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Drift-Diffusion Transport Model: Equations, Boundary Conditions, Mobility and

Generation / Recombination

In today’s lecture, we are beginning a new model.

(Refer Slide Time: 00:18)

This model is on the widely used Drift-Diffusion model diffusion model. For this model we will

be  discussing  the  Equations,  Boundary  Conditions,  Mobility  and  Generation-Recombination

mechanism. So we will discuss a formula for these quantities. At the end of this module you

should be able to write for the widely used Drift-Diffusion transport  model. It is ix coupled

equations in electron concentration, n, hole concentration p, and potential Psi.

You should be able to write the conditions imposed on n, p and Psi at the contacted and non-

contacted boundaries of the device to solve the coupled equations.
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Then you should be able to write the equations for field dependent mobility in bulk and inversion

layers. And finally, you must also be able to write the equations for the different generation-

recombination mechanism.

(Refer Slide Time: 01:25)

So let us look at the organization of the equations from the previous module. So you have the

Electromagnetic field equations fielding into the transport equations. The information about B, E

and the Force F on the electron due B and E and the transport equation yielding the current

density of electrons and holes and the carrier  concentration of electrons and holes. Now this

information is fit into the Electromagnetic equations to get the solutions of B E and F. 



And then the equations are solved subjected to some boundary conditions on E, B and heat flux

Q at the boundaries of the device.

(Refer Slide Time: 02:20)

Now the Drift-Diffusion equations which we arrived at in the previous module are repeated here.

When we use the term Drift-Diffusion model it incorporates not only the equations on Drift and

Diffusion current but also all the other equations which are used together with this equation to

derive the current and as a function of voltage for a device. Therefore, while the Drift-Diffusion

equations are only those which are shown here in blue color.

The equations of the Drift-Diffusion model would incorporate all the equations that are shown

here  such  as  the  Maxwell’s  equations  under  the  Quasi-Static  approximation  and  Negligible

Magnetic Field and the Carrier Balance equation and also the equation of Heat flux. Similarly,

we will also include equations for holes apart from the equations for electrons. Thus, you find

that  the  Drift-Diffusion  model  will  consist  of  2  of  these  equations  =  -  gradient  of  Psi  and

diversions of Epsilon E = Rho or delta square Psi = -Rho/epsilon.

So  2  of  these  equations.  Then,  Carrier  Balance  equation  and  Drift-Diffusion  equation.  For

electrons as well as holes so that makes it 4 more and then the equation for heat flux.  So you

have 2+4+1, so the 7 equations in total. Now very often, we do not use the heat flux equation.

Now that leaves us with 6 equations.



(Refer Slide Time: 04:33)

These 6 equations are shown here and they have been organized into 2 sets, one set that we can

call as flow creation equation and another set that we can call as flow continuity equations. So

for instance, the equations of Jn, Jp and electric field shown in this column are referred to as

creation because they talk about how the flow is created. 

For instance, equation for Jn here says that the electron current density is created by the diffusion

and drift, same is true for the hole current density here. And similarly, this equation tells you that

the electric field E is created by a potential gradient. The Continuity equations, on the other hand,

talk about conservation of quantities during flow. The continuity equation for electrons is the

things that the Carrier Balance equation for electrons. 

And similarly, the continuity equation for holes is a carrier balance equation for holes. And as we

have already argued in the previous module the equation of Gauss's Law is also an equation of

conservation of electric flux. Commonly the equations of Jn and Jp involving the creation of

these current densities and continuity of electron and hole concentrations are refer to as transport

equations. 

Now, I would like to point out that the excess concentrations of electrons and holes are shown

here using separate symbols because in general a semiconductor may not be neutral, so excess



electron concentration at a point can be different from the excess hole concentration. Though if

you take the device as a hole it will be neutral but at local points there can be space charge. So

the  positive  space  charge  at  one point  of  the  device  maybe compensated  by negative  space

charge at other points to provide an overall neutrality. 

