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Lecture – 23
Characteristic Times and Lengths

In the previous lecture, we have discussed the concepts of dilated relaxation time, momentum

relaxation time and energy relaxation time. While discussing dilated relaxation time, we have

discussed both injection of majority carriers and injection of minority carriers. In this lecture, we

will discuss some more characteristic time and lengths.

(Refer Slide Time: 00:38)

Let us look at transit time.
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This time is a duration of travel of an average carrier across the device length. The situation

which introduces this time is shown here. So, you have an N type semiconductor across which a

voltage is applied and a current setup. Now note the fact that the doping in the semiconductor

need not be uniform. So, that is shown here using the fact that the electron concentration is

arbitrarily varying with X. The length of the device is L.

We shall denote the area under this electron concentration distribution as charged by A. We are

using charge per unit area because when you integrate N of X over X, you will get per. In the

previous lecture,  we discussed the concepts of dilated relaxation time,  momentum relaxation

time and energy relaxation time. For dilated relaxation time, we considered 2 situations, injection

of majority carriers and injection of minority carriers.

In this lecture, we will discuss some more characteristic times and lengths. So, we shall discuss

transit time, diffusion length and the Debye length.
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Consider transit time.

(Refer Slide Time: 02:23)

This  is  a  duration  of  travel  of  an  average  carrier  across  the  device  length.  The  situation

introducing this time is shown here. You have an N type semiconductor across which a voltage

has been applied and as a consequence a current is setup. Now, note that in contrast to situations

we discussed so far, the N type semiconductor here need not be uniform. For example, it can

have arbitrary variation in doping and as a consequence electron distribution.

The length of the device is L. The under this electron distribution, we shall denote as Q divided

by small q into A. So, this is number of electrons per unit area. Now, this area is the area of



cross-section of the device or area of the contacts. We shall consider a one-dimensional situation.

Now,  the  one-dimensional  assumption  is  justified  because  we  shall  consider  a  thin

semiconductor. Then we will concentrate on the flow of any one polarity of electrons.

We will assume that there is no generation or recombination during flow and finally the situation

will be regarded as steady state. Under these conditions, the electron current will remain constant

with X and the defining differential equation for this situation is the time spent by the carrier in

traversing a length dX, the time dT required to travel dX. So, dX is the length here = reciprocal

of the electron velocity which can vary with X because the current is constant.

While in general the distribution of electrons changes as a function of X and this will be shown

equal to the area of cross-section of the device into X into the electron concentration at X divided

by the current I. The boundary condition in this case, the initial condition here would be the time

for X = 0 is 0. So, we shall assume that the instant at which the electron starts from X = 0 is 0.

Important to note is the fact that this differential equation is valid for any mechanism of carrier

transport, so this is independent of transport mechanism.

For instance, in this case because the carrier concentration is varying with distance, there is a

diffusion current and we have applied a voltage,  therefore there is an electric  field and drift

current.  So,  in  this  situation  you have both drift  and diffusion  currents.  Now you can  have

situations  where  there  is  drift  current  only  or  diffusion  current  only.  You  can  even  have

thermoelectric current. 

So, the concept of transit time will apply in all cases and this equation that we are showing on the

slide will apply independent of the transport mechanism. Now, let us know about deriving the

equation.
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So, the first set is qualitative analysis which involves sketching the electron hole concentrations,

electron  hole  current  densities,  electric  field  and psi  versus  X.  Now,  we will  not  have  any

distribution of the function of time because it is a steady state situation. Further, since we are

going to concentrate on one polarity of carriers only and we have chosen electrons here. So,

therefore we will not be concerned with the concentration of holes and the hole current density.

So, now the picture would look something like this.

(Refer Slide Time: 07:07)

So,  the  electron  concentration  varies  with X according to  some arbitrary  shape.  We are  not

plotting  the whole concentration because we are not concerned with it.  The electron  current



density is, however, constant with X because it is a steady state situation. We shall show this fact

also using equations. Now electric field and potential, we will find that will not be concerned

with this information.

