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Semi-classical Bulk Transport: EM field and Transport Equations

In  the  previous  lecture,  we  have  discussed  the  balance  equations.  We  showed  that  the

Boltzmann's Transport Equation is equivalent to infinite series of balance equation then we

said however we truncate the balance equations after the energy balance equation namely that

is we take only the 3 balance equation and they are sufficient to model most of the device

phenomena such as velocity saturation, velocity overshoot and so on.

Now the truncation is achieved by assuming a phenomenological relation for the energy flux

FW. Now we did not give a relation for FW because the kind of phenomena that we modeled

we really did not have to use FW and so we just left it at that. Then for these 3 balance

equations  namely the carrier  balance  equations,  the momentum balance  equation  and the

energy balance equation we showed how in practice in many situations we do not have to use

all the terms of the equation.

And the  equations  get  considerably  simplified  for  equilibrium condition,  for  steady state

condition and for spatially uniform conditions. So we showed how the terms drop out for

these  cases.  Then  we  applied  the  balance  equations  to  develop  a  model  for  velocity

saturation,  for  velocity  overshoot  and  for  the  current  density  expression  involving  drift

current, diffusion current and thermoelectric current.

So this current density equation was obtained by a series of approximations of the momentum

balance equation. Now let us proceed further along these lines.
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So if you summarize the result of previous in terms of the equations then these are shown

here. We are already familiar with the Maxwell equations and the boundary conditions part.

So  let  us  concentrate  on  the  transport  equations.  So  when  they  use  the  drift  diffusion

thermoelectric  current  approximation.  We  absorb  the  balance  equation  result  into  this

expression for the electron temperature and we use a field dependent mobility.

The thermal diffusivity DTn and the diffusivity DN these 2 are expressed in terms of the

mobility.  Therefore,  you do not need separate behaviors for DNE and thermal  diffusivity

etcetera. We always talk only in terms of the mobility. So you see that in the drift diffusion

thermoelectric current formulation with field dependent mobility you only have 2 equations

the carrier balance equation.

And the combination of momentum balance and energy balance equation absorbed into the

drift diffusion thermoelectric current equation. Now you have 2 equations for electrons and 2

more equations for holes. So you see that this picture of transport equations is considerably

simplified as compared to the 3 energy balance equations picture. In that picture you need 3

equations for electrons and 3 equations for holes. 

So total you have 6 equations whereas here you have only 2 equations because you observe

the energy balance information into the drift  diffusion thermoelectric  current equation.  In

addition to these equations for carriers or carrier fluxes you have the equation for heat flux as

well.
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Now let us look at the drift diffusion current density model. This is the further approximation

of  the  drift  diffusion  thermoelectric  current  expression.  So  here  you  find  that  the

thermoelectric  current  term  is  neglected  and  so  correspondingly  you  do  not  require  the

expression for the thermal diffusivity. Now the series of approximation for achieving this are

the same as the approximations that we did for drift diffusion thermoelectric current plus an

additional approximation related to the gradient of the carrier temperature.

So, these are the approximations listed here. So first let us repeat the approximations of the

drift diffusion thermoelectric current model and then at the approximation of the temperature

gradient. So quasi static approximations of the momentum balance equations then thermal

energy  of  electron  is  assumed  to  be  much  greater  than  the  drift  energy.  Quasi-static

approximations of the energy balance equation, spatial non-uniformity of Wn in momentum

balance equation and FW in energy balance equations are small.

This is assumptions that we had make. The additional approximation that we are now making

to get the drift diffusion model is that of the related to the spatial non uniformity of the carrier

temperature Tn. So we say that spatial non-uniformity of Tn is small that is this term in the

gradient of the kinetic energy is neglected which depends on the temperature gradient.  In

other words, dou Tn/dou X is much < Tn/N into dou N/dou X.

So you see again here that it is not necessary that the gradient of the temperature should be 0.

So long it satisfied this inequality that we have shown here that is sufficient for the drift

diffusion model.
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So here is a summary of this  model.  The equations  for current  density has only 2 terms

diffusion and drift. You have an expression relating the diffusion coefficient to the mobility

both are dependent on the electric field and the electric field dependence of mobility is given

by  this  formula  where  the  mu  suffix  N0  is  called  low  field  mobility.  Summary  of

approximations  are  quasi-static  approximations  of  the  current  density  and  kinetic  energy

density, spatially quasi uniform approximation of the kinetic energy density.