However, the generation rate of electron hole pairs G is the same in both these equations, okay

the Hole Continuity equation and the Electron Continuity equation. The set of equations related

to  the  electric  field  are  called  Electrostatic  equations.  Because  these  equations  are  derived

assuming that there is no time varying electric field and there is no time varying magnetic field

that is why these are referred to as static equation, so Electrostatic.

You obtain the current voltage characteristic by integrating the current density J which is nothing

but the some of the electron current density and hole current density, so integrating the current

density J over any contact area dS is the contact area then you get the current. And similarly, you

get the voltage across a device or potential between the 2 points, 2 terminals by integrating the

electric field from one end one contact to the other contract.

So dL is a line moving from one contact to the other contact. Often, the equations of Jn and Jp

are referred to as current density equations and those equations of carrier balance the electron

balance and the whole carrier balance that is dou n/dou t and dou p/dou t equations involving

these are refer to as continuity equation. And this equation is the Gauss’ law diversions of E =

Rho/epsilon.
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Now, though we have 6 equations ultimately they can be reduced to just 3. So in a sense actually

in the Drift-Diffusion model there are just 3 coupled equations and this are continuity equations

in n, p and Psi. So how do you get this? So these equations are obtained by substituting the

equations from the Creation column into the Continuity column and are subjected to conditions

on n, p and Psi at device boundaries.

 

So  you take  the  equation  for  Jn  from this  column and put  this  equation  for  Jn here  in  the

continuity  equation  in  the  diversion  of  J  in  term.  Now Jn  is  given  in  terms  of  the  carrier

concentration and the electric field, the electric field is in turn is dependent on the potential Psi.

So if I combine this equation the equation for Jn and substitute it here ultimately I will get an

equation for n in terms of Psi and other quantities.

Same thing I can do for Jp, I take Jp and substitute it here in the whole continuity equation and

finally  I take this  equation e grad Psi and put it  here in the Gauss’ Law I get the Poisson's

equations in Psi;  that is how I will  reduce the 6 equations into just 3 coupled equations.  So

ultimately I need to solve only these 3 coupled equations for getting the device current as a

function of voltage that is what most of the simulators which are based on the Drift-Diffusion

model, they do.
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Now, what is the physical meaning of mathematical coupling, so when we say these equations

are coupled the coupling denotes the fact that carriers perturb the field causes their motion. So

the  motion  of  carriers  is  because  of  the  field  but  as  the  carriers  move they  redistribute  the

concentration and the redistribution of the concentration sets up a space charge and this space

charge  creates  an electric  field  according to  the  Gauss’ Law,  so that  is  how it  is  a  coupled

situation.

(Refer Slide Time: 11:34)

Now, we have written down the 3 coupled equation I am leaving it to you as an assignment.

Write the 3 coupled equations n, p and Psi assuming that the mobility’s of electrons and holes



mu, the Diffusion coefficient of electrons and holes D, the lifetime of minority carriers and the

dielectric constant of the semiconductor epsilon s are spatially invariant.

Now in the previous module we had used the symbol epsilon for the dielectric constant of the

epsilon semiconductor,  in this module we are putting a suffix s because we will encounter a

dielectric constant of the ambient that is the surrounding of the device and that we will denote as

a epsilon suffix a to distinguish and to have clarity on which dielectric constant we are referring

to; we are using a suffix s for the semiconductor dielectric constant. 

(Refer Slide Time: 12:30)

Let us look at the boundary conditions on n, p and Psi. So, the 3 boundary conditions one each

on n, p and Psi are required to solve the 3 equations. Now, the boundary condition on a quantity

suggest n or p or Psi can be on either the magnitude of the quantity, now such a condition is

called  Dirichlet  condition  or  the  derivative  of  the  quantity  such  a  condition  is  called  the

Neumann condition or a combination of the above 2.

So the combination of the above 2 would be referred to as a mixed condition. In other words, we

are saying the boundary condition can be on n, p and Psi or gradient of n, gradient of p and

gradient of Psi or on a combination, so you can have a boundary condition on n on the electron

concentration which is given in terms of an equation which consists of both n as well as gradient,

right. So that is the mixed condition.