So, I will leave it you as an assignment to plot the electric field and potential. Take care to see

the fact that both drift and diffusion currents are present because there is a slope here. So, using

the fact  that  the electron  current  is  constant  with X,  but  the electron  current  is  due to  both

diffusions because of the concentration gradient and drift. So, you will have to manipulate the

equation to derive an equation for the electric field.

Then you will have to plot the electric field which will also very in some way with X depending

on the concentration of electrons.  What will be of interest  to us is, however,  the velocity of

electrons. Now using a formula JnX = q times the electron concentration into the velocity of

electrons where this q there will be a negative sign because the charge is negative. You can use

this fact and then sketch the velocity.

Now we will be concerned with magnitude of the velocity. So, we are not concerned with the

direction because if the electric field is from left to right which is what it is in our sample, then

electrons will  move from right to left.  So, velocity will be negative,  but we are plotting the

magnitude  here.  So  that  velocity  according  to  this  formula  will  be  JnX/-  of  QX.  So,  you

manipulate this formula, this is what you get.

If you are interested in the magnitude, then it is simply the magnitude of this.
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So,  since  JnX is  constant  and  NX is  varying,  it  is  reciprocal  of  NX really  proportional  to

reciprocal of NX.

(Refer Slide Time: 09:31)

So, this could look something like this. Okay, so some distribution which is a mirror image. So,

like this it goes and then it rises here okay. So, this is your velocity as a function of X. Now this

information will be used to derive the transit time information.
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So next step is approximations of the 5 coupled drift diffusion equations based on qualitative

insight. 

(Refer Slide Time: 10:21)

These are our 5 equations. Now the thin semiconductor approximation or condition leads to one-

dimensional flow, unipolar flow. So, we are concerned with electrons alone. So, we strike out the

equations for the holes. So, we are left with the 3 equations Jn, then the continued equation and

the Gauss's law in the 5 coupled equations. No generation and recombination during flow helps

us to strikeout the generation term G.

And the recombination term delta N/tau. Steady-state helps us to strike out the dou N/dou T



term. So, this is 0. 

(Refer Slide Time: 11:08)

Now, the next step is reduction of the 5 approximated equations and the 6th equation, the 6th

equation is E = - Grad psi to an equation defining the characteristic time.

(Refer Slide Time: 11:18)

Now, we will  find that we will  really  not need these equations related to E. So, the current

density equation, we will express in a compact form like this in terms of the velocity of electrons

VX, because it is this velocity that is required for determining the transit time. So, we combine

the diffusion and drift  terms and write  it  as -  of q times the electron  concentration  into the

velocity. 



So, this will be an effective velocity which includes effects of diffusion as well as drift. You

know that the current density is expressed in more fundamental way in this formula, then the

continued equation. So, you see here the equation is really diversions of Jn = 0, which means in

one-dimensional case, DJn/dx is 0 or Jn is constant. Therefore, the modulus of Jn is expressed in

terms of the current I and divided by the area of cross-section A.

So everywhere the current density is simply equal to the terminal current I divided by the area of

cross-section.  So,  we combine  these  2  and then  we get  an  expression  for  reciprocal  of  the

velocity as the function of X as A times Q times the electron concentration at X/I.

(Refer Slide Time: 13:13)

Therefore, the equation defining the characteristic time is the dt/dx. So, time dt required to travel

dx is 1/v(x) = A into q into n(x)/I. So, you know that dx is velocity. So, dt x dx is reciprocal of

velocity and we are taking the modulus. The next couple of steps are solution of the equation and

interpretation of the time and testing or validation of the approximations made.

Now, testing or validation approximations is not an important issue in our case because whatever

simplifications we have done for the various equations, they follow directly from the conditions

assumed related to the situation. For example, steady state, unipolar flow, one-dimensional flow,

no generation recombination, and so on. So let us move on to the solution of the equations and



interpretation of the time.