The kinetic  energy  flux and the carrier  temperature,  electron  temperature  and finally  the

thermal kinetic energy is much greater than the drift kinetic energy.
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Now as you see this equation is not as rigorous and of the same status as carrier balance or



continuity equation or Maxwell equations due to the many approximations involved. So we

have made so many approximations and therefore this drift diffusion model is not of the same

status as the carrier balance equation. If you note the carrier balance equation was derived

from Boltzmann's Transport Equation and we made no approximations.

The equation is used as it is. However, there is a silver lining that the drift diffusion model is

valid even for high electric field within the approximations limits. So we did not assume that

the  drift  diffusion  model  works  only  for  the  small  electric  field  regime  where  the  drift

velocity is linearly related to the electric field. Let us look at a comparison of the various

models.

So we recall that had said that while for modeling the effects of electromagnetic field there

are  standards  equations  namely  the  Maxwell  equations  and  the  Lorentz  force  equation

whereas for modeling the carrier transport in a semiconductor there are hierarchy and various

levels  of  equations  and  various  forms  of  equations.  This  is  because  we  said  that  the

movement of an electron in a semiconductor is fairly complex.

The electron undergoes random thermal motion. It collides with so many particles which are

present, so many entities which are present in a semiconductor and then there is a directed

motion, super imposed over this random motion and millions of electrons and holes are all

colliding  with  each  other  and  moving  and  causing  the  flow  of  current.  So  because  the

situation is complex there are many ways of approaching the modeling of this problem.

And that is why the plethora of equations and levels of equations.
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So it will be useful to look at these equations and see their validity range that is what is

shown here. Now let us consider some samples to understand this figure. Now what you find

on the Y axis is the characteristic length. This can be regarded as for example the length of

the device. Now on the one side left hand side you have the lengths corresponding to silicon.

And on the right hand side you have the lengths corresponding to Gallium arsenide.

The X axis is the characteristic time. So you see to decide the range of validity of the model

we need to consider the device size and the time varying nature of this signal at what rate is

the signal varying. Based on these 2 factors you can decide which range of models can be

used. Note that the characteristic length of silicon is smaller than that of Gallium arsenide.

What is the reason? 

The reason for this is that the effective mass of electrons in Gallium arsenide is much smaller

than that of silicon. So what implications does it have? So it has the following implications.

For example, you take a Gallium arsenide device of 1-micron size. You see that no matter

what is your frequency range. So here the frequency range would be say 1000 picoseconds

characteristic time would mean 1 gigahertz.

So these are higher than 1 gigahertz. So over the frequency range considered here a 1-micron

size Gallium arsenide device you have to use the energy balance equation you cannot work

with drift diffusion. Note that in this drift diffusion model we have considered the velocity

saturation effects  also.  So we are looking at  a drift  diffusion model with field dependent

mobility.



So really speaking these balance equation regime is being used for modeling phenomena such

as velocity overshoot. So what we find is that even a 1-micron Gallium arsenide device can

exhibit velocity overshoot effects and so on and therefore you will have to use energy balance

equation for modeling Gallium arsenide devices.  On the other hand, the 1-micron silicon

device  falls  well  within  the  drift  diffusion  limits  so long as  your  frequency is  less  than

thousands gigahertz.

So this is 1000 gigahertz. Now that is fairly high frequency so you can model silicon devices

to fairly high frequencies. However, model silicon devices are becoming smaller and smaller.

So they will show velocity overshoot effects. So while 1-microns silicon device MOSFET for

example  may not  show velocity  overshoot  effects  when you are  operating  at  the  normal

frequency  ranges  some micron  device  point  1-micron  silicon  device  however  will  show

velocity overshoot effects.

And therefore the balance equations will have to be used for modeling this. So when do we

enter the Boltzmann's Transport regime really if the 3 balance equations are not sufficient to

model  the  phenomena  and  we  need  more  balance  equations  then  instead  of  using  more

balance equations we go into the direct solution of the Boltzmann's Transport Equation and if

the device size is further very small so nanoscale devices for example.

