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Lecture - 26
Characteristic Times and Lengths

In the previous lecture,  we have begun a discussion of the utility of characteristic times and

lengths. Specifically, we discussed how these scaling times and lengths can be used to explain

device  phenomenon.  We  gave  examples  of  p-n  junction,  MOS  junction  and  capacitor  and

MOSFET. Then we showed how the characteristic times and lengths can be useful in device

simulation and characterization.

For instance, we showed that you can simulate surface recombination by volume recombination

and  to  come  up  with  simulation  scheme  how  the  scaling  times  and  lengths  are  useful.

Characterization  of  devices,  how  measurement  of  doping  profile,  the  characteristic  length

namely Debye length comes into picture, okay, how the doping if it varies rapidly over a Debye

length, then it cannot be resolved. 

You cannot get the variation of that doping that occurs very rapidly over Debye length scale.

Then we began a discussion of the various approximations, how appropriations can be validated

based on characteristic times and lengths.  Since modeling is the art of making approximations,

we want to discuss the validation of many important approximations and we shall continue this

discussion in the present lecture.
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We will also summarize the module after our discussion.

(Refer Slide Time: 01:55)

In the previous lecture, we discussed Quasi neutrality, Quasi-static approximation and neglect of

generation recombination.  In present lecture,  we will discuss the carrier  temperature formula,

Transport  equations,  Boltzmann Transport  Equation,  Particle  approximation  and energy band

model.
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Let us begin with the carrier temperature formula which is given by, for electrons T suffix n

which is the temperature of electrons, divided by the lattice temperature, so this ratio = 1+the

electric field divided by the critical electric field, the whole square. Though derived based on

steady state and spatially uniform approximations, the formula is usable even for high-frequency

and non-uniform conditions of the field E.

This  is  because  generally  conditions  do  not  vary  significantly  over  a  time  scale  of  energy

relaxation time, tau E which is more than the momentum relaxation time, that is the frequency is

much < 1/2 pi tau E. Now while deriving this formula, we use both the momentum and energy

balance equations, so both tau M and tau E come into play. However, since tau E is more than tau

M, tau E becomes the governing factor, okay.

The formula is also valid if the conditions do not vary significantly over a length scale of 6 times

thermal voltage by the critical electric field. Now, how do you get this length scale. This is left to

you as an assignment where I have given some guidance on how to derive this length scale.
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So the assignment is as follows: The Tn formula is valid so long as the inequality 2q/m suffix n

which is the effective mass of electrons into the spatial gradient of Wn is much < q square E into

n which is the electron concentration divided by effective mass of electrons.  So long as this

inequality holds for the terms in the momentum balance equation. So if you recall, the formula

for carrier temperature was derived based on steady-state formulations of momentum balance

and energy balance equations.

So in the momentum balance equation, on the right-hand side, you have these 2 terms which are

listed out here, so the spatially varying term, if it is shown to be much < this q square En/mn

term, then the formula is valid. Now let us see under what conditions this inequality holds.
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Show  as  follows  that  the  above  inequality  holds  for  fairly  non-uniform  electric  field  E

conditions.

(Refer Slide Time: 05:18)

And hence the Tn formula that is this formula derived assuming uniformly E conditions holds for

non-uniform conditions as well.  So again recall that the carrier temperature formula was derived

based on steady-state and uniform electric field and carrier concentration conditions.
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Now how do you show that. So the step 1 express dou Wn/dou x in terms of dou Tn/dou x

assuming uniform electron concentration n. So here you will have to express Wn in terms of the

carrier temperature. So you know that formula, use that. Then assume the Tn formula to hold

under non-uniform conditions and reduce the inequality 2q/mn into dou Wn/dou x much < q

square En/mn to dou E/dou x much less than critical electric field divided by 6 times Vt/critical

electric field. 

So you will have to show that left-hand side can be replaced by this formula, this term. So dou

Wn/dou x can be expressed in terms of dou E/dou x and right-hand side can be expressed as a

field term divided by a length term. Now this is the characteristic length for our situation here.