(Refer Slide Time: 14:10)

So you can integrate the differential equation to get the solution. So, integrate dt when X = 0, the

time instant is 0 that was initial condition and when the electron reaches L that is the end of the

device, here this L and then the duration of electron travel is transit time. So, we are calculating

the time required for the electron to traverse from X =0 or X = L, so that is our transit time. So,

you integrate this.

This integration is nothing but integration of n(x) dx over 0 to L multiplied by A times q/I and

this integral is nothing but the modulus of q, okay. Because in this case, this is electron charge

and when you take the q into account, it will be the electron charge is negative and therefore we

take the modulus because our transit time will be always positive. So, the result is transit time =

modulus of q/I.
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So,  this  is  our  formula  for  transit  time  and  this  formula  allows  us  to  give  an  alternate

interpretation of the transit time.

(Refer Slide Time: 15:32)

So the transit time is a duration in which the charge Q present in the device volume within length

L is swept out of the volume. So, you can see that in this time supposing at any instant you have

a number of electrons within the volume whatever way they may be distributed, you observe

duration of transit time. The electron at this would have reached this end and therefore the entire

charge within this volume would have been swept out.

So, this  is  how we are interpreting the transit  time in an alternate  manner.  Now, you might



wonder  that  when  we  were  considering  the  characteristic  times  earlier  such  as  momentum

relaxation time, energy relaxation time, dilated relaxation time, minority carrier lifetime and so

on, we consider transient situations, whereas here we are considering a steady state situation.

Now can we not have a transient situation analogous to the situations we considered for transit

times in the previous lectures.

Yes, we do have a transient situation where transit time will be used. For example, if you have a

MOSFET and you switch the gate voltage,  how long does it take for the drain current to be

steady state. The time required for the drain current to reach steady estate is of the order of transit

time. So, this situation and a similar situation for bipolar transistors when you switch the base of

the bipolar transistor how long does the electric current take to stabilize.

That would also be transit time across the base. So, these situations will be discussed at the end

of discussion of all the characteristic times and lengths. 

(Refer Slide Time: 17:29)

So for now, here is an assignment for you on transit time. So, derive the following transit time

formulae. So, case A, the transit time for drift current is given by L square/mobility into applied

voltage for carriers in uniform semiconductor of length L across which the voltage V is applied.

So, this is your semiconductor and if you assume the electrons concentration to be uniform, there

is no diffusion current there can only be drift current. 



So, for the situation, this is the transit time. You have to show that. Similarly, in the case of

diffusion, transit time is given by L square/2 times the diffusion coefficient for carriers diffusing

across the base length L of a bipolar transistor. So, if you assume the L to be the length of the

base of a  bipolar  transistor and you have a linear  distribution  of carriers.  You take an NPN

bipolar transistor for example, and you have only diffusion, recombination is negligible.

So, for this case you have to establish this particular formula for transit time. 

(Refer Slide Time: 18:46)

Another assignment, consider the holes diffusing across the N-region of the forward biased long

P-N junction. So, here this N region is assumed to be long, so that the excess carrier distribution

here is exponential. The exponential hole distribution implies a hole current I = Q times area of

the cross-section times the diffusion coefficient of holes into P(o)- P0 which is excess carrier

concentration at X = 0 divided by LP injected from the P + region

Into the N region and an excess hole charge of Q = Q times A into excess carrier concentration at

X = 0 into diffusion length. Now application of the formula; transit time = Q/I yields transit time

= LP square/DP. So you substitute Q from here and I from here, you will get LP square/DP.

Comment on the validity of this transit time derivation. So, is this correct. Can we use this LP

square/DP result as a transit time of holes for travelling the long N region of P+N junction, that is



the assignment.

(Refer Slide Time: 20:19)

Third assignment derive a transit  time tau TR of holes drifting from source to drain via the

inversion  layer  of  a  P-channel  MOSFET having  channel  length  L biased  on  the  verge  of

saturation by gates source voltage VGs more than VT and VDS = VDSat. Estimate the transit

time assuming L equal 0.5 microns, UP = 100 cm square per V second and VGs - VT = 1 V and

using a suitable approximation for the variation of the inversion charge with distance along the

channel. 