In general, the conditions on contacted and non-contacted boundaries are different. So here is

conceptual device showing the contacts and the non-contacted boundaries.

(Refer Slide Time: 14:00)

Let us look at Ideal Boundary Conditions on n, p and Psi. This we shall illustrate with the help of

an example. So let us say you have a uniform semiconductor block with a short contact on the

top surface and a contact covering the entire  bottom surface.  Okay. And you are applying a

voltage between these 2. This situation is referred to as a spreading resistance, right because the

current spreads from a smaller contact to a larger contact.

 

Now at the contacts the ideal conditions on n, p and Psi are the carrier concentrations are uniform

at their equilibrium values. So you see here n = n0, p = p0 so uniform concentration at this end

wherever  you  have  the  contact.  Similarly,  you  have  uniform  concentration  equal  to  the

equilibrium concentration at the bottom contact as well n = n0, p = p0. The potential is assumed

to be uniform, so uniform potential. Like the uniform concentration.

 

At the top contact the potential is assumed to be Psi s = Psi not+V so s here refers to the surface.

Okay. So Psi s is nothing but the potential at the semiconductor surface. This is equal to a built-in

potential + applied voltage. Since in general the semiconductor maybe non-uniform, there can be

a built-in potential. So that is also incorporated here, so V is Applied voltage. 



Now as again this, the bottom surface the potential  is equal to the just  the built-in potential

because  we  are  assuming  the  applied  voltage  is  0  so  bottom  is  the  reference.  Now  what

implications do these boundary conditions have? Let us for example draw the flow lines in the

device which show the current flow. So you find that the flow lines eminent perpendicular to the

contact surface.

 

So here the flow line is perpendicular and here also the flow line is perpendicular. Current is

flowing from top  contact  to  bottom contact.  Now fact  that  the  flow line  emanates  emerges

perpendicular to the contact surface is because of the conditions that we have imposed. Since

potential is uniform the electric field at the surface can only be in the vertical direction or in the y

direction. There can be no electric field in the x direction because if any electric field in the x

direction would mean potential along the contact is not uniform. 

Similarly, since we have assumed that the carrier concentration is uniform there can be no carrier

concentration gradient in the x direction.  Okay. So any gradient  has to be in the y direction

therefore even if there are diffusion currents in addition to drift currents the sum total of this

currents will be in the direction perpendicular to the surface, so in the y direction only. So that is

how the boundary conditions have a bearing on the way the flow emerges from the contact or

terminates into the contact. 

Let  us  look  at  the  non-contact  boundaries.  Now here,  you  have  Neumann  condition  or  the

condition on the derivatives of the quantities. So at the contact, the conditions Dirichlet because

they were on the values of the magnitudes of the quantities. For example, let us take this non-

contact surface what you are saying is that the potential gradient along the y direction that is

along vertical direction is 0 at this boundary this means no electric field either enters or leave the

surface normal to the surface. 

Similarly, no concentration gradient of electrons or holes can exist in the y direction because that

would mean electrons  or  holes  are  leaving the surface  or  entering  the surface from outside.

Similar conditions are imposed on the vertical walls as well. So you can see that along this wall



or this edge of the device you have no gradient in the x direction for either potential or carrier

concentration. 

So in this direction you have no gradient so no field can escape out of the device or come into the

device. No current can go out of the device or in into the device. Now this boundary condition in

the non-contact will have a bearing on for example the potential lines so here we have drawn the

Equipotential lines.  When you find that the potential line emerges perpendicular to the surface at

the non-contact surface. 

Now this is a direct result of imposition of the condition that dou shi/dou y is 0 so there can only

be dou Psi/dou x. Same thing applies to the potential line emerging from the sides. So even here

the potential line is perpendicular. So this means in this direction there is no field. Summarizing

the  boundary  conditions  the  ideal  boundary  conditions  you have  at  an  ideal  ohmic  contact,

carrier  concentration  is  equal  to  the equilibrium value and uniform and the potential  is  also

uniform at the applied voltage + the built-in voltage. 