So you may have to go to quantum transport. Similarly, for high frequencies also you cannot

use for example the drift diffusion model. Here you can see that around this region you are

not able to use the drift diffusion model. However, these frequencies are really very high. So

we will have opportunity to look at this figure once more when we discuss the characteristics

times and lengths.

And see how based on characteristics time and length values we can use this figure and arrive

at some conclusions regarding which model is to be used under what situation.
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Now extending  the  drift  diffusion  model  into  the  balance  equation  regime  aware  of  its

approximate status the drift diffusion equation has allowed empirical corrections to itself to

extend  its  validity  and has  been rather  successful  in  this  attempt.  So  while  the  negative

feature of the drift diffusion model is that lot of approximations have been made. 

The positive side is since anyway so many approximations have been made one tries to treat

this equation more and more to see whether you can model for example velocity overshoot by

using empirical constant. So that is the kind of things that you can do with drift diffusion

model.  So because  already it  is  very  approximate  so why not  subject  it  to  some further

modifications if you can get some advantage out of it. 

So  for  example  velocity  overshoot  can  be  modeled  by  adding  terms  such  as  here  is  an

example. So this is a drift diffusion equation. The terms in black color are the terms of the

drift diffusion equation and the terms in blue you can see that 3 terms have been added. These

are  the  ones  which  have  been  added  to  model  velocity  overshoot.  Now there  is  a  term

dependent on this spatial gradient of the electric field. 

There is  a term dependent  on the time variation  of the electric  field and there is  a  term

involving the time variation of the carrier concentration. So this way you see that you are

trying to complete  the picture by adding time varying and spatially  varying electric  field

terms and time varying and spatially varying concentration terms. So you are retaining all this

kinds of variation in the equation hoping to model velocity overshoot. 



So you  know that  velocity  overshoot  results  if  the  electric  field  suddenly  changes  as  a

function of distance or time. Therefore, the Jn current has been made dependent on these 2

terms.  So the term involving the  spatial  gradient  of  the  electric  fields  correct  for  spatial

velocity  overshoot.  The  term  involving  time  variation  of  the  electric  field  corrects  for

transient velocity overshoot.

And this term which depends on time variation of the carrier concentration it preserves the

invariance of total current. So you recall we discuss that even when the velocity overshoot is

there the total current from one contact to the other contact remains constant if there is no

generation or recombination.  Now this fact also has to be borne in mind that is why you

found that spatial velocity overshoot not only the velocity varies with distance. 

The carrier concentration also varies with distance. So those kinds of things also should be

modeled and that is why these terms the carrier concentration term also has been included. So

even when the velocity varies with time there also the current should remain constant and

therefore this time varying time here of concentration.
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So we can summarize our drift diffusion model along the same lines that we did with the drift

diffusion thermoelectric current model. Here again you have 2 equations for electrons and

another 2 equations for holes. So you are absorbing the energy balance information in the

electron  temperature  and field  dependent  mobility.  Now with  that  we have  completed  a

discussion of this module on equations for semi classical carrier transport.



Now since we discussed a large number of ideas a large number of equations it would be

useful to go through the various concepts and equations that we discussed once. Now that is

what we will do towards the end of this module.
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Let us begin with the organization of equations and boundary conditions.  So we said the

equations  and  boundary  conditions  organizations  are  as  follows.  You  have  a  set  of

electromagnetic  field equations  which give you information about the magnetic  field,  the

electric field and the force due to electric and magnetic field. This information is used by the

transport equation to give you information about the current density of electrons.

Current density of holes electron concentration and hole concentration and information about

this  current  densities  and  carrier  concentration  is  acquired  by  the  electromagnetic  field

equations  to give you the information  about  BE and F.  Now that  is  why these 2 sets  of

equations  the  electromagnetic  field  equations  and transport  equation  are  coupled  to  each

other. To solve these equations, you need the boundary conditions. 

So the applied electric field magnetic flux and heat flux impose conditions on the various

fluxes at the contacted and non contacted device boundaries. So here is an example showing

the various boundaries. So you have one contact here and other contact at this end and you

have the remaining boundary as non-contacted boundary. ow what we did was we entered

into each of this boxes and then discussed the equations. 

We did not pay much attention to the boundary conditions at this point. This is something that



we will do when we discuss the drift diffusion model in detail giving the complete expression

for mobility including all scattering effects, generation recombination terms and so on. So at

that point we will discuss the boundary conditions because that is the model that we are going

to use in this course.

