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Lecture - 25
Characteristic Times and Lengths

So far in the module, we have derived and discussed various characteristic times and lengths. For

example,  we have  discussed  minority  carrier  lifetime,  dielectric  relaxation  time,  momentum

relaxation  time,  energy  relaxation  time,  transit  time,  mean  free  time  between  collisions  and

lengths such as de Broglie wavelength of an average thermal carrier, diffusion length, Debye

length and so on. 

So now we need to discuss what are utilities of these characteristic times and lengths. Now that is

a topic of this lecture today.

(Refer Slide Time: 01:00)

So we shall consider the following issues: Qualitative explanation of device phenomena, how the

characteristic times and lengths are useful for this purpose, then how they are useful in device

simulation and characterization and finally how they help us validate various approximations. 
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Let us begin with qualitative explanation of device phenomena, let us look at the p-n junction,

okay. 

(Refer Slide Time: 01:33)

Now suppose we are talking of operation of a p-n junction right and we want to explain what

happens  if  you suddenly  apply  a  forward  bias.  What  are  the  sequences  of  events,  how the

conditions in the device evolve? So now in terms of a knowledge of various characteristic times,

we could discuss or describe the evolution as follows: Moment you apply a forward bias the P

region injects holes into N region.  



Now once the holes are injected there will be a space charge and now this space charge will be

neutralized in a dielectric  relaxation  time because of electrons  which are drawn in from the

contact,  so we can say space  charge  neutralization.  So before that  we can  start  with  whole

injection from P+ to N. Now there will be electron injection also from into P, we are not talking

much about it because you know that the electron injection in P+ region is really very small.

So let  us look at  just one aspect and we can also you know then extend this explanation to

injection of electrons also from N to P. So the first stage is whole injection from P to N, the

second stage is space charge neutralization okay by drawing in electrons. Now this happens in

about  3  times  the dielectric  relaxation  time  of  this  region.  Thereafter  once  you have access

electrons  and holes,  they will  start  recombining and steady state  will  be reached in about  3

lifetimes. 

So steady state, the third stage is actually meant of steady state in about 3 times the lifetime of

holes in N type semiconductor. Now once the steady state is reached, you will find that access

electrons and holes, the decay over length and you know that this length is about 3 times the

diffusion length of holes. So beyond 3 times the diffusion length of holes, you have no excess

carriers and conditions here will be near equilibrium. 

So as a part of the steady state, you will have decay of excess carriers within say 3 times the

diffusion length, okay. Now this is how you can describe the various things happening in P-N

junction, right when you apply forward bias. Now let us concentrate on the space charge region.

Within the space charge region if you plot the electron concentration, it would look something

like this. From the edge of the space charge region the electron concentration decays rapidly.

Now what is the width of the space charge region, according to the problem that you have done

in assignment, this depletion region we are assuming that the depletion region on this side is

really  very small.  If you want to include that  also so the space charge region width will  be

several Debye lengths right of this likely dope region and within this the extent in which this fall

will occur and assignment was given to you to find out how much distance does it take for the

electron concentration to fall to one-tenth of its value right.



So it will fall to about 5% of its value and this will also be of the order of Debye lengths except

that this would be about 3 times Debye length whereas the Xd would be you know a 7, 8, 9 times

Debye  length  okay  about  7  to  9.  Now  from  here  you  can  figure  out  that  the  depletion

approximation will be valid for the depletion region if this distance is small compared to this

distance, okay. 

In other words, if your depletion with itself turns out to be about 3 times Debye length or smaller

than your depletion approximation will not be valid. So this is how you can describe the various

conditions in a device based on the characteristic times and lengths. Now we have considered the

example of a p-n junction. Next, let us take up a MOS junction or a capacitor. 
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Now this is a MOS junction. Let us say we apply a step voltage to this. We suddenly apply a step

voltage. A forward voltage in this case or positive voltage so that I want to create an inversion

layer on this side. I am applying a gate voltage that is more than the threshold voltage. Now how

will the conditions in this device evolve to create the inversion layer. 

Now what will happen is the first stage would be creation of a depletion layer right because the

majority  carriers  holes  can  be  quickly  removed  from here  in  dielectric  relaxation  time.  So

creation of a space charge in dielectric relaxation time from majority carriers, so let us say this is



the depletion region edge and this is the space charge that you have created because you applied

a forward voltage, it immediately needs a charge.