At an Ideal non-contact, the gradients of the concentrations n and p which are perpendicular to

the surface, so the perpendicular sign here means perpendicular to the surface. And similarly, the

perpendicular gradient of the potential all these are 0 because no current can escape or no field

can escape out of the device or enter the device.
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Now let us look at General Boundary Conditions. Now what we have discussed so far are Ideal

conditions, okay which may apply in many of the devices particularly large size devices. Okay.

However, as we shall find there can be instances when you do not have Ideal conditions existing.

Now let us look at in general, what are the factors that can influence the conditions on n, p and

Psi at the boundaries. We would like to define a few quantities here. 

JTE is  Thermionic  emission current  density,  Jtun is  Tunneling  current  density.  R suffix  c  is

contact resistivity. Rho suffix s is Surface charge density, so Rho without suffix s is space charge

that is charge for unit volume but Rho suffix s is the charge for unit area. Psi s is the pinned value

of surface potential. They are already used in terms in the ideal boundary condition. S is Surface

recombination velocity. 

Now G suffix s is surface generation rate. Epsilon suffix a is Ambient permittivity and Epsilon

suffix s is Semiconductor permittivity. So these epsilon include the permittivity if vacuum. So

the  Epsilon  s  for  example  would  be  equal  to  the  dielectric  constant  of  the  semiconductor

multiplied by the permittivity of free space.
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Now we shall write the equations for n and similar equation would be used for p. So whenever

we are writing equations involving both p and n that would be evident. At any boundary at x=0

let us assume that you have a semiconductor block as shown here and we are assuming a one

dimensional situation in the x dimension and the boundary that we are talking about is at x=0 so

this vertical boundary.

 

Now at any boundary the condition is imposed in terms of the perpendicular current density. This

is the important point. Why? Because we can talk in terms of how much current is leaving the

boundary or entering the boundary perpendicular to the boundary; at contacts you will have a

non-zero current leaving the boundary perpendicular the boundary or entering the boundary. 

On the other hand, at non-contacts you will have no current entering the boundary or leaving the

boundary, right. Therefore, though ultimately we want conditions on n, p and Psi basically the

conditions are on the current density and from there we can derive the conditions n, p and Psi.

Now any current density you know is composed of the diffusion current and drift current in our

diffusion model. 

Let us explain the symbol the symbolism here, so what does Jn perpendicular 0 mean, what does

Q sorry what does perpendicular gradient of n at x=0 mean, right and so on. So this equation

inter  relates  the  perpendicular  current  density  at  x=0;  the  perpendicular  gradient  of  carrier



concentration, electron concentration at x=0; the value of electron concentration at x=0 and the

perpendicular component of the electric field at 0 or the perpendicular gradient of the potential at

x=0. Let us explain this the terms with the help of a figure.

(Refer Slide Time: 24:27)

So this is your semiconductor. And let us say this is the x direction, and this is the origin. The

current at this point in this direction is referred to as Jn perpendicular with 0 there. So this means

the value of this current at this point. Similarly, the electric field perpendicular means the electric

field in this direction at 0 that means a field here. n of 0 means in electron concentration at this

point so that would be n of 0. 

Now what about the perpendicular  gradient of n? So for example,  if  within the device your

carrier concentration of electrons is changing like this then this is the gradient of the electron

concentration right at the origin; so this gradient is referred to as the perpendicular gradient of

electrons and since it is at this point they are calling it as a suffix at x=0. So this is the meaning

of the various terms which are used in the equation.
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At any non-contact boundary again assuming that the boundary at x=0; the n and p are related

based on the condition the total current J = 0 that Jn perpendicular 0+Jp perpendicular at x=0 is

equal to 0. Now this is important. Actually at a non-contact boundary no current can enter and

when we talk about no current you must consider the combination of electron and hole currents,

right? Not just individual currents. 