So what this formula shows is that so long as your change in electric field over x is much less

than critical electric field over 6 Vt/E critical length. So long as this variation is less than this,

your formula will hold.

Now using  typical  values  of  critical  electric  field  and thermal  voltage,  show that  the above

inequality indeed holds in many practical cases. So you will have to substitute the typical values

and show that this length scale is really very small and if the right-hand side of this term of the

inequality, if it allows you a change of critical electric field over that small length scale. So this is

really very high rate of change and most practical dou E/dou x conditions would be less than this.
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Let  us  move  on  to  transport  equations. We  have  discussed  the  various  forms  of  transport

equation, the Drift diffusion, Balance equations, which can be expressed in 2 different formats,

Hydrodynamic  and  Energy  Transport  and  then  Boltzmann  Transport  equation  and  Quantum

Transport equations. What is the validity range of each of these, that is what is shown in this

diagram. 

Let  us  take  this  boundary  here,  the  vertical  line  here.  You  see  that  this  corresponds  to  a

characteristic  time  of  0.1  picoseconds.  The  boundary  between  Drift  Diffusion  and  Balance

Equations  0.1  picoseconds  is  the  value  of  momentum relaxation  time.  So  once  your  signal

changes very rapidly over this time scale, the Drift Diffusion formula is no more valid, okay. So

you will have the go to Balance equations. 

You recall  that  the  Drift  Diffusion  formulation  assume a steady-state  version of  Momentum

Balance equation. So the steady-state version of Momentum Balance equation is no more valid,

okay if your signal varies rapidly over time scale of momentum relaxation time. So this is what

explains this boundary here between Drift Diffusion and Balance equations. Now let us look at

this horizontal boundary between Drift Diffusion and Balance equations. 

So you find a length value of a little more than hundred nanometers. So at this length scales, the

electric field can be large and therefore, no matter what your signal frequency is, in fact even



under steady-state conditions, one will have to move from Drift Diffusion to Balance equations

formulation because under such high fields, you can have effect such as velocity saturation and

velocity overshoot.

So to model those affects, one will have to use energy balance. Now let us move further down,

when do you go from Balance equations to Boltzmann Transport.  If your device sizes of the

order of 10 nanometers or little more, which happens to be the range in which the mean free path

of carriers in silicon or the de Broglie wavelength of carriers in silicon, so they are around this

length value.

So once your length scale becomes even smaller than the electric field variation and so on is so

high that 3 balance equations are not sufficient,  namely the Carrier Balance,  the Momentum

Balance  and  energy  balance.  So  you  also  have  to  go  to  further  Balance  equations,  more

particularly, the variation of the energy flux with distance, okay. That term becomes important. 

So  that  is  why  instead  of  using  more  balance  equations,  you  directly  aim  at  solving  the

Boltzmann Transport equation. And if the device size is really a very small, it becomes much less

than the de Broglie wavelength, then you have go to Quantum Transport. The right-hand side

here is the length scale for gallium arsenide and because effective mass of electrons in gallium

arsenide is much smaller.

The order of magnitude of this length scale is 10 times that for silicon. So here the transition

from Drift  Diffusion to  Balance  equations  sets  in  for  even larger  devices,  right,  for gallium

arsenide. So even for larger size gallium arsenide devices, one will have to use Balance equations

because velocity overshoot, velocity saturation, all those effects will be strong. 
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Let us look at the Boltzmann Transport equation. What is the range of its validity? So BTE is

valid, so long as carriers can be regarded as particles for which the conditions will be discussed

shortly and 2 device dimensions are much greater than the mean free path and time duration of

the applied signal is much more than means free time between collisions, so as to include many

scattering events. 

So this is important because you are using the concept of a distribution function unless you have

sufficient number of carriers unless you have sufficient number of scattering events, the concept

of distribution function, which is a statistical concept, will not hold. So that is why you need

many scattering events which are insured if your length scale of the device is much more than

the mean free path or the time scale of your signal variation.