So the field that you have created needs a charge here to terminate. Now this XD will be more

than depletion width under inversion okay under steady state conditions when inversion happens.

Because there is no inversion layer here the entire electric field has to terminate on depletion

charge so this will happen in about 3 times a dielectric relaxation time, so creation of XD > XD

max okay.

Because your gate voltage is more than VT in about 3 times dielectric relaxation time. Now once

this has happened you have created a depletion layer like this. Now inside this the P-N product

will become < ni square and electrons and hole pairs will be generated. Similarly, electron on

hole pairs generated here, part of those some electrons will get attracted to the surface because

the field is in this direction it tends to attract electrons.

So progressively what will happen is that electrons generated here within a diffusion length from

the depletion edge and electrons generated within the depletion layer, okay they will all start

migrating towards the interface to create the inversion layer. And as inversion layer is built up,

the depletion layer will progressively collapse, reduce and ultimately reach the XD max which

corresponds to the steady state value and at that point inversion layer will be formed. 

So the second stage is formation of inversion layer and how much time will it take, well we can

write a simple formula as follows: you know that under steady state, the inversion layer charge

would be C aux into VG minus VT where VG is the value here. This value is VG. Now that is

inversion charge, to create this charge based on the charges created from generation, so now you

know the formula for generation time is Ni/tau g. 

This is a generation rate from (()) (10:16) theory we know. So using the generation time constant

here,  okay, this  is equivalent to the lifetime. Now this is generation rate and generation will

happen in the depletion layer as well as within a distance from the depletion layer. So let us say



this is minority diffusion length Ln, now note that this boundary is progressively shifting right so

this boundary also will keep shifting.

So always within a diffusion length from the depletion edge at any instant, so you can write here

HD+Ln. Within this region the generation will happen and all these carriers will accumulate here

and create the inversion layer. So formation of the inversion layer happens in about this much

time. Now let us check whether our dimensions are correct. You see that in denominator I have

not put Q because numerator contains the charge.

So I have to put a Q here. So ni is per centimeter cube, this is length, so this is per centimeter

square.  Numerator also is  per centimeter  square because C ox is normally in per centimeter

square, so this is about the time. So this is how we can describe the formation of inversion layer

when you suddenly apply a step voltage at the gate equal to a value more than the threshold

voltage.

So first a depletion layer is created in dialectic relaxation time 3 times the tau D and then within

the depletion layer and within a region equal to about diffusion length from the depletion layer,

electrons are being generated and those electrons are migrating towards the interface because

there is a field that attracted to the interface and deformed the inversion layer. What happens the

holes, well the holes move out, so this process can be shown like this, the holes are moving out

and the electrons are migrating towards the surface. 

Now one more example that we can describe in terms of the characteristic length is capacitance

of the MOS. Suppose this is your MOS capacitor or junction, what is the flat band capacitance if

you want to know, so we have applied a voltage equal to the flat band voltage here. Under flat

band conditions you know that under DC flat band conditions, there is no charge here in the

semiconductor.

Now when you want to find out the capacitance, it is a response to small signal voltage that is

why a small signal voltage has been shown here, so in responses to this voltage a space charge



layer, a modulating space charge layer will be created, now what would be the extent of the

space charge region here. 

Now that extent would be about a Debye length because we know that in our discussion of

Debye length that the space charge regions, they exist within about 3 times of Debye length. So

here the region width will  be of the order of Debye length and therefore the semiconductor

portion will  have a capacitance  given by Epsilon S/LD, so note that  this  capacitance  is  not

infinity so if you write the flat band capacitance formula, it will be a series combination of oxide

capacitance and the semiconductor capacitance.

So it is C ox and C s in series and that is why at flat band the capacitance is less than C ox, okay

because you have this capacitance which is non-infinite because the LD is not 0. Let us take one

more example, the example of a MOSFET. Here we want to bring out the utility of transit time.

(Refer Slide Time: 14:34)

Suppose I have a MOSFET like this, I have applied a drain voltage and I have applied a gate

voltage which is suddenly switched from below threshold to above threshold, so from 0 it is

switched to a voltage more than threshold voltage. Now when will you feel the drain current. So

far, we have not applied a drain source voltage in this case for example even here the voltage was

switched from 0. 