Let me give you an example where the individual currents of electrons and holes are non-zero

but there sum contributing to the total current is 0.
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Suppose I have surface recombination at this surface and this is your semiconductor, then what

will happen is the electrons will tend to move in this direction and holes will also tend to move in

this direction. And here at the surface they will recombine. So you see because of the electron

moment into the surface you have an electron current so Jn and that Jn is in this direction—the

electrons are moving in this direction your Jn perpendicular is like this. 

And if the holes are moving in this direction it contributes to Jp perpendicular like this. And

these 2 currents are canceling each other. Okay. That is how it is resulting in the condition J

perpendicular at 0 = 0. Okay. So this an example where this is a non-contact surface with a

surface recombination you have both electron currents and hole current at the surface. But sum

total of them is 0. 

Therefore, at a non-contact surface we must think in terms of the total current to begin with and

later on we may find that if those surface recombination then individually also the currents can

be 0.
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In most cases, though not always,  following the conditions at Ideal surfaces, we express the

condition at a real contact in terms of n and a real non-contact in terms of the perpendicular

gradient of n at the surface. So we have said that under Ideal conditions and an Ideal contact; the



electron concentration n = equilibrium value. Therefore, it makes sense to see under non-ideal

conditions how much does n differ from n0. 

Similarly, ideal condition at non contact is in terms of gradient of n the perpendicular gradient of

n = 0. It therefore makes sense to see how the perpendicular gradient in term of n differs from 0.
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Let us take some specific cases. Suppose we have a surface recombination velocity specified at

the boundary x=0 then how would be a condition look like. Specification of s sets this equation

up. The perpendicular component of Jn at x=0 is equal to 2 times the surface recombination

velocity into the electron concentration at 0 - the equilibrium value of electron concentration at 0.

So L0 - n suffix 0 this term is the excess electron concentration at the boundary. So the current is

prepositional  to  the  excess  electron  concentration.  Therefore,  you  write  the  equation  for  Jn

perpendicular including diffusion and drift and this is the equation that is setup by the surface

recombination velocity. Now this equation can be manipulated to express either n of 0 which is

what will be the preferred equation at contact or perpendicular gradient of the n at origin. 

So the manipulation will give if you write n of 0 then it will turn out to be given by this formula.

This  is  a very straightforward algebraic  manipulation  so I  am not  working it  out  here.  It  is

obtained from this formula. Now this is the formula preferred at a contact. Now note that you can



recover the condition for the ideal contact by setting s tending to infinite so in this formula if you

set  s  tending  to  infinite  you  will  get  the  electron  concentration  at  boundary  is  equal  to

equilibrium concentration. 

Thus, an ideal contact ohmic contact corresponds to infinite surface recombination velocity. If

you want to specify in terms of the surface recombination velocity. Now you can manipulate the

same equation but now you try to express the perpendicular gradient of electrons. Now that is

given by this formula. And this would be the preferred formula to us at non-contact to find out

how much thus this quantity differ from 0 for the ideal contact. 

Now you can recover the condition for the ideal contact. Sorry the ideal non-contact. So at the

ideal non-contact this quantity is 0. So we would like to see a real non-contact how much does it

differ  from 0.  So  if  you--  you  can  recover  the  ideal  conditions  if  you  set  s  =  0  and  the

perpendicular electric field also = 0. So look at it here if I set s = 0 this term drops off and I will

have to set perpendicular also = 0 to get perpendicular gradient of n = 0. 

So you see you need a combination  of 2 conditions  to  define an ideal  non-contact.  Surface

recombination velocity is 0 and the perpendicular electric field also is 0, only then you will get

the condition the gradient of the concentration perpendicular to the surface is 0.

(Refer Slide Time: 33:29)



Suppose you choose to specify surface generation instead of surface recombination at x=0 then

what would your formulae be? Now, your setting Jn perpendicular at x=0 = -Q times Gs okay

this transforms to this equation; when you split the perpendicular current density into diffusion at

drift components.  Now let us explain what is the meaning of this Jn perpendicular at x=0 -Q

time Gs.