So the signal varies over the time scale which is much more than the mean free time between

collisions,  that  ensures many scattering  events  are  available  for in  the duration or region of

analysis.
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Now let us look at the particle approximation of carriers between collisions. A carrier can be

regarded as a particle rather than wave if: Lc is much more than the thermal average wavelength

of the electron which is given by the Planck's constant h divided by effective mass of electrons or

holes whichever is the particle under question multiplied by the thermal velocity. 

So  this  is  the  formula  here.  That  is  the  carrier  momentum is  large  enough  to  allow  sharp

localization within lc, so if the momentum is large, de Broglie wavelength is small. And that

means the particular carrier can be localized in a length which is much smaller than lc. So the

lambda for electrons and silicon is 120 Angstroms and gallium arsenide is 240 Angstroms at 300

K. Now this  can be calculated  using the formula.  We have already calculated  this,  then we

calculated the orders of magnitude of various characteristic lengths.

Now the second condition for the particle approximation is that, the mean free time between

collisions should be much greater than this time constant tau thermal which is given by h/2 pi

kTc, that is the carrier energy is large enough to allow sharp localization within tau C or the

carrier remains in a state long enough to have a well-defined energy, kTc, okay. So this is the

condition. 

So if you want to regard the carriers of particle between 2 collisions,  you should be able to

localize the carrier within a short time or a short region. So the distance between collisions is lc,



if you can localize a particle within a very small fraction of lc, then you can regard it as a particle

or if you can localize a particle within a time interval which is much shorter than the mean free

time between collisions, then also you can regard it as a particle. Some other conditions.

(Refer Slide Time: 16:07)

Many times carriers are subjected to potential  variation.  So what is  a condition on potential

variation.  The  potential  experience  by  the  carrier  where  is  little  over  the  length  de  Broglie

wavelength lambda thermal. Or the potential varies little over the time scale, tau thermal, right,

which is h/2 pi kTc which can be converted into frequency and the inequality would then be, the

frequency of applied voltage should be much less than kTc/h and that is 6 into 10 power 12 hertz

at 300 K. 

Now you see this frequency is really very high and therefore for most practical frequencies, the

particle  approximation  will  hold  for  carriers.  A carrier  experiencing  more  rapid  potential

variation undergoes reflection from and transmission into the potential barrier in accordance with

the wave nature, okay. 

So supposing you have a potential variation and this potential variation is very rapid over the de

Broglie wavelength, then effect of that potential variation cannot be treated by particle means

because the carrier will undergo reflection, okay and even transmission, tunneling, right through

the barrier. So, then you will have to invoke the wave nature.
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Let  us  explain  the  particle  approximation  for  carriers  between  collisions  using  an  analogy

because this is really a very, very important idea. Now we say that in modeling of the device

current, the wavy nature of electron can be ignored if mean free path between collisions is much

greater than the wavelength lambda of the wavyness, that is the thermal average wavelength.

Now, this is very much like the following situation. 

Consider a wheel moving over a road that is wavy, lambda is the wavelength of the road and h is

the height of this hump. Now if the radius of your wheel are is much greater than this lambda,

then you really do not have to consider the wavy nature of the road, you can regard the road as

flat. On the other hand, if you radius is really small and is of the order of the wavelength lambda,

then you see that the wheel will try to follow this wavy nature, right, hump.

And therefore this wavy would become important. So putting this in the form of a statement in

modeling of the wheel motion, the wavy nature of the road can be ignored if radius are, of the

wheel is much greater than lambda or h, this dimension of the wavyness. So just as the relative

values of 2 length dimensions decides here whether the wheel can be regarded to be on a flat

road or a wavy road.



Similarly, the relative comparison between 2 length dimensions for electron, namely the mean

free path and the de Broglie wavelength, this criterion helps you to decide whether the particle

approximation for electron is valid.