Compared your answer with the transit time of holes across the 0.5-micron base of a PNP BJT

using a suitable value of diffusion coefficient of holes. So, here you will have to bank on your

knowledge of MOSFET and bipolar transistors you have acquired in the level course on solid-

state devices. So, if you do not have this knowledge, please refer to the lectures of the first level

course on solid-state devices available in YouTube.
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Let  us  move  on  to  a  characteristic  length,  namely  the  diffusion  length.  So  far  we  were

considering characteristic times. Now, this is the first characteristic length that we are discussing.

The diffusion length is associated with relaxation of small disturbance in excess electron hole

pair  concentration.  Here  is  a  physical  situation  by  way  of  example,  so  you  have  surface

generation of carriers at one end.

So electron hole pairs are being generated in a thin volume near the surface and these electrons

and holes move inside into the sample away from the surface because of diffusion. Now there is

not just this diffusion as we will see. There can be drift also, but primarily the driving force for

electrons and holes to move into the sample from the surface is the concentration gradient and

that is a diffusion.

So putting down the conditions for this physical situation, a uniform thin semiconductor thin so

that we can assume one-dimensional situation, uniform surface generation Gs of electron hole

pairs at X = 0, so here the uniform word means uniform over the area of cross-section of the

surface. Then, we assume steady-state conditions and we assume low-level conditions. Now, we

will find that the excess holes and electrons will decay as a function of distance.

It will establish that the decay will happen over 3 times a length constant called the diffusion

length  of  minority  carriers  here  namely  the  holes  because  this  is  an  N type  semiconductor.



Further, the access electron and hole concentration would be approximately equal. Now, they

would not be exactly equal, the reason for which will become clear now. However, they can be

assumed to be very close to each other.

The defining differential equation for this case is a second order differential equation in X, dou

square delta P/dou X square = delta P/square root of T times DP square which can be cast in the

form delta  P/LP square where LP = square root  of the minority  carrier  lifetime tau into the

diffusion coefficient DP and since this is a second order differential equation, you will have 2

boundary conditions.

Delta P at X = 0 is Delta P and faraway from the surface, there is delta P at X = infinity would be

zero because the excess carriers would decay to equilibrium or relax to equilibrium. Now note

that for characteristic times, except the transit time, the defining differential equation was the

first-order equation in time, whereas for the characteristic length that we are considering now, it

is a second-order differential equation in X.

However,  as we will  see the  form of  the equation  is  such that  the solution would again be

exponential  as  in  the  case  of  characteristic  times.  Now  going  on  to  derive  the  differential

equation, the first step is sketching of NP, Jn, Jp, E, and psi versus X. Again we do not have

anything as a function of T because there is a steady state situation. So, let us look at the results

of the qualitative analysis.
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So, this is your surface generation of an N type semiconductor. Your electron concentration will

vary something like this and hole concentration also would vary something like this. Now we are

showing both electron and hole concentrations on the same graph and on linear scale because if I

use a log scale, since it is a low injection level condition, I will not be able to show any variation

of the electron concentration. It would look just approximately constant.

Though I will be able to show the variation in the hole concentration.  So, I will leave as an

excise  to  you  to  plot  the  same  graph  on  a  semi-log  plot  where  you  use  a  log  scale  for

concentration as a function of X, X will be a linear axis. Now, here these values are equilibrium

values  of  electron  and  hole  concentrations  and  these  are  the  values  of  excess  carrier

concentrations at the surface where illumination is happening.

So delta N and P, we will find that delta N is approximately = delta P. Now, the concentration is

decaying like this for electrons and holes. We show a cut here because both are on linear scale.

The hole and electron  currents,  since the holes are moving from left  to  right,  the current  is

positive and evidently the current will go on decaying because the carriers are recombining. Now

that is what has been shown here by the flow diagram.
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So this arrow is here, they show recombination of carriers, okay and here the arrows are close

together because recombination is more because excess carrier concentration is more and as you

move away, the recombination goes on decreasing because the excess carrier concentration goes

on decaying.