(Refer Slide Time: 34:16)

So, here we are assuming a surface generation at this end. Now surface generation the unit is per

centimeter square per second. Number of photons impinging per centimeter square per second.

And each of them let us assume for simplicity gives as an electron hole pair, so as a result of that

you have electrons flowing in so you have generation of electrons and holes and then the holes

and electrons they move in. So it is this current that we are relating to this Gs. Okay. That is what

we are doing.
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Now you can again manipulate this equation as we did for surface recombination and you will

get these 2 equations one in terms of the electron concentration at the boundary or in terms of the

perpendicular  gradient  of electron concentration.  So you will  choose n of 0 this  equation at

contact and this equation at non-contact. Now if the Thermionic emission or tunneling currents

are specified at the boundary then the equation look in fact very similar to the equation of Gs.

So, all that you need to do is that the above formulae apply with Gs replaced by the Thermionic

emission current density + tunneling current density divided by Q. So you set Gs = this value.

Then you get the boundary condition in terms of this current density.
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Now, so far we have discussed the conditions on n and p. Now let us discuss the conditions on

the  potential  Psi.  Now you will  recall  from the  formulae  that  we derived for  the  boundary

conditions on n and p that there was an electric field term also the perpendicular component of

the electric  field at  the boundary.  This was entering into the formulae for the real  boundary

conditions.

Therefore, we need to understand how we can derive this information that is perpendicular value

of electric field.  And we also need to know how the applied voltages and so on in imposed

conditions. So this is what is done now. So General Boundary Conditions on Psi, considered a

contact with applied voltage V at the boundary x=0, so we are applying a voltage at this end.

Consequently, the boundary condition on the potential at the surface of the semiconductor.

So, Psi S is happening is inside the semiconductor at the surface. We will shortly explain this so

this with a diagram so this equal to built-in voltage or built-in potential solenoid + the applied

voltage  V-  the  contact  resistance  rc  into  the  perpendicular  component  of  the  current  at  the

boundary. Now note that this current includes both electrons as well as hole currents. So let us

explain this formula with the diagram.

(Refer Slide Time: 37:52)

So now this is the contact at this end and the voltage is applied at the outside, right this is the

voltage. Now the Psi S is here now from this point to this point when the current is entering the



semiconductor and moving across the contact it encounter as a resistance. So if I were to expand

this part it is something like this. So this is Psi s, this is V. This is the contact resistance rc and

you have a current. 

Now the current is in this direction and that is J perpendicular at the boundary. So, this current

which is same as this current; this is J perpendicular. So therefore you got the equation that V =

rc into J perpendicular at this point 0 so this is the x=0 point. So you have this potential drop

+Psi s. Right now I have ignored the built-in potential. Now carefully note the dimensions. 

The dimensions of rc is Ohm centimeter square because the dimension of this current density is

ampere per centimeter square, so when we multiply this 2 I must get volts. So I can transform

this relation to express Psi s. So Psi = V- this quantity and then you can add the built-in potential.

Now that is what is done here.
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Let us look at the non-contact. The non-contact again at the boundary x=0. So here in general

you may have electric  field  entering the  non-contact  region and then leaving the surface so

outside you can have electric field as well as inside.  So what is why the relation between these 2

fields is expressed here. The field outside the device is in terms of the epsilon A. And the field

inside the semiconductor is in term of epsilon s the term here. 



And Rho as is a surface charge at the boundary. Let us explain this equation.
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So this is the origin and here you have a surface charge. This is column per centimeter square.

The field at this point but from outside this field is referred to as the perpendicular field at 0- - so

0- is this side and 0+ is this side. Now, these lines anyway continue through and each of these

positives charges will also contribute field lines right. So the field inside will be more than the

field outside assuming that the field is directed in this way because this is our positive x direction

that is the convention. 