(Refer Slide Time: 19:30)

Finally let us look at the energy band model. In a crystal, allowed energy levels of electrons are

grouped into bands separated by forbidden gaps. You know this from the first level course. To

help you, recall the following diagram. This is electronic energy plotted as a function of x. This

is so-called energy band diagram, EX diagram. E knot is a vacuum level and these 2 orange

bands are the allowed energy bands, outermost energy band is called the conduction band and

valence band, they are separated by band gap. 

You similarly have other bands which are narrower. For example, this is a band, but which looks

very thin and it is separated from the valence band from a band gap. So this particular model of

allowed energies for electrons in a crystal, what is the range of validity. So this model is valid, so

long as  device dimensions  are  much more than the  lattice  constant  a,  which is  the  distance

between the atoms.

So to further appreciate the nature of this approximation, let me show you in the picture the

lattice constant a. So this is a one-dimensional lattice for simplicity we are considering and this is

atomic arrangement, regular arrangement of atoms, these are the atomic potentials, okay. Now



you see that these potentials are varying with a period equal to the distance between 2 atoms and

that is a.

So long as your device dimensions, here, so this length is much more than a, in other words you

should have numerous atoms, here, only then the idea of a continuous allowed energy band is

valid.  If  the number of atoms become small  because the device dimensions are small,  okay,

compared to a, then you will no more have bands, but rather you will have discrete levels, that is

what will happen and the energy band model in that case will not hold.

Now these are some of the important approximations in which you use the concept of scaling

lengths and times to decide whether the approximation is valid or not. So with that we have

completed  our  discussion  of  this  module,  the  topics  in  this  module  and so  we move on to

summarize the important points of the module.

(Refer Slide Time: 22:26)

Let us start with characteristic times and lengths associated with carriers in the bulk of a space

charge neutral semiconductor under equilibrium. This is a picture of random thermal motion of

electrons and holes in a n type semiconductor. This point represents generation process where

electron hole pair is being generated and this point here shows the recombination process where

the generated hole is recombining with an electron found nearby, okay. 



There  are  numerous number of  electrons.  Now for  this  picture under  equilibrium and space

charge neutral  conditions because we are considering a uniform semiconductor,  we have the

following important parameters. The RMS velocity or thermal velocity, mean free path between

collisions which is the average of length AB, that is this length AB, okay. We are saying an

average because you see the length AB is different, this is long, this is short and so on.

And you similarly  have an average  length  AB for  holes  as  well.  Then you have  the length

parameter De Broglie wavelength of thermal average carrier which is given by h by effective

mass  into thermal  velocity.  The characteristic  times associated  with this  equilibrium picture,

mean free time between collisions that is average of time AB, so the time taken by the carrier to

undergo 2 collisions, right?

The time interval between 2 collisions, that is given by lc mean free path divided by thermal

velocity. The minimum time between collisions for particle treatment of thermal average carrier

is given by this characteristic time, h/2 pi kTc. Then comes minority carrier lifetime. That is the

time interval between events G and R, generation and recombination, this is G here and this is R.

So the time interval in which so many collisions are taking place, so many scattering events. So

this time interval is called minority carrier lifetime because this is a time for which a minority

carrier lives after a generation before it recombines and generally this is much more than the

mean free time between collisions because there are several scattering events before a carrier that

is generated recombines.
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Now let us look at characteristic times and lengths associated with relaxation of disturbances

from space charge neutral and equilibrium conditions. So, so far we discussed the equilibrium

condition and charge neutral conditions. Now suppose you disturb the equilibrium or the spatial

neutrality, then the system will try to return to equilibrium or charge neutral condition. Now what

are the lengths and times associated with this return, okay, to charge neutrality or equilibrium.

So in this  context,  we discussed  the  minority  carrier  lifetime,  the  minority  carrier  diffusion

length.  Dielectric  relaxation  time  and Debye  length.  Momentum relaxation  time  and  energy

relaxation time. 
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Let  us  look  at  relaxation  of  small  disturbance  in  access  Electron  Hole  Pair  concentration,

Minority carrier lifetime. Now this time was introduced using this physical situation where for t

< 0, you have uniform generation of electron hole pairs, access electron hole pairs inside the

volume, for whatever reason. In this case, the reason is illumination and then at t = 0, the source

is just cut off and then the system returns to equilibrium, so excess carriers decay.