We talked about  formation  of  inversion  layer  and so on but  there  was no drain  and source

contacts so we are moving to a slightly more complicated situation where we have now put the

drain and source contact, so now the issue is not just formation of inversion layer everywhere,

when you have a gate to bulk voltage, so you have a drain voltage and you want to feel the

current at the drain it when will this happen.

So here you can bring in the concept of transit time, you know that the electrons at the source

end will take about a transit time to reach the draining and therefore for this formation of the full

inversion layer from source to drain, it will take about a transit time. So moment you apply a gate

voltage, the inversion layer will start building up, so electrons in the inversion layer will take

about a transit time to reach this draining, and therefore you will find that the IDT in response to

VGT will appear after a transit time.

So the IDT versus T would look something like this, where this duration is about a transit time of

carriers from source to drain. 
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Let us see how our characteristic times and length can be useful in Device Simulation. Consider

the problem of simulating a surface recombination using volume recombination, so let us we

have  a  simulator  which  does  not  give  provision  for  specifying  surface  recombination  at  a

particular surface.



But you know that you want to simulate a device in which there is resurface recombination, right

in  practice  there  is  surface  recombination,  so  how  will  you  use  the  volume  recombination

provision of the simulator to realize a surface recombination that is what we are discussing here.

Now let us say this is an n-type region and you want to simulate a surface recombination velocity

S at this left surface. 

Let us say the lifetime of this bulk region is tau of p. Now this is a region of the device, we have

not shown the other devices here because that does not concern us, but please remember in a

simulation situation may be more complex and you will have other regions connected to this

region to form a device. Now how do we simulate a surface recombination at S. 

Now let us see what is the effect of surface recombination, the effect of surface recombination is

electrons and holes will be moving towards the surface and recombining over there, the electron

hole  pairs.  To  simulate  this  situation,  we  need  to  actually  simulate  a  carrier  concentration

variation shown here. We have shown the excess hole concentration as a function of X, you can

similarly show access electron concentration you know that cause a neutrality holes usually and

therefore delta N will be = delta P, at least approximately.

So we would like to simulate a minority carrier distribution as shown here, the value of this

excess hole distribution is delta P infinity for X very large and it dips down to delta P surfing 0 at

X = 0, where you have surface recombination to create this tendency for the hole current. Now

you know that this variation will occur over a distance equal to about 3 times the diffusion length

of holes.

So we really want to simulate electron or a hole current towards the surface perpendicular to the

surface  given  by  this  formula  so  the  magnitude  of  the  current  divided  by  Q  is  surface

recombination velocity S into the X’s whole concentration at X=0 that is this value. Now you can

do  so  using  a  semiconductor  region  so  what  we  are  doing  here  is  we  are  extending  the

semiconductor bulk here by another semiconductor region, right.



This semiconductor region is such that the lifetime of holes in this region is very small compared

to the lifetime of holes in the bulk here, now because the lifetime here is smaller there will be a

tendency for electrons and holes to move into this region and recombine over there, so please

note that similar arrows exist in the bulk of the parent n-type region also. We are not showing

those arrows because we are showing only the difference  in the recombination  between this

extension and the parent region, semiconductor region.

Now,  how  much  should  this  recombination  be,  this  is  what  we  have  the  see,  so  this

recombination should be so as to simulate the surface recombination velocity. Let us assume the

width of that region is W, to start with let us say this W is more than 3 times the diffusion length

of holes in the region W that is L suffix W. Now L suffix W will be much shorter than L suffix P,

that is this because lifetime of holes in this region extension is much less than the lifetime of P in

the bulk.

Now what  will  be  the  effect  of  this  on  the  excess  carry  distribution,  so  the  excess  carrier

distribution  will  decay  to  0  as  shown here  in  this  region,  so  far  away  your  excess  carrier

concentration will decay to 0. Now, you might like to think now why is there excess carrier

concentration here at all. Now that really does not concern us at this point, there could be many

reasons for excess carriers being present there because it is a device.

There may be injection from some other region or there maybe light being shown on the sample

and therefore  there is  volume generation,  that  does  not  concern  us,  right.  What  we have to

concern with is the effect of that, so whatever is the source of excess carriers here please note

that source of excess carriers is not here, this is simply a semiconductor extension, so here far

away from this surface your excess carrier concentration will go to 0. 