(Refer Slide Time: 27:48)

So, because of this reason, your current also will go on decaying and ultimately go to 0, faraway.

The electron current, electrons are moving from left to right that implies the current from right to

left  and therefore  the electron  current density  is  shown on the negative axis.  Now, since no

current is injected into the sample, Jp+Jn should be = 0 and that is why the electron current

distribution is a mirror image of the hole current distribution over this X axis.



Also, the Gs puts a boundary condition on Jp at X =0. The hole current is simply Q times Gs and

electron current is simply - Q times Gs at this boundary. Coming to the electric field. Now you

see that electrons move faster than holes. So, these electrons when they are diffusing, they will

diffuse faster than holes why because diffusion coefficient of electrons is more than the diffusion

coefficient of holes.

You know that DN/DP is 2.5 to 3 times and therefore if there was diffusion alone, then electrons

will move faster than holes and electron current would be more than hole current. However, we

want Jp+Jn to be 0, which means electron current magnitude should be equal to hole current

magnitude. Now the only way you can achieve this is to have an electric field setup.

We have discussed this point in one of the earlier modules when we introduced the concept of

mechanism of diffusion current. So, this electric field will slow down the electrons, but it will aid

the holes and that is how it will bring Jp and Jn instep. So, at any X you will find the Jp will be

equal in magnitude to Jn. So, evidently this field will be more wherever the concentration is

more and this field will decay because faraway the carrier concentrations are becoming equal to

equilibrium value and therefore there you do not need any field.

Potential,  you can integrate  the  electric  field  and get  the  potential.  Now potential  variation,

potential will be more at the X = zero point and then it will decrease. The electric field is from

left to right which evidently means potential should be more on the left and less on the right that

is what is shown here. We have assumed arbitrarily that the reference potential at X, very large,

is 0 and with respect to this reference potential, we are plotting the entire potential.

Now, we can derive information about excess electron and hole concentration from N and P. So,

because you think that neutrality should hold, you would expect delta P = delta N. However, you

see that electric field is varying with X and Gauss's law therefore predicts that de/dx is non-zero.

So, you know the Gauss’s law de x dx = rho/epsilon S. So, if D/dx is non-zero which is the case

here to keep the hole current and electron current instep.



Then rho is non-zero which means delta N and delta P cannot be exactly equal. They will be only

approximately equal. So long as we show that this rho is small which is what we will do later and

this will be done by you as an assignment, so you will find that delta P is not exactly = delta N

but approximately = delta N and therefore the excess carrier concentration can be shown as a

single line here, initial value being delta P.

Now, we are writing  these carrier  concentrations  in terms  of minority  carrier  concentrations

because as we will see that it is easy to solve for minority carrier concentration in this kind of a

situation. The space charge rho can be derived. Now, how could you derive space charge. You

cannot derive it  from this information right because you do not know what is the difference

between delta P and delta N.

However, using Gauss’s law and this is electric field distribution, I can derive this space charge.

So, D/dx is negative, therefore the space charge is negative and it decays because D/dx become

0, space charge become 0. Now how is a device charge neutral. You see though there can be

space charge within a device, as a whole the device has to be charge neutral because no extra

positive or negative charges can get into the device.

The positive and negative charges in the device have to be equal in magnitude. Now that overall

neutrality is maintained by having a positive chargesheet at this end that is what is shown here,

so this is a delta function. Now you can have a negative chargesheet also at the right end if there

is a change in electric field here. However, you find that electric field is going to 0 and therefore

there is no change in electric field when you move from within the device to outside.

Therefore, there is no surface charge here. So, this is the positive surface charge. Its value is

equal  to  the  area  under  this  space  charge  current,  okay,  this  negative  part.  So,  that  is  our

qualitative analysis of the situation. Now, we will use this qualitative analysis to get the equation.
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So, the next step is approximations of the 5 coupled drift-diffusion equations based on qualitative

insight. These are our 5 equations.  Now uniform semiconductor.  Because a semiconductor is

uniform, n0 and P0 are constant with X, we can replace the gradient of N by gradient of delta N

and gradient of P/gradient of delta P. Because gradient of delta N = gradient of N+gradient of n0

and gradient of n0 is 0 and similarly for holes.