And actually solve current versus voltage characteristics for devices using the model. 

(Refer Slide Time: 21:46)

Let us enter into the electromagnetic field equations. So we gave the 4 Maxwell equations.

This is equations for space charge used in the Gauss's Law and this  is the Lorentz force

equation.  Now the Jn and Jp this  arrow should actually  be shown right  up to  this  point

because the Jn and Jp is required to get the curl of the magnetic field here. So this arrow

should really be shown up to this point.

Now most often we use quasi-static approximation and neglect the magnetic fields. Under

these conditions the 4 Maxwell equations reduce to just 2 equations. One is the equation for

electric field in terms of the scalar potential and the other one is Gauss's Law in which if you

substitute the equation for electric  field in terms of scalar potential  you get the Poisson's

equation.

Now in deriving this equation we have assume that the epsilon or dielectric constant is not

dependent on space. So it is spatially uniform and the Lorentz Force equation reduces to a

simple formula F = Q times E assuming a positive charge Q or F = -Q times gradient of

potential. Now with this approximation your Jn and Jp here are no more required to solve the



Maxwell equations that is a considerable simplification.

So the coupling points reduced.  So now you have only 3 points  of coupling namely the

electric field or potential or carrier concentration of electrons and holes. The force on the

electron is depended on the electric field itself. So really this is not an additional point of

coupling. Now let us look at the transport equation a range on hierarchy of equations exist for

obtaining  Jn  N  Jp  and  P unlike  the  case  of  electromagnetic  fields  whose  equations  are

standard.

So you have equations which yield you this quantity.
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Now we discuss the general form of transport equations. We said that each transport equation

expresses  conservation  of  some  quantity.  Now  this  is  very  important  because  once  we

recognize that equations have some common form we feel very comfortable with them and

we do not find difficult to remember these equations. And more than that in a new situation if

we are asked to write equation for some quantity that is new kind of conservation equation

we can immediately write out a form of this equation.

So that is the advantage of knowing the form. So general form we said can be regarded as

similar to the whole continuity equation. So physically speaking the various terms of this

equation represents what is shown here. The rate of quantity increase in a small volume at X

is a left hand side this is equal to the net influx of quantity into the volume plus the net rate of

quantity increase within the volume due to generation recombination process.



Now it is important to note that this equation set out in words needs a small manipulation to

bring  it  in  the  form  shown  here.  So  when  it  is  written  in  this  form  this  equivalent  to

multiplying dou P dou T with the volume. So this multiplied form product form in which the

dou  P/dou  T  is  multiplied  by  volume  is  what  comes  here  and  similarly  this  term  also

multiplied by the volume term will come here.

So instead of talking about concentration which is what this equation talks about here we are

talking in terms of the number in the entire volume rather than the concentration that is the

only difference. So this statement of equation in words is obtained by multiplying each of the

terms of the equation shown here by the volume.
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So the continuity equation is about rate of change taking place in a volume like this. So this is

the input, this is the DX at any X and this is the input this is the output. So difference of these

2  is  the  net  input  and inside  there  can  be  some generation  or  recombination.  So that  is

represented by the terms G or R and because of the net input and because of G and R the

carrier  concentration  inside  can  go  on  increasing  or  the  number  of  carriers  can  go  on

increasing.

So whatever we have stated in words refers to the number of carriers within this volume that

is shown whereas the equation itself talks in terms of the concentration of carriers.
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Now in mathematical terms which will be very useful for us the equation has following form

the time derivative of a quantity is equal to the negative sign and spatial derivative of the

quantity is flux plus the time rate of net increase of this quantity so these are called source

terms. Now we said that this spatial derivative of the quantity is flux can be expressed in 2

alternate forms.

So the flux itself can be expressed either as a quantity for which we are adding the equation

multiplied by the velocity or if you assume the flux of the quantity to depend on the quantity

is spatial gradient like in diffusion then this diversion term comes out in the form delta square

of the quantity multiplied by constant. So both these forms are possible for this term. Now

depending on which form makes physical sense in a given situation we chose the particular

form.