Now we want to adjust our W and tau W in such a way that the value of the excess whole

concentration  at  the  surface  remains  =  delta  P0.  Now if  you  do  that  then  we  would  have

simulated the surface recombination velocity S according to this formula. Now let us say we

choose a W much less than the diffusion length of holes there. This is to simplify matters. Now



what would happen is this whole distribution now would remain almost approximately constant

over this region, okay. 

From our knowledge of the characteristic length we know that if the width of any region is much

less than the diffusion length there, the excess carrier concentration would remain approximately

constant, the decay will be very small, so that is why the whole concentration is now assumed to

be  approximately  constant  over  W.  Now  this  will  help  us  simplify  the  formulation  of  the

problem. 

So now we can write that the current divided by Q, that is the flux is equal to W that is a width of

this region into Delta P0 divided by tau W. Now this is actually the recombination shown by

these arrows here, so the flux that is represented by this electron and whole arrows perpendicular

to the surface here is the same as the recombination taking place here, taking into account the

dimensions properly.

So here whenever you talk about the flux, we talk about per unit area therefore this is the volume

recombination per unit area of this surface. So if you want to take into account the actual area

then this formula would be W into the area into Delta P0/tau W. However, then you will have to

change the formula for the flux and you will have to put an area here also. Now equating these 2,

what do we get, so we get the surface recombination velocity as W/tau W because Delta P0 will

cancel.

Now this tells you that if I chose an extension W which is much less than LW then by adjusting

my lifetime according to this formula I can simulate the surface recombination, so this is what is

summarized here, this is approximately = W/tau W and W is much less than LW, they are the

conditions, so this imply the width of your region that simulates surface recombination should be

much less than DP/S. 

So I can combine these results, okay, because this formula is valid only under this condition, so I

leave it as an assignment to you, you substitute in LW square root of the DP into tau W because

that is what the diffusion length is and then combine these results and you will get this formula



and similarly the condition on tau W would be it should be much less than DP/square, so this

again can be obtained by combining the results here, okay. 

Now, you must take care that tau W remains much less than tau P also, so that is the additional

requirement. 

(Refer Slide Time: 25:45)

The summary of  our discussion is  that  a  surface recombination  S can be simulated  using a

semiconductor extension with W satisfying the conditions that we have just now outlined and a

lifetime tau W also satisfying the conditions we outline, the important thing about tau W being, it

is much less than tau P. So W and tau W simulate S=W/tau W so long as W is much less than

DP/S and tau W is much less than minimum of DP/square and tau P. 
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Now let us look at device characterization, where can our ideas of characteristic length and time

be useful. Let us discuss determination of doping profile from C-V measurement. Now how do

you measure the doping profile from civil measurement, consider P-N junction or a short key

junction or a MOS right, capacitor, so what you do is you measure it C-V characteristics, right

and you know that the capacitance voltage characteristics will tell you the doping profile.

For example, if you take this MOS capacitor, as you change this voltage, their depletion region

changes right and that is how you can find out what is the doping at the edge of the depletion

region. There is a formula, you must have studied this formula in the first level course. We are

talking about that C-V measurement right to measure the doping profile, so what is the doping

variation in the X region, in this bulk.

For example, if you take the P-N junction what is the doping in the likely dope region, what is

the profile here. Now C-V measurements are sensitive to mobile majority carrier concentration

rather than doping, although you are measuring doping, actually you want to measure doping

what the C-V measurement does is monitors the mobile carrier concentration, mobile majority

carrier concentration.

And  now  you  know  that  you  cannot  always  assume  the  majority  carrier  concentration  is

approximately equal to doping concentration why because the doping varies too rapidly there can



be space charge  region.  So that  is  the  point  that  we are  bringing out  here  what  should the

variation of the doping so that you can capture the variation, so for a small abrupt change in

doping the mobile carrier concentration varies over a few LD. 

Now, this is the picture, so if you take an N plus N junction, the doping changes abruptly at this

surface. Now this is abrupt change in doping. Evidently, the mobile carrier concentration cannot

change abruptly because it will  result  in infinite diffusion currents at  the point where abrupt

changes  occurring  and it  will  change gradually  and now from our  knowledge of the Debye

length, we can easily anticipate that the space charge region over here will extend to about 3

times the Debye length, right.