Now, uniform surface generation. This means there is no volume generation and therefore we

remove the excess generation terms from the continued equations. Since it is steady state, we can

cancel out or remove the time varying concentration terms from the continued equation.
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An  important  approximation  finally  or  assumption  is  the  low  level  which  means  the  hole

concentration is much less than the electron concentration which is approximately equal to the

equilibrium electron concentration. This is the situation for low-level, now as a result you see the

electron concentration here in the current density equation for electrons is replaced by n0. Now,

there is a question mark put here what do we do with the drift current equation for minority

carriers, okay. 

Since P is much < normal, we anticipate that this drift current would be much less than the drift

current of electrons. So, drift current of holes would be much less than drift current of electrons.

Therefore, is a chance that we can remove the drift current. Well to know that, we must compare

this drift current with the diffusion current of holes, right. It is not sufficient if I know the drift

current of holes is much less than drift current of electrons because the term for drift current of

holes appears along with the diffusion current of holes.

So, for now we will postpone this approximation of the drift current of holes and let us move

further.

(Refer Slide Time: 36:13)

Now, we anticipate a very important formation namely quasi-neutrality. What does this means.

This means rho/queue the modulus which is = the modulus of delta P - delta N is much less than

delta  P or  delta  N  okay.  So,  the  difference  between  the  excess  carrier  concentrations,  the



magnitude of that is much less than the individually the values of excess carrier concentration

and that will allow us to make the approximation delta P approximately equal delta N.

So, please remember, so Delta P approximately = delta N does not mean delta P - delta N =0 but

it means that this difference is much less than the excess carrier concentrations. Let us see the

important consequences of this approximation.

(Refer Slide Time: 37:14)

So  the  first  important  consequence  is  that  I  do  not  have  solve  for  the  electron  and  hole

concentrations both. I can solve for anyone of them and I can get the other one because of the

approximate equality between the excess electron and whole concentration, so I strikeout the 2

equations corresponding to the electrons because electrons are majority carriers here and you see

there appears to be a chance that I could neglect the diffusion current of holes.

Therefore, there is a possibly the simplification of the hole current equation. For electron current,

I cannot make this simplification because I know the drift current is really large, okay, because

the carrier concentration of electrons is large and therefore I will have the consider both diffusion

and  drift.  There  is  also  gradient  of  the  excess  electron  concentration,  so  I  cannot  neglect

diffusion.

So,  since  there  appears  to  be  a  possibility  of  simplifying  the  current  equation  for  minority



carriers,  I  prefer  to  work  with  the  minority  carrier  equations  here.  So,  that  is  the  logic  in

removing the equations for majority carriers if there is a choice between majority and minority

carriers.
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Next, since I am going to assume quasi-neutrality, so rho is going to be small and therefore I may

not have to use this Gauss’s law in my ultimate solution, though while establishing the validity of

quasi-neutrality,  I  may  use  this  relation.  Now you see  that  at  this  point,  once  I  assume  or

anticipate quasi-neutrality, I can strike off this drift term for holes. Now let us see the logic in

how quasi-neutrality assumption allows us to strikeout this particular term.

So, in other words now we shall be able to prove that this will be much less than the diffusion

current of holes that is this term. 
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Now, you know that Jn+Jp which is the total current J is 0 here for our situation. Now I can write

Jn+Jp  as  shown here.  So,  this  is  diffusion  current  of  electrons,  drift  current  of  electrons  +

diffusion current of holes + drift current of holes. We are assuming a one-dimensional situation

that is why the gradients have been expressed in terms of X direction alone.