We will see shortly with all the examples. Similarly, the recombination due to electron hole

pair  recombination  the  loss  in  holes  because  of  electron  hole  pair  recombination  is

represented as the deviation of the hole concentration from the equilibrium multiplied by

1/tau. So constant into the quantity that is what is the form. So this form also is useful to note

because in many physical situations we will find this form is being used. 

So let us now just summarize all the equations and show how they can be cast in the form of

this equation.
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So let us look at Schrodinger equation and the equation for heat flux. Now the corresponding

terms are represented in the same color. So let us take Schrodinger equation. The quantity

here is the way function psi. So you have a time derivative of this quantity on the left hand

side. Now you do have some other constants this can always be shifted to the right hand side

that is not a big issue. 

Similarly, here you have delta square of the way function. This is analogues to delta square of

the hole concentration. If you assume that flux of holes due to diffusion. Similarly, here you

have the wave function multiplied by the term this happens to be potential energy term. So

this is the source term much the same way as you use the term here. Though it is used as a

sink so it is only a matter of sign source and sink. 

So this kind of term you have here. We have also explained that how the other coefficient in

this  equation  arise.  So  we said  that  the  psi  is  a  complex  quantity  in  both  X and T and

therefore when you differentiate it with respect to X you get a J out and you differentiate

twice with respect to X you get the twice of J out. So J into J and that is why you have a

negative sign here. 

On the other hand, when you differentiate it once with respect to time you have one J term

out  so that  is  what  explains  how this  J  is  here.  Similarly,  since the coefficient  here is  a

potential  energy you can interpret the right hand side terms as kinetic  energy + potential

energy and accordingly you can arrive at H cross square/2 M 0 term and then for dimensional

consistency you have H cross term coming here. 



Now similarly the equation of lattice heat flux. You have time derivative of the lattice heat the

left hand side. You have spatial derivative, spatial diversions derivative of the flux of this

temperature that is the heat flux which is written in the form of the diffusion current of holes

that is the heat flux is regarded proportional to the gradient of the lattice temperature gradient

of the quantity. When you have the source terms here. 

So these source terms are analogous to the net source terms here.
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Now let us look at 2 more equations. The Boltzmann Transport Equation and the Newton’s

Law. The Boltzmann Transport Equation has time derivative of the distribution function so

this is analogous to dou P/dou T. Then it has this spatial derivative of the flux. So F into V

this analogous to P into V form a flux of the holes and there is a negative sign. Now while P

here is a function of only R and T that is position and time. 

The distribution function is a function of position momentum and time. And therefore you

have 2 gradients here position and momentum gradients. So this is the momentum gradient

term again with a negative sign analogous to the spatial gradient term and this is the flux if

you replace the distance excess by the momentum excess. So DP/DT so velocity is DX/DT

the velocity in the momentum excess is DP/DT that is force. 

So that  is  how you get  this  term and then you have  a  source term dou F/dou T due to

collisions.  So  this  is  momentum  generation  because  of  collision  or  loss.  Now  this  is



analogous  2 this  entire  net  excess  generation  term being cast  as  dou P/dou T or  due  to

generation recombination. So if we use this Nomenclature use for Boltzmann Transport in the

context of the hole continuity equation we could have written this term GP-RP as dou P/dou

T corresponding to generation recombination.

Then you have another source term which takes into account this generation recombination

that we have discussed. So while this is the generation or recombination or increase in loss of

momentum,  increase  in  loss  of  the  distribution  function  due  to  momentum.  This  is  the

contribution of the electron hole pair generation recombination processes. Let us look at the

Newton’s Law. 

 So you have a time derivative of momentum on the left hand side and spatial gradient or

derivative with a negative sign of the flux of this momentum. Now dimensionally this turns

out to be the energy.
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The balance equation they are also of the same form as hole continuity equation. So dou/dou

T of N phi is same as dou/dou T of P. Then you have negative diversions of the flux of N phi

the same as negative diversions of the hole flux. Then you have several source and sinks

terms here. G phi is the generation of N phi due to applied force and so on. So the term in

Boltzmann transport equation which depends on the force works out as the generation term.

When you convert it into balance equation by summing over all the momentum states then

you have a loss of N phi maybe because of things such as collision and then you have a



source  term  generation  of  the  term  N  phi  because  of  electron  hole  pair  generation

recombination process. Now while this is general form when you want to write when you

write this equation for momentum balance it works out in this form.