It takes 3 times the minority carrier lifetime, a duration of this value, 3 times tau p for the system

to return to  equilibrium.  So this  time constant  tau p is  valid  for  conditions  of  uniform thin

semiconductor.  The thin  semiconductor  here,  the  thinness is  because we are concerned one-

dimensional situation for analysis. Uniform access electron hole pair concentration, the source of

access  electron  hole pair  is  switched off at  t  = 0 and low-level  conditions  prevail,  that  is  g

sufficiently small.

So  that  the  excess  hole  concentration  is  much  less  than  the  equilibrium  majority  carrier

concentration. So under these conditions, you have an exponential decay of excess carriers with

time once the impulse is switched off and the time constant here is the minority carrier lifetime.

This is the Defining differential equation and this is the boundary condition under which it is

solved.
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Now repeating analogous discussion for diffusion length, this length is introduced in the physical

situation shown here, this is the uniform thin semiconductor, there is uniform surface generation

of electron  hole pairs  at  x = 0,  over here.  So which helps you to elevate  the excess carrier

concentration at this boundary alone and then there is steady state and low-level conditions. So

under this conditions, it was shown that from the elevated excess carrier concentration at x = 0, a

decay happens which is exponential as a function of distance and the excess carriers decay.

And the system returns to equilibrium over a length of 3 times the diffusion length of minority

carriers. The defining equation or differential equation for the diffusion length is shown here, it is

a second order differential equation in space and there are 2 boundary conditions because it is a

second order differential equation, one boundary condition on excess carrier concentration and x

= 0 and another one at x very long or infinite.

(Refer Slide Time: 28:39)

Relaxation of small disturbance in space charge. Dielectric relaxation time is a time constant

related  to  this  relaxation.  Now this  time  constant  was  introduced  under  the  conditions  of  a

uniform thin semiconductor, then uniform injection of majority carriers alone at t = 0, so we

considered an injection of electrons in an n type semiconductor and we assume the electrons are

uniformly distributed at t = 0 and then the system relaxes to charge neutral conditions. So we

assumed low-level conditions.



Under these conditions, the decay of access electron concentration is exponential and the time

constant  here  is  called  the  dielectric  relaxation  time.  The  space  charge  associated  with  the

electrons  also  decay  exponential.  Now the  holes  are  not  involved  here  because  we  did  not

consider any injection of holes; otherwise, we would not have had a space charge. So only if you

inject only one type of carrier then you can have space charge and in this case we are injecting

majority carriers.

So defining differential  equation is a first-order equation in time and the dielectric relaxation

time is given by epsilon S/sigma and this equation is solved under the boundary condition of

space charge at t = 0 at any x, because the conditions are uniform is given by = q times the

excess electron concentration that is injected.

(Refer Slide Time: 30:08)

The dialect relaxation time associated with injection of minority carriers. So here again you have

uniform thin semiconductor and instead of majority carriers, you are injecting minority carriers

at  t  =  0,  low-level  conditions.  Then  you  have  2  parallel  processes  operating  here.  One  is

neutralization of the space charge which happens in 3 times the dielectric relaxation time and

second is the recombination of minority carriers which happens over a time scale of 3 times the

lifetime of holes.



So both these parallel processes are operating here in contrast to the situation for majority carrier

injection where you did not have any recombination over there because majority carriers are

large in number, they find difficult to locate holes for recombining whereas minority carriers are

very small in number and are surrounded by large number of majority carriers and therefore they

can be lost by recombination also apart from movement because of the field created, right, which

neutralizes the space charge.

So the defining differential equations here are once associated with the space charge and the one

associated with recombination, both are first-order equations and the time constants are here and

they are solved subjected to a single boundary condition in each case.