And  similarly  on  this  side  also  it  will  be  3  times  the  Debye  length  where  Debye  length

corresponds to Debye length of this region over here, which is slightly smaller because doping is

higher. So, this is what we mean by saying the mobile carrier concentration varies over a few

LD, so now since you are monitoring this mobile carrier concentration and C-V measurement in

effect, you cannot capture this rapid variation in doping right. 

So this is what is the limitation of the C-V method, so it says that abrupt changes in doping

occurring in a scale less than LD cannot be resolved in measurements, okay so if you have a

doping profile let us which changes abruptly like this, step like profile, you cannot get the steps

out  from  a  C-V  measurement  data.  You  will  get  a  more  smooth  variation,  so  what  the

characteristic length Debye length tells you is that the doping variation should not be very rapid

over a scale of LD.

So it gives you some idea of what kind of doping variations can be captured. 
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Let us come to validation of approximations. Large number of approximations are used in device

analysis  and  modeling,  Quasi-neutrality,  Quasi-static  approximation,  neglect  of  generation

recombination,  some of these we have discussed already.  Then we use a carrier  temperature

formula, this carrier temperature formula if you recall we have derived using steady state and

uniform conditions in the semiconductor.

But still  the formula is  used for even non-uniform and high-frequency conditions,  so that is

approximation that we are talking about right, so how is it valid. Then, we are using the various

forms  of  transport  equations,  division  transport  equation  and  balance  equations,  Boltzmann

transport equation and so on. So each of them has their validity range. Then we are making a

particle approximation and finally we use an energy band model.

So all these things are often used in device analysis. So let us see how the idea of characteristic

times and length enables us to validate these approximations. 
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Let us take Quasi-neutrality, this approximation holds in a semiconductor region which has a

high mobile carrier concentration whose doping does not vary significantly over LD, because as

we discussed just now if the doping varies rapidly over length scale LD then there will be a space

charge  region  because  mobile  carrier  concentration  cannot  vary  as  rapidly,  so  then  causing

neutrality, the neutrality will be violated because in this region you have space charge and here

also you have space charge.

Now region which is several LD away from fixed charges tends to be Quasi-neutral, you can see

here for example a region which is in this place that is beyond 3 times LD from the source of the

space charge will be Quasi-neutral and similarly on this side right so that is what is meant here a

region which is  several  LD away from fixed charges.  Now in this  case there is  no specific

location of fix charge, but if there is a source of charge and if you are away by several LD from

there you will have Quasi-neutral region. 

So the Quasi-neutrality will be valid for all these cases. Now look at the high mobile carrier

concentration. Why this allows us to use Quasi-neutrality.
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This can be understood in terms of the time constants, direct relaxation time and the Debye

length LD, now high mobile carrier concentration means small tau D and small LD, you know

this  from the  formula  for  these  characteristic  parameters.  So  small  tau  D  means  operating

frequency tends to be much less than 2/tau D reciprocal of this quantity right.

Because if tau D is small this quantity would be large and therefore your operating frequency

would be much less than this and that means the carrier concentration does not change much

over a duration of a tau D. Now small LD means fix charges into the screen within a short

distance living most of the region Quasi neutral because we have just now seen that if you are

several LD away from fix charge, you are in a Quasi-neutral region and if LD is small.

This amount by which you need to be away is really very small so most of the region would be

Quasi-neutral. 
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Let us look at Quasi-static approximations. Let us look at these 2 approximations, now this is a

Quasi-static  approximation  of  the  carrier  balance  equation,  this  is  aquatic  carrier  balance

equation, you can neglect dou N/dou T, so long as your frequency is much less than reciprocal of

2 pie into minority carrier lifetime that is this time, so in other words we are saying that this term

will be negligible compared to this term.

So long as your frequency follows this. Now this is how you get a condition in terms of your

characteristic time for a validity of this approximation. Similarly, if you integrate this equation,

you get an equation of this type. This is called an equation for store charges. Now this kind of

equation is useful for example in MOSFET, so here let me explain what this equation is. This

term is the source current, current into the source terminal. 

This  term is  the  bulk  current  and  this  term is  actually  the  brain  current  under  steady-state

conditions so we have used the transit time concept to write the current. You know that under

steady-state conditions the transit time from one into the other end can be written as ratio of

charge by current and so the current can be written as the charge that is inversion shot that is

causing the current divided by transit time. 