So we have discussed that  the  current  contains  the  momentum term.  So we can  use  the

current density which is a vector as an equivalent of the momentum because we are actually

interested in the current density rather than the momentum. So writing in terms of the current

density the momentum balance equation has this form. So you have a time derivative of the

current density on the left hand side analogous to dou P/dou T.

Then you have a spatial gradient of the flux of Jn which is the kinetic energy density term

then you have the source term here. This is corresponding to G phi term. You can see the field

coming here. So this is the contribution to the current due to field. The R phi term translates

to Jn/tau M this is somewhat like this. So where you have a loss term proportional to the

quantity proportionality constant being one by time constant.

This is exactly similar except that you do not have Jn suffix 0 like the P suffix 0 because

while the hole concentration under equilibrium is non 0 the current density in equilibrium is 0

because in equilibrium you have random motion and there is no net flow in any direction.

Now I would like to explain one point here that there is no S phi term in the momentum

balance equation. So we said the S phi term is 0.

So why did we say S phi is 0? S phi is a source term because of electron hole pair generation

some net generation of electron hole pairs. Now assuming here that all the electron hole pairs

which are generated they have momentum in random directions. Therefore, together they do

not contribute any net momentum or net current so that is why the S phi term is said to 0. So

they have momentum, the generated electron hole pairs have momentum random direction

meaning they are in random motion.

 

After  they are generated there is  no preferred direction in which they move.  The energy

balance  equation  time  derivative  of  Wn  analogous  to  time  derivative  of  dou  hole

concentration then negative gradient of the flux of kinetic energy then you have E dot Jn as

the source term corresponding to G phi generation of kinetic energy because of electric fields.

So this contributes to the heat and then you have a term corresponding to R phi that is Wn-



Wn0 by the energy relaxation time.

So this loss term loss in energy term is exactly analogous to P-P0/tau. So unlike in the case of

momentum  balance  equation  where  Jn  at  equilibrium  is  0  the  Wn kinetic  energy  under

equilibrium is non 0 that is why this form is perfectly analogous to this form. And then you

have some source terms the source of kinetic energy because of carriers which are generated

electron hole pairs which are generated or recombined.
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Now  let  us  look  at  the  various  descriptions  of  electron  transport  that  we  gave.  So  we

discussed the 4 levels micro to macro level.  The fundamental level is electron is a wave

between 2 collisions. This level works when the mean free path or device size is less than the

thermal  average  wave  length  or  this  thing  works  or  we  have  to  refer  to  this  particular

approach if really you have such small devices.

On the other hand, when the mean free path is much greater than the thermal average wave

length we can use a particle approximation for the electron and you have 3 possible levels

discussed here. The most fundamental level here is again individual carrier view point you

treat every carrier individually at the particle between 2 collisions obeying Newton’s laws.

The next  higher  level  is  an Ensemble  level  where instead  of using particles  individually

because there are millions of particles you look at them as a group.

And you talk in terms of the distribution function which talks about the distribution of a

collection of electrons or momentum space and time. Very often this much detail information



about the distribution of electrons or momentum is not required and therefore you average out

that information and instead you talk about an average carrier concentration as a function of

position and time and average velocity as a function of position and time. 

So the product of the carrier concentration and velocity and the charge, you know, gives you

the device current.
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Now we discuss or rather outline the method of calculating current in each of the approaches.

So for example if you regard the individual carrier viewpoint and take the carrier as waves

then what do you do is you solve the probability amplitude function psi for each electron I

from Schrodinger equation and if you ignore the crystal potential then replace the M 0 of

Schrodinger equation by effective mass MN and then you use this formulae for finding out

the current.

On  the  other  hand,  the  analogously  if  you  regard  the  carriers  as  particles  and  take  the

individual carrier viewpoint then for each particles you determine the state of the particle

using Newton’s Law. Now the state of the particle is nothing, but the position RIT for the I

particles and the momentum PIT and you get it from Newton’s second law. 

Then you identify delta N electrons having their positions in local volumes delta V and from

there you can derive the carrier concentration using this formula and the current density using

the formula here.
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The Schrodinger equation for electrons when you use the wave approach is given here. The

potential  term  when  you  are  dealing  with  electron  semi  crystal  consists  of  several

components such as the applied potential, the built in potential, the crystal potential which

consists  of  the  effects  of  atomic  nuclei  and other  electrons  and holes  and  the  scattering

potential which is a random potential.