Now quasi-neutrality  means delta  N = delta P approximately therefore let  me use delta as a

symbol  for  that  approximate  value  of  delta  N  and  delta  P.  So,  I  am  assuming  delta  N

approximately = delta P = delta. So that I can simplify things and therefore I can club these 2

terms together and write this as Q times DN - DP into D delta/DX. Now you see some of this

current + this current + this current should be 0.

Now, I know that this current is very small compared to this current why because P is much less

than. In fact, we have put n0 for the electron concentration under low level and because of low-

level P is much less than n0. So, now you see in this equation this current and this current has

come together on the same side of the equation when I sum up electron and hole currents.

Therefore, now I know that when this appears along with this, I can neglect this. So, that is what

I do. I strike off this. So, now you will appreciate why I am able to strike off the hole current.

You see that we realize that because of the fact that Jn+Jp should be = 0, it turns out that the

diffusion current of electrons and holes put together which is what of this is of the same order as



the drift current of the electrons, okay.

So, Jn diffusion+Jp diffusion together is of the same order as this. Now DN - DP is of the same

order as DP. So, for example, if I take the term Q times DP into D delta/dx and compare DN -

DP. So, DN is supposed 3 times DP I assume, then this quantity will be 2 times DP into D

delta/dx into Q and this quantity is DP into D delta/dx into Q.

So, now if I can strike off this current when it appears along with this term and this term, I can

say that this quantity is much less than DN - DP into D delta - dx and that is this much less than 2

times DP into D delta/DX. So, I am deriving the relation from these 2 I get QP, UP into E is

much less than 2 times DP, D delta/DX. I am assuming DN = 3 times DP just to give you a feel.

Now, if  this  is  true,  I  can  even assume it  to  be  much  less  than  DP into  D delta/DX,  right

assuming that  order  is  the  same right  and I  will  find  in  fact  this  is  really  very,  very  small

compared to 2 times DP. So, it will turn out to be much less than even DP into D delta right here.

So, there is a Q here that gets cancelled and that is how I will be able to make the approximation

that drift current of holes is much less than diffusion current of holes.

This is the so-called diffusion approximation for minority carriers okay, which is often used to

simplify analysis of situations involving excess carrier decay. So that is how we have stuck off

this term. So, now we can reduce the 5 approximated equations and the 6th equation to a single

equation defining the characteristic length as follows. 
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So, this is the equation you get it very easily as follows. So, for the hole current density you have

only  the  diffusion  current  -  QDP gradient  of  Delta  P and here you have  only  2 terms in a

continued equation -1/Q queue diversions of Jp - delta P/Tau = 0. So, I substitute Jp into this. So,

diversions of Jp becomes Q times delta P into Del square delta P when I substitute this here and

negative sign will go away because there is a negative sign here and negative sign here.

Further, there is a Q here and Q here. so that will cancel each and therefore this term simplifies to

simply dou square/dou X square of delta P. Now, there is a DP term here which will be clubbed

with the minority carrier lifetime here. So, this term appears as delta P/Tau into DP that has been

written as square root of Tau DP square. Now what is a logic in doing this. Now, you see that Tau

into DP has units of length square because Tau is seconds, DP is centimeter square per second.

So, when you multiply this you get centimeter square and therefore square root of T into DP has

units of length and that is why this is then cast as a length square.
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Now comes a solution of the equation and interpretation of the length.

(Refer Slide Time: 46:11)

So, this is your differential equation and subjected to this boundary conditions it will have an

exponential solution. You know this from your knowledge of differential equations very easily

and therefore your solution is what is shown here. So delta P is capital delta P into E power -

X/LP and therefore this LP can be interpreted as the average length over which the holes diffuse

in the situation.

Now what is the situation. So, here you have holes recombining as they move, so therefore the

diffusion length can be interpreted as the length over which an excess minority carrier moves



before it  recombines  when there is  a  combination of diffusion and recombination,  okay. So,

either you can talk in terms of excess carriers or minority carriers. So, L suffix P is the length

associated with holes which are minority carriers.