So from here we can write the displacement epsilon A into perpendicular component of electric

field 0- that is the displacement here + the contributions of the surface charge Rho s. So this

displacement + this will together contribute to the field inside, you can see there are more lines

of field inside then outside because each positive charge is contributing therefore this is = epsilon

s into E perpendicular 0+, so 0+ means field inside. So that is how you get this relation.
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Now you can convert this into a relation for perpendicular gradient of the potential  by using

these formulae. So this formula should be used from each of the electric field so this one as well

as  this  one.  You can get  then  conditions  on the  potential.  Now at  an  ideal  non-contact  this

condition will correspond to no surface charge. So Rho s at that point, 0 =0 and the ambient

electric constant is 0. 

So when you say that no field escapes the device or no field enters a device from outside you are

indirectly  assuming that  dielectric  constant  of  the  ambient  is  0.  Now you know that  this  is

evidently not correct. So in general for a device field will always exists even outside the device

volume. Okay. Now this point has to be born in mind, we shall shortly so an example, where if

you neglect this field in the ambient you can get grossly inaccurate results. 

Now before we go onto that example let us make a point that the perpendicular component of the

electric field in the semiconductor that is 0+; so 0+ is the semiconductor side of the boundary.

Now this electric field is needed to determine the carrier concentration at the boundary or the

gradient of the carrier concentration in the real case, right. So this we have seen in the formulae

that we derived. 

Now this field will be required in the formulae if your surface generation rate is non-zero or your

surface recombination velocity lies between 0 and infinite, so you are not having ideal contact



nor an ideal non-contact. And in addition the perpendicular component of the electric field is not

0. So in that case you have to use this above results to get this perpendicular electric field and

then derive the conditions on carrier concentration or the gradient. 

Another situation where you need the electric field information above is when you set the current

density condition at boundary in terms of Thermionic emission or Tunneling.
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Now here is the example which tells you why you must consider the field in the ambient as well.

Let me tell you the situation. This is a Nanowire a very, very small scale wire. So Nanowire

means the diameter of the wire can be of the order of say (()) (45:42) angstroms. That is the kind

of wire that we are considering. 

Now this wire, has been deposited on the substrate,  and suppose your measuring the current

voltage  characteristics  of  this  wire  by  bring  in  a  probe  in  contact.  So  the  experimental

arrangement is shown here and this is the simulation of this situation. Now as you can see when

you draw a diagram to scale that a lot of field is going to exist in the ambient for example from

the probe you will have field lines entering the semiconductor Nanowire all along the surface. 

So because of the potential gradient, so this is 0.6 volts, top is 0.6 volts and bottom is 0 so there

is a potential variation along the wire from top to bottom and therefore there are field lines not



only  inside  the  semiconductor  but  outside  the  semiconductor  and  they  are  entering  the

semiconductor  you can see that.  Now this  field  lines  will  modulate  the space  charge  inside

because after all the lines had to be terminate on some charge inside the Nanowire. 

So  therefore  they  are  going  to  modulate  the  conditions  of  the  charge  and  therefore  the

conductance  of  the  wire.  The  blue  lines  here  are  Equipotential  lines.  The  field  lines  and

Equipotential  lines  have  been  drawn  based  on  the  appropriate  boundary  conditions  at  the

surfaces involved. For example,  surface of this contact surface of the Nanowire and also the

surface of the substrate. 

Now what happens if you do not consider the fielding the ambient? So you will set epsilon a = 0

then this entire field that is shown here will vanished and the field will exist only in the wire,

right. Let me illustrate with the diagram.
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So this is your wire on a substrate and this is your probe. Now if there is no field in the ambient

you have just straightforward field picture like this so this is 0.6 volts and this is 0 so your field

line like this. But when you consider the field in the ambient the field lines are emanating from

here  and  terminating  like  this,  right.  So  the  emanate  perpendicular  to  the  surface  here  and

terminate here. 



Now this contribution to charges, so for example lines will terminate on electrons here. In other

words, there will be enhancement of the negative charge in the wire. If it is entire pair, you will

have more electrons; the conductivity will increase it will be modulated. So that is the effect of

the ambient field. 
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Now, that conductivity modulation you are going to ignore if you remove this ambient dielectric

constant and effect that shown here the simulated results if you put epsilon a = 0 you get this

current as a function of voltage and if you put epsilon a = 1 as it is because you have air outside

then you get this blue line and as you can see the blue line passes through the measured data very

nicely. Whereas, if you did a simulation setting epsilon a = 0 you would get the red line which is

grossly inaccurate as compare to the real condition. 