Now what is interesting to note is that the crystal potential varies very rapidly over small

length scale of the lattice constant A. Whereas the applied and built in potential very rather

slowly. It is this difference in the variation of the components that allows you to use the

effective mass approximation. So we said that because the crystal potential varies. So rapidly

over length scale A which are very small compared to the thermal average De Broglie wave

length of the carrier or electrons.

We have to refer to solution of Schrodinger equation to model this effect and this is what we

do by doing the effective mass. On the other hand, once you use the effective mass concept

then the effect of this potential can be treated using Newton’s law. So when you remove the

crystal potential or absorb it effects in the effective mass then M 0 is change to MN and your

solution then has to only take into account the potential UA, UB and the scattering potentials.
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Analogously, if you use Newton second law and use the particle approach then this is the

equation of Newton second law. And just analogous to all the potential terms you have the

force  terms.  So applied  electric  field,  the  built  in  electric  field,  the  crystal  electric  field

because of atoms and other electrons and this scattering forces. 

So we remark that while the quantum mechanics uses gradient of potential energy while the

quantum mechanics uses potential energy for action. The classical mechanics or Newton’s

law uses gradient of potential energy or force. Now when you remove the crystal electric

field then you replace M0/MN effect of crystal potential are absorbed in this effective mass.
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Now coming to transport equations the ensemble viewpoint when the carrier population is

rather  large  then  we  treat  the  carrier  collectively  rather  than  individually  you  have  2



viewpoints either regard the electrons as ensemble of waves or ensemble of particles. If you

regard  as  ensemble  of  waves  when use  the  quantum transport  equation  to  solve  for  the

quantum distribution function and from that you get the carrier  concentration and current

density.

Now, if the carriers are regarded as ensemble of particles then use the Boltzmann Transport

Equation to solve for the distribution function F and this is the approach that we have used in

our course.
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The distribution function itself was discussed in great detail and explained. So to understand

the distribution function consider a local volume delta V at a position R at any instant T

having a sufficiently large population delta N of electrons. Now F is the effective number of

electrons that have momentum P out of this population. 

The effective number is nothing, but the fraction of instances in which an electron fills the

state P or has a momentum P in multiple instances of distribution of delta N electrons into the

M allowed states. M is much greater than delta N.
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Now we explained the analogy among the distribution function F the wave function psi and

the method of classical mechanics in which the state of a particle described in terms for the

position and momentum combination.  Now each of them described the state  of electrons

completely.  So  the  distribution  function  describes  the  state  of  electrons  as  a  state  of  an

ensemble of electron particles in delta V at some position in time.

Interestingly, the wave function also has similar kind of shape and the area under the square

of the wave function has the same meaning as the distribution function namely it gives the

probability of finding the electron in this region. So similarly the individual electron particle

is described in terms of the position R and momentum T.
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The Boltzmann Transport Equation in the most compact form it is DF/DT = dou F/dou T =



collision + other source terms. Now the total differential D is because of various factors as

you can see X, P and T are the 3 variables. So you expand then you get dou F dou T+dou

F/dou X into DX/DT which is nothing, but the velocity +dou F/dou P into DP/DT which is

nothing but the force.

Now these 3 terms together represent the classical mechanics and the right hand side terms

had to determine from quantum mechanics. So this is how the Boltzmann Transport Equation

describes  semi  classical  transport  because  it  has  both  quantum  mechanics  and  classical

mechanics. In one dimensional form this equation was written like this and in the 3D version

in this form.
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Now if  you include  the  Boltzmann  Transport  Equation  then  your  equations  in  boundary

conditions picture looks like this. So you have one Boltzmann transport equation of electrons

and another one for holes. And you need the heat flux equation also because the distribution

function depends on the carrier temperature and if you want to solve the carrier temperature

you need the lattice temperature and that is what is solved for using this equation.
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Now  to  derive  the  current  density  and  carrier  concentration  from  BTE  we  discussed  2

approaches. One approach you solve the BTE and get the distribution function then use this

formulae  to  get  the  carrier  concentration  and  current  density.  On the  other  hand,  in  the

approach  2,  you  perform  this  operation  on  the  distribution  function  in  the  Boltzmann

Transport Equation itself.