This is under steady-state, however, we are writing the formula under transient conditions, so

there is a negative sign here because for electrons, the inversion charge is negative right and



therefore there is a negative sign here. Let us spend a few minutes to explain how you get this

equation from this equation. In fact, let me first point out the 1-to-1 correspondence, this term is

obtained by integrating this term on the left hand side. 

These 2 terms emerge from integration of this term, the diversions of the current density when

you integrate this, you get these 2 terms for the 2 limits of integration, the drain and the resource.

There is really no excess generation in the MOSFET, we are assuming such a condition because

of light impact on this shown, all the generations are neglected.

So this  term is  not  there  and  this  bulk  current  is  actually  a  consequence  of  the  generation

recombination current that is coming by integration of this term here. Now let me quickly show

you the steps in which the terms emerge. 
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Now let us look at the MOSFET here, the N is the electron concentration here that is causing the

inversion layer right so now how do I write a formula for the version charge you know that QI

the inversion charge can be written as integral of the electron concentration with respect to DY

that  is  Y so in this  case we will  assume that  this  direction  is  Y and this  direction  is  X, so

indicated along this direction. 



Then you should also integrate along this direction right because you want the total charge so

dou X and you should multiply by -Q. Then you must also take into account the fact that there is

a width direction here, W okay, so in this direction that is W, so we have to multiply this whole

thing by W. So, W into dou Y into dou X, so you integrate in this direction, integrate in this

direction, and take into account the fact that there is a W in the direction perpendicular to the

board.

So you get a volume W, dou Y, dou X, multiply the volume by a charge concentration, you get

the number, multiplied by charge, which is -Q because it is electrons so that is really your QI,

now let us look at the current ID and IS, so IS is the current here in the source. Now current

anywhere, you want to get the current, how do you get the current from JN, well your current IN

at any X = integral JN dou Y into W okay.

So integrating over and you are taking W that is a width in that direction. So, W into dou Y is

nothing but the area cross-section of the current flow right, the current is flowing like this, it has

an area of cross-section, if I show is in 2 dimensions, it would be probably like this, your W is in

this way, so something like this, your current flow is in this direction, this is dou Y and that is W

okay, so this is the area, W into dou Y at each end.

Now what  about  the bulk current,  the bulk current  is  the current  here that  AB, now this  is

because there is a generation of electron hole pairs, electrons move to the positive drain contact

in an n-type entire MOSFET and the holes move out here, so that generation is represented by

this, so I can write B as so let me write this as small IN because the reason is that things are

changing with time.

So ib is n-n0/tau, again as we have done here we need to integrate over dou y, dou x and multiply

by -q to get the charge over here and w.  Then it gives you the current ib, now note here that this

was  charge  but  this  is  current  because  there  is  a  time  constant  in  the  denominator  here  to

compare these 2, the numerator gives you the charge and this is the time constant that is ab, so

now how can I get a relation between these from here so if you integrate now.



So what I do is I multiply this/dou x and dou y right and multiply this also/duo x, dou y. Now,

this is dou/dou x, so the dou x in that that dou x has been brought here and I multiply this/dou x

and dou y. Then I multiply by-q because I have get -q here. If I multiply by -q, this q goes away,

you get a - sign and multiply by -q here. Then I multiply by w, I have to get w, so that gives you

a w here and it gives you this w that you require here.

Okay, let me put it on this side, because there is no place here. So now what I do is I integrate, so

when I integrate this, when I am integrating with respect to y, it is double integration. I integrate

from y=0 to y=infinite. And when I integrate in next direction, I integrate from x=0 to x=l, this is

a channel length l, okay. So you have to do the same thing on each of these terms, okay. 

Now what will  the result  be,  so this  will  give you now that  by dou/dou t,  because its  time

derivative can be brought out when you are indicating with respect to x and y.
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So I will put it like this, I will remove this out. So this term will reduce to dou qi/dou t. Let us go

to right hand side, this term will reduce to you have seen here, so here you are going from y=0 to

infinity and there is a dou of jn, so when I move this dou out here. So I can integrate from y=0 to

infinity and before when I integrate with respect to x, I take the dou out here, so x=0 to x=l. So

this quantity really will turn out to be according to this result.