(Refer Slide Time: 31:37)

The  excess  hole  concentration  decays  exponentially  but  over  a  time  scale  of  3  times  tau  p

whereas the space charge decays over a much, much shorter period over a time scale of 3 times

tau d and this space charge decay happens because of drawing in of electrons from the surface

into the volume, okay. So the electron concentration rises rapidly and then thereafter once the

space charge is neutralized, it falls slowly over a period of 3 times the minority carrier lifetime.

So both these decays are exponential.
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Debye Length - Relaxation of small disturbance in space charge over distance. This length was

introduced under the conditions of uniform thin semiconductor. A uniform surface electric field

at x = 0+. So we are talking about 0+ here because the electric field inside the semiconductor is

different from the electric field outside because the ambient dielectric constant is different from

the dielectric constant in the semiconductor.

We are assuming an equilibrium state and we assume that the electric field is small. So in all this

characteristic times and length definitions, the disturbance is always assumed to be small because

only under that  condition,  we get  simple differential  equations.  So in this  case,  the electron

concentration which is elevated at the surface because of attraction of electrons by the electric

field decays exponentially to equilibrium electron concentration and not in the bulk, okay.

Under charge neutral conditions and because it is equilibrium, pn product is NI square and the

hole concentration rises to the concentration under space charge neutral conditions, p knot. This

also happens exponentially. The space charge which arises because of elevation of electrons and

depletion of holes, the space charge varies exponentially. Now the holes really do not contribute

much to the space charge because their number is really small.

So this exponential behavior of the space charge mostly follows the exponential behavior decay

of the electron concentration. The defining differential equation for this condition is a second-



order differential equation for space charge over distance and this is where you get the Debye

length which is given by epsilon s Vt/q times the sum of hole and electron concentration. So you

see this formula is valid for p as well as n type semiconductors is and there is a square root sign

over this.

So this second-order differential equation is solved using 2 boundary condition, one for space

charge at 0, x = 0 and other one at space charge at infinity which is 0 because the conditions are

relaxing to charge neutral conditions. You can alternatively express the conditions also in terms

of potential. So for potential also you have a second-order differential equation here under these

conditions and you can introduce Debye length even using this second-order differential equation

for the potential.

Here you have 2 boundary conditions and the potential varies exponentially, so it decays from an

elevated value of delta psi to 0, it is assumed to be 0 in psi, okay. So this decay happens over 3

times the Debye length as in the case of the space charge which decays over 3 times the Debye

length.
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Then the considered relaxation of a small disturbance in carrier momentum and energy. 2 time

constants related to this disturbance where or relaxation of the disturbance where momentum and

energy relaxation times. Now these 2 time constants were discussed together considering single



situation because whenever you disturb momentum, you disturb energy as well. So relaxation of

momentum and energy, right, happen in the same situation.

So whenever you disturb momentum, you disturb energy also. So the conditions with which we

introduced this relaxation time was a uniform thin semiconductor and a uniform current density

which is equivalent to imposing a uniform momentum density in the semiconductor for carriers

and uniform kinetic energy density. So you apply a signal, a voltage to a uniform semiconductor

and this voltage is suddenly stepped from a non 0 value to 0 value at t = 0. So v is switched off at

t = 0.

So it is this v that creates momentum and energy for carriers, okay, dielectric momentum and

energy that is  more than the equilibrium value.   Now when you switch off  the impulse,  the

system tries to return to equilibrium. We assume small value of voltage so that we get simple

equation to characterize this situation. So the electric field is uniform over x, so at instant t = 0, it

goes to 0 because the v is switched off.

Now what  we find in  the  situation  is  that  the current  I,  here,  will  decay exponentially  as a

function of time. So you might imagine if you did not know the concept of momentum and

energy relaxation time that moment you switch off the voltage, the current will abruptly fall to 0,

no that is not what is going to happen. So the current is going to decay to 0 over a time period

which is 3 times the momentum relaxation time.