So this should explain to you while the boundary conditions should be appropriately imposed to

get the correct results. And in particular one must be careful while neglecting the electric field in

the ambient. So ideal boundary conditions should be used with lot of care while they simplify

your  modeling  problem  and  calculations  they  may  give  you  grossly  inaccurate  results

particularly for small devices.
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So we are  towards  the  end of  the  lecture,  a  couple  of  assignments  related  to  the  boundary

conditions.  A hypothetical  device  simulator  does  not  have  the  provision  of  setting  surface

recombination  velocity,  s  as  a  boundary  condition.  Explain  how  you  could  the  volume

recombination model that is the recombination rate = excess carrier concentration by lifetime.

This is the model of volume recombination. 

So how you are going to use them volume recombination model of the simulator to simulate a

value of s equals to centimeters per second at a certain boundary of a device. So actually want to

simulate surface recombination at a boundary. But you have simulated does not have a provision

for. So can you use the model for the volume recombination around this surface and simulate the

surface recombination that is the question. 
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Another  one,  explain how s imposes  a condition  on n if  the boundary is  conducting  that  is

contacted but on perpendicular gradient of n the boundary insulting that is non-contacted or free.

Write an expression for perpendicular gradient of carrier concentration at an insulating boundary

in terms of surface charge s and epsilon a. So assume surface recombination is present, surface

charge is present and the ambient dielectric constant is also there.

So the field in ambient also to be considered, take all these into account and write an expression.

Explain which of the quantities n, p, Psi or their derivatives at a contact boundary are affected by

the surface charge.
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Now with that we have come to the end of the lecture, so let us make a summary of the important

points.  So in this lecture we begin detail discussion of the Drift-Diffusion model involving the

Drift-Diffusion current equation and other equations such as the continuity equations or carrier

balance equations, the heat flux equation and the Gauss’ Law and an equation for electric field in

terms of the potential gradient. 

Now if you leave out the expression for the heat flux you have 6 equations in the Drift-Diffusion

model and we showed that these 6 equations can be reduced to just 3 equations in terms of n, p

and Psi and therefore to solve these equations you need 3 boundary condition 1 on n, 1 on p and

1 on Psi. Now we explained how the boundary conditions can be imposed either on the value of

the quantity or on the gradient of the quantity and on the derivative of the quantity. 

So  we  discussed  about  ideal  boundary  conditions  and  real  boundary  conditions.  The  ideal

boundary  conditions  were  that  the  carrier  concentration,  and  the  potential  are  uniform at  a

contacted boundary; the carrier concentration being equal to the equilibrium concentration. And

the gradients of the carrier concentrations and potential are all 0 at non-contacted boundaries. 

And we explain  that  in  general  the  condition  the  conditions—the boundary  condition  at  the

contacted or non-contacted boundaries a derived in terms of the information about current at

these boundaries. For example, at a non-contacted boundary the net current either leaving the

device or entering the device perpendicular to the surface is 0. Okay. And similarly for contacted

boundaries  one  can  derive  the  boundary  conditions  based  on  information  about  the  current

density. 

“Professor and Student conversation starts”, Sir for the Nanowire characteristic can you give

some reference for the measure and simulated data.  Yes, I  think I should have provided the

reference, thank you for point that out. “Professor and Student conversation ends”.
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So this data is now given here on the slide. So the measured data has been picked up from a

paper by Bauer APL published in Applied Physic Letters in 2007. You can do a Google search

with this  name and this  year  in  Applied Physic  Letters  and you will  get  the reference.  The

simulation is our own and this study was published—presented in a conference International

Workshop on Physics of semiconductor devices conducted in IIT-Kanpur in 2011. Presentation

was by myself and my students namely Vijaykumar and Jayanand.