The value of IN at c=l minus value of IN at x=0 okay, but re is a negative sign here and therefore

it will become minus of INL plus of IN0. Now what is INL. So electron current at L. This is

nothing but the drain current, the drain current is inward and the electron current is outward,

right and therefore this quantity can be written as minus of IN is ID, minus of IN at L is ID and

similarly this  quantity  can be identified as minus of IS that is  the source current,  this  again

downward whereas your X is a upward. 

Now what about this here, so this current can be directly related to IB, there is a minus sign, so

you have minus of IB, so minus of IB. Now under steady-state conditions, this ID is written as

minus  of  qi/transit  time.  So we use  a  steady-state  result  in  this  transient  case  to  solve  this

equation in a simple manner, so this kind of an approximation you can do if your dou qi/dou t is

small that is so-called Quasi-static approximation in the context of MOSFETs, the very important

approximation.

So you can see from here that this approximation can be done if this term turns out to be much

less than the magnitude of qy/transit time. Okay, so that is what is shown here, so dou qi/dou t,

this will turn out to be much less than this quantity and the Quasi-static approximation will hold

if your frequency is much less than 1 x 2 pie transect time. 

Let us look at some other Quasi-static approximations, so you take Maxwell’s equations, curl B

= mu x j that is mu x jn+jp+ the j also includes the displacement current. Now often we like to

neglect the displacement current because we say the frequency is not very high. Now what is the

condition for that, so you can write this sum in this form where we assumed a drift current for jn

and jp. 

So it is expressed in terms of e and from here it is very clear that I can assume dou/dou t of e as

negligible if it is small compared to e/tau d and therefore in terms of the frequency this condition

will be valid is f is much less than 1 x 2 pie tau d. So this is how a knowledge of the dialectic

relaxation  time  helps  us  to  explain  the  conditions  that  should  be  satisfied,  the  frequency

conditions that should remain in the device for the Quasi-static approximation to hold. 



Similarly curl E is -dou b/dou t. In this case we can neglect the time varying magnetic field when

the device size L is much less than the electromagnetic wave length. We will not spend much

time in explaining this point. You know that if the device size is small then it does not radiate,

right if you want an antenna then the antenna length should be comparable to the wave length of

the frequency that you want to radiate out, this you might know from your basic knowledge of

electromagnetic fields. 

Something like that is being used here, so such a radiation will not happen, we do not have to

bother  about  any radiation  or  in  other  words,  we do not  have to  bother  about  time varying

magnetic fields if your device size is less than electromagnetic wavelength and when you convert

this into frequency, so writing the electromagnetic wavelength in terms of the velocity of the

wave and the frequency you get this in equality.

So frequency should be much less than the device length multiplied by square root of mu epsilon

where mu is a permeability and epsilon is the permittivity. 
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Then we have  come across  the  Quasi-static  approximations  of  energy  balance  equation  and

momentum balance equation. This is what is shown here, so just repeating those facts, dou/dou t

of Wn can be neglected if your frequency is much less than 1/2 pie energy relaxation time and



dou/dou t of Jn can be neglected if your frequency is much less than 2 pie momentum relaxation

time reciprocal. 

We have used this formula for carrier temperature derivation. Finally, the Boltzmann transport

equation, we can neglect the time varying term on the left-hand side if your frequency is much

less than 2 pie tau c, 1/2 pie tau c where this means time Winfrey time between collisions. Now a

caution here we are using the F symbol in 2 cases, so here this F is not the frequency as you

would have already recognized this F here in the Boltzmann transport equation is the distribution

function, whereas this f here is the frequency okay.  
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Before closing this lecture let us look at one more approximation that is commonly very useful,

neglect of generation recombination, critical regions of modern VLSI devices are much less than

the diffusion length of minority carriers in the regions, so it is the length of the critical region that

is what we mean here. Now because this is a fact we can say that generation recombination plays

little role in VLSI device operation and can be neglected in the continuity equations.

So this means your continuity equations for VLSI devices could look something like this where

both  G  and  n-n  not/tau  minority  have  been  neglected,  so  that  is  a  great  simplification.  In

addition, if steady-state conditions prevail than the continued equations in such regions is simply



diversions of JN or P = 0, right that is really very, very simple. Now with that we have come to

the end of the lecture.

So  in  this  lecture,  we  have  discussed  with  many  examples  the  utility  of  the  knowledge  of

characteristic times and lengths. We will consider some more examples in the next lecture and

also summarize this module.