Now what about the energy. You see the energy of the carriers consists of a dielectric component

and around random component.  Now while the dielectric component is decaying because the

current is decaying, the random component takes longer time to decay and therefore the energy

of  the  carriers  which  includes  dielectric  and  random  components.  So  that  energy  decays

exponentially over a much longer time scale than the current decay and this is 3 times the energy

relaxation time.



The  defining  differential  equations  for  momentum and  energy  relaxations  are  all  first-order

differential equations in time and therefore you have only one boundary condition, the so-called

initial condition on current and kinetic energy.
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We talked about the Transit  time which is duration of travel of an average carrier across the

device length. Now the transit time was not associated with return of some disturbed situation to

equilibrium  or  charge  neutrality.  So  therefore  the  transit  time  discussion,  there  was  a  little

different than the discussion and the equations associated with momentum and the relaxation

times, dielectric relaxation time, minority carrier lifetime, diffusion length time, Debye length.

Now this situation,  this time constant was introduced using a thin semiconductor,  a unipolar

flow, no generation or recombination during flow and steady state conditions. Note carefully that

the semiconductor is thin but not necessarily uniform. It could be non-uniform. So this is in fact

shown here. So you have some arbitrary variation of the carrier concentration and it is unipolar

conditions.

Therefore,  we bother  only  about  electrons  or  about  holes.  So in  this  case,  we talked  about

electrons. Now because there is steady state and there is no generation recombination, the current

density of carriers would remain constant over x and under this conditions, no matter what is the

cause of the current, it could be diffusion, it could be drift, it could be combination of the 2,



whatever,  you can define a time associated with the travel of the electron from one point to

another in the device.

So the defining differential equation here is a time taken dt to travel a distance dx in the device

and dt/dx is nothing but 1/reciprocal of the electron velocity and we consider only the modulus

because we are going to take the time to be positive and this is equal A times the charge of the

electron into the electron concentration at x divided by the current which is constant throughout

the device. The boundary condition is t at x = 0, is 0. So we assume that the time instant when

the electron leaves the left terminal is 0.
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So when you saw the differential equation, you end up with a result of transit time equal to the

charge within the device divided by the current independent of the transport mechanism and this

allows you an alternate interpretation of transit time, namely, that it is a duration in which charge

q present in the device volume within length l, so this is the length l, is swept out of the volume.
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Now if you collect whether the defining differential equations for characteristic times except the

transit time equation, all other equations you can see here are of first-order differential equations

which introduced the time constant, okay, on the right-hand side of this equation. The transit time

equation,  however,  is,  this  is  also a  first-order  differential  equation,  however,  the  difference

between the transit time differential equation and other equations is that all other equations are of

the form which lead to an exponential variation of the quantity that is being relaxed.

Whereas the transit time is not associated with any relaxation process and therefore, it does not

have any such form of the differential equation, though it is first-order.
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In contrast, the defining differential equations for characteristic lengths are second-order as can

be seen here.
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The  orders  of  magnitude  of  various  characteristic  times  and  lengths,  we  calculate  it  the

maximum and minimum values of the characteristic times and we plotted on a logarithmic scale

because we found that they span a very wide range, several orders of magnitude and we showed

that the minority carrier lifetime is to be the highest among all the time constants and the time

calculated from quantum mechanics for the minimum time between collisions for which particle

(()) (44:07) can hold, that time constant happens to be the minimum on the scale. 

Other things lie in between generally for a large number of devices, the increasing order of time

is tau thermal, tau C, tau M, tau E, tau d, tau transit, that is transit time and finally minority

carrier lifetime.
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This is orders of magnitudes of characteristic lengths. Here, we found that the minority carrier

diffusion length is towards the upper limit of the length scale and the distance between the atoms

is at the lower end. So generally the minority carrier diffusion length is more than the Debye

length is more than the mean free path and which is more than the thermal average wavelength

and which in turn is more than the distance between the atoms. So in many semiconductor, this

order would hold.
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Now derivation of a characteristic time or length based on the drift diffusion model, we set out

certain steps in which the characteristic times and lengths are derived. So these are derived based

on the 6 equations and therefore there are 6 quantities here. So the first that is a qualitative



analysis  and  sketch  of  the  6  quantities  involved  in  these  equations,  namely  electron

concentration, hole concentration, electron current density, hole current density, electric field and

potential as a function of x and t. 