So, the average length over which a hole defuses before it  tricks our minds.  In this  kind of

situation where excess electrons and holes have been created at some point in the sample and

thereafter they are diffusing and recombining, right.
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Now, finally  it  is very important  to test  or validate  the approximation made. We have made

significant approximations, namely the diffusion approximation for minority carriers and quasi-

neutrality approximation. So, the testing or validation will be left to you as an assignment. So

first  the  quasi-neutrality  approximation.  Establish  the  validity  of  the  quasi-neutrality

approximation in the situation introducing a minority carrier diffusion length as follows.

Assume the approximation to hold that is delta N is approximately = delta P. Now, this is a

common method of testing approximation. We assume the approximation to hold, derive some

result  and  see  whether  the  result  contradicts  the  assumption.  If  the  result  contradicts  the

assumption, then you know that the approximation does not hold. So, the next step show that

under the conditions, delta N = delta P approximately and steady state the sum of the continued

equations for N and P yield the result J = Jn+Jp is constant with X.



Next, from A and B the boundary condition J = 0 at the illuminated surface and the low-level

assumption  show  sure  that  the  field  E  at  any  X  is  given  by  this  formula,  that  is  E  is

approximately = - of the thermal voltage by equilibrium electron concentration into 1 - different

quotient  of  holes by different  coefficient  of  electrons  into D delta/dx  where delta  = delta  P

approximately = delta N. 

Now, derive modulus of rho/Q using the above. So, you have now an expression for the electric

field, okay. Now this electric field is the same thing that we plotted here, so you see that the

result that we just now showed on the slide amounts to relating the electric field to the excess

carrier concentration, right. That is what we find, so electric field is related to gradient of excess

carrier concentration.

Now, finally using the solution delta is approximately = the initial value of the excess carrier

concentration into E power - X/LP and typical values of doping ND and diffusion length LP

show that modulus of rho/Q is much less than delta. Now, that would be our quasi-neutrality

approximation, right. So we have set that continuity of approximation is delta P - delta N is much

< delta P or delta N.

Now delta P - delta N is here rho/Q and delta P or delta N is represented as delta here. Now, what

would be typical value of ND, lets say 10 power 16 per centimeter cube. What would be a typical

value of LP. Well you assume minority can lifetime of about say 0.1 m/sec okay and typical

diffusion coefficient of say 10 cm square per second for holes and you can estimate this value.
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The next assignment 5.7 is establish the validity of the diffusion approximation for minority

carriers  in the situation  introducing the minority  carrier  diffusion  length as follows. Use the

expression for electric field obtained in assignment 5.6 and the fact that P is approximately =

delta and typical values of ND and LP that is a minority carrier diffusion length to show that the

product of the diffusion coefficient of holes into the hole gradient DP/dx is much less than the

product of hole concentration, hole mobility and electric field.

So this left hand side of this inequality represents the diffusion current and right hand side of

inequality represents the drift current.
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Assignment  5.8.  Estimate  the  maximum value  of  Gs  for  which  low-level  injection  prevails

assuming the semiconductor  to be silicon with ND = 10 power 17 per  centimeter  cube,  the

lifetime of holes to be 1 msec and temperature to be 300K. So, the silicon is N type, therefore the

lifetime is related to the holes.
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So, we have come to the end of the lecture and so let us make a summary of the important points.

So in this lecture we discussed the characteristic times namely transit time and characteristic

length  associated  with  minority  carriers  namely  the  diffusion  length.  For  transit  time,  the

defining differential equation was first-order as was the case with all other characteristic times

that we discussed.

And the expression for transit time was the charge Q inside the device volume divided by the

current I flowing into the device. So, the transit time was introduced considering a steady state

situation. On the other hand, defining equation for diffusion length was second order and the

formula for diffusion length was square root of diffusion coefficient into the lifetime associated

with the minority carrier under consideration.

The transit time was the time taken by the carrier to travel from one point to another point within

a device and diffusion length is the length over which are minority  carrier  defuses before it

recombines in a situation where there is a flow of minority carriers due to a combination of



diffusion and recombination. In the next lecture, we shall consider an important characteristic

length, namely the Debye length.


