allowed bands, so

normally we are interested in the outer most bands, which is the conduction band.

Because the electron,  which have those energies,  they  contribute  to the properties  of  the

semiconductor, they participate in conduction and so on. Now, here there are 2 lines, so there

are 2 overlapping Ek relations. Now, this is the complexity that arises because of the nature of

ten crystal potential, which is much more complex than what we have considered here. We

will not discuss this point further. 
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Now, normally what one does is, one uses the left hand side, to also provide information of

the Ek diagram, if you were to move in the 111 direction. Now, please note the way it is

shown here does not mean that 100 direction is exact opposite of 111 direction, right that is

not what is meant here, so I have said this diagonal is a 111 direction, right and perpendicular

to the phase is 100. 



So, those are the directions, so the diagrams in those directions. Now, here instead of a/2, you

have 2a/3 because in the 111 direction, the successive atomic planes the distance between

them is 2a/3, you just accept this result without going into why it is 2a/3, now that you will

study, if you study the crystal structure of silicon in detail. So, you can see when you move in

111  directions,  the  conduction  band  Ek  relation  is  somewhat  different,  okay,  both  for

conduction and valence bands. 

The so called energy gap is actually the distance between the bottom of this Ek realtion for

conduction band and the top of Ek relation for valence band. So, you see that this vertical

distance between these 2 points in the 100 direction is different from the vertical distance

between the points in 111 directions. Here, the gap is more, okay, here the gap is less, the

vertical distance between these 2points is less. 

Now, compare the Ek diagram of silicon with that of Gallium arsenide, where your crystal

potential  is different,  right.  So, if  you do a numerical  calculation for the crystal  potential

associated with Gallium arsenide, the band diagram which results look something like this.

The key difference between the Ek diagram of gallium arsenide and Ek diagram of silicon is

that  the bottom of  the Ek variation  in  the conduction band is  shifted  away from the Ek

variation, bottom of the Ek variation of the valence band here. 

So,  there is a difference in k locations of this  minimum and this  maximum, whereas the

minimum of the Ek relation of the conduction band in gallium arsenide is right above the

maximum of the relation of the valence band. Now, this difference in the Ek diagrams is the

reason why the gallium arsenide is called a direct band gap semiconductor  and silicon is

called the indirect band gap semiconductor, okay. 

So, more about this later, the reason it is called direct is the vertical transition can be made

from an  electron  can  make  a  vertical  transition  down from conduction  to  valence  band

without  changing its  momentum right.  Now, unfortunately  this  result  is  all  right  for free

electrons, but not electrons in crystal and you have to restore to the Ek diagram to actually get

these relations, okay and they will not be exactly identical to what we have discussed. 
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Now, this is the point that we will start within the next class, since we have come to the end

of the lecture,  let us make summary of the important points. So, in this lecture,  we have

discussed  determination  of  the  Ek  diagram  in  a  quantitative  fashion  in  detail.  This

determination was discussed for a periodic crystal potential, we assume an idealised crystal

potential, which has a rectangular periodic shape.

And then we showed how you can solve the Schrodinger  equation for this  potential  and

derive 3 important features of the Ek diagram of electrons in a crystal. These 3 features are 1;

is that the Ek relation is periodic with periodicity = 2 pi/ distance between the atoms, so we

have assumed an idealised  one dimensional  situation.  The next  feature is  that  for certain



energies the Schrodinger equation does not have a solution and therefore these energies are

not allowed for the electrons.

And the third important feature is that the energy as a function of the momentum or the wave

vector k, a is a multivalued function that is for any given value of k, there are multiple value

of E as against this, for example for a free electron for any given value of k, there is only one

value of E, even for an electron in a rectangular potential well for any given value of k, there

is only one value of E, okay. 

So, the differences between the Ek relations of free electron the electron in a rectangular

potential well and the electron in a periodic potential were clearly brought out by discussing

how the Schrodinger equations is solved. Now, we have outlined the various steps of the

solution  for  what  is  called  a  Kronig  Penny  model,  okay  idealised  periodic  rectangular

potential distribution. 

Now, the features from here can also be the qualitative features of this solution can be applied

even to real crystals. So, we have discussed, so the shape of the Ek relation for real crystal

such as silicon and gallium arsenide. Now, we want to make a point, that while the various

steps of the Schrodinger; solution to the Schrodinger equation for a periodic crystal potential

outline, we have not really gone through the various steps in detail.

Because such a derivation can go on to 2 or 3 classes and one can always read it up because it

is available in various books. So, we have focussed ourselves on the outline of the key steps

in the procedure. In the next class, we are going to see the utility of the Ek relation, how it

can be used to find out the effective mass, the velocity and the crystal momentum of the

electron in a crystal and we will also begin a discussion of how one can calculate the Ex

diagram of devices. 