If it is a steady state situation, there is no variation with time. There is variation with distance

only. In a transient situation, however, there can be variation with distance and time; however, in

all our analysis, we assume uniform conditions whenever transient situations were involved. So

uniform as a function of x.  The next step is  approximations of the 5 coupled drift  diffusion

equations based on qualitative insight. So out of this 6 equations, these 5 equations are coupled.

So we try to approximate these based on qualitative insight gained in the first step. In the third

step, we reduce the 5 approximated equations and the 6th equation, that is this equation to a

single equation defining the characteristic time or length.
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Step 4 involves solution of the defining differential equation and interpretation of the time or

length. And finally, it is very important to test or validate the approximations made. So there are

the 5 steps in which we derive the characteristic time or length and incidentally these are the 5

steps in which any device analysis is carried out.
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Then  we  discuss  at  length,  Utility  of  Characteristic  Times  and  Lengths.  Specifically,  we

considered  4  aspects,  qualitative  explanation  of  device  phenomena  where  the  length  and

timescales  are  useful,  device  simulation,  device  characterization  and  validation  of

approximations. So as far as qualitative explanation of device phenomena is concerned, we gave

examples  of  p-n  junction  operation,  MOS  junction  operation  and  MOSFET operation  and

showed how characteristic time and lengths are involved in the explanation.

For  device  simulation,  we  considered  simulation  of  surface  recombination  by  volume

recombination and for device characterization we considered measurement of the doping profile

and  showed  how  Debye  length  is  coming  in  in  the  type  of  doping  profiles  that  can  be

characterized. Validation of approximation was done.
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This  topic  was  discussed  at  great  length  and  we  discussed  all  these  approximations,  their

validations, quasi-neutrality, quasi-static approximation, neglect of generation or recombination,

carrier  temperature  formula,  Transport  equations,  Boltzmann  Transport  equation,  particle

approximation and energy band model. Now specifically, we showed that in many situations,

quasi-neutrality holds in regions which are high mobile carrier concentration and for many time

varying situations, quasi-static approximation can be made and in many VLSI devices,

This device size is so small compared to the diffusion length that we can neglect generation and

recombination. Similarly, we showed that carrier temperature formula derived under steady state

and uniform conditions in the device is also valid for many practically non-uniform and high-

frequency conditions.
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Towards the end, let us recapitulate what we have achieved in terms of the learning outcomes. At

the End of this module, you should be able to state the characteristic times and lengths associated

with  the  bulk  carrier  population  under  equilibrium.  The  relaxation  of  disturbance  in  carrier

momentum and energy.  Relaxation  of disturbance in  access  electron hole pair  concentration.

Relaxation of disturbance in space charge.

Finally, you should be able to state time constant associated with transit of an average carrier

across the device length.
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You should be able to state the conditions,  including those at  the boundary and the defining

differential equation associated with each characteristic time and length. You should be able to

state the order of magnitude of, and factors governing the characteristic times and lengths.
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You should be able to state how the characteristic times and lengths are useful in qualitative

description of device phenomena, simulation and characterization of devices and validation of

approximations.
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You must be able to derive the defining equations associated with the various characteristic times

and lengths.
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You should be able to identify approximations which will simplify, decouple, or eliminate any of

the equations of carrier transport such as the Drift Diffusion equations, Balance equations, et

cetera. This approximation method is very important for device analysis. Finally, you must be

able  to  express  the  qualitative  analysis  using  graphs  of  electron  concentration,  hole

Concentration,  electron  current  density,  hole  current  density,  electric  field  and potential  as  a

function of distance and time. 

So with that, we have come to the end of this module. We shall begin a fresh topic in the next

module.