And convert  this  equation  into a  set  of  balance  equation for electron  concentration,  hole

concentration, electron current, hole current then other terms like electron kinetic energy, hole

kinetic energy and so on. And directly you solve for the carrier concentration and current

density.
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Now you can estimate in the approach one the current density and carrier concentration and



kinetic energy from these formulae.
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While solution of the Boltzmann Transport Equation is rather difficult one uses a guess which

is called the displaced Maxwellian approximation. Now this case is arrived at by modifying

the equilibrium distribution function. And if displaced Maxwellian approximation is used you

get these expressions for carrier  concentration,  current  density and kinetic  energy density

applying the formulae of the previous slide.
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Now if  you use the balance equation approach second approach the equation scenario is

something like this. So you have the carrier balance equation, momentum balance equation

and energy balance equation you terminate after the series of balance equations at the end of

this step. And this FW term here you use the phenomenological relation in case you have to



use this term.

But  we  showed  that  you  really  do  not  need  the  information  about  this  term  in  many

situations. So you have 3 equations for electrons and 3 equations for holes.
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Under conditions such as equilibrium, steady state and spatial  uniform many terms of the

balance  equations  drop  out  under  equilibrium  all  the  time  derivatives  go  away.  Spatial

derivatives also go away and many other terms also drop out. So this really becomes very

simple  situation.  Under  steady  state  all  the  time  derivatives  go  away.  Spatially  uniform

conditions, the spatial derivatives fall off.

(Refer Slide Time: 53:00)

Then we derive the drift velocity field model assuming steady state spatially uniform and no



impact  ionization  conditions.  We  explained  how  the  velocity  saturation  happens  and

saturation velocity depends on the thermal velocity and the velocity field curve shows a linear

behavior for small electric fields.
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We  also  model  the  velocity  overshoot  assuming  spatially  uniform  condition  in  the

semiconductor and no impact ionization.
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The drift diffusion thermoelectric current density model was given in terms of these equations

and the approximations were that the quasi-static approximation of Jn and Wn the spatially

quasi-uniform approximation of Wn and FW and thermal energy much greater than the drift

energy. The equations of drift diffusion and thermoelectric current have the form shown here.



So you have 2 equations for electrons and 2 equations for holes. This equation absorbs both

effects of momentum balance as well as energy balance here the drift diffusion thermoelectric

current equation. So as against energy balance case equations case there you had 6 equations

3 for electron, 3 for holes, you have 2 for electrons, 2 for holes. Apart from the heat flux

equation. 

The drift diffusion thermoelectric current equation can be further simplified to get the drift

diffusion current density model. And the approximation here by quasi-static approximations

for Jn and Wn spatially quasi-uniform approximation of Wn, FW and Tn and thermal energy

much more than drift energy. Now this is how the drift diffusion model looks like and this is

the model that we will be using throughout our course. 

It has 2 equations for electrons, 2 equations for holes and an equation for the heat flux in the

transport equations.
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We pointed out the validity of various regimes in terms of the time varying nature of the

applied signal or the rate at which the applied signal varies with time and the device length

for silicon and gallium arsenide.
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So to summarize at the end of this module I hope that you are able to write the equations of

electromagnetic field driving the device current namely Maxwell’s wave equations and their

quasi-static approximations, Lorentz force equation.
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Recognize the 4 approaches of determining the device current developed out of the individual

carrier and ensemble viewpoints in each of which the carrier can be treated either as a particle

or as a wave.
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Recognize that the equations of carrier transport in semiconductor devices have a common

form which manifests conservation of some physical quantity.
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Write  the fundamental  equations  of determining the device current  based on each of  the

following  namely  Schrodinger  equations,  Newton  second  law  and  Boltzmann  Transport

Equation.
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Write the equation for lattice temperature or heat flux and recognize its necessity for 

determining the device current from the ensemble point of view.
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Derive  the  approximations  of  the  Boltzmann  Transport  equation  namely  the  carrier,

momentum  and  energy  balance  equations  and  drift  diffusion  and  thermoelectric  current

equation and finally apply the balance equations to derive expressions for velocity field and

velocity overshoot characteristics. Now with that we come to the end of this module. We will

discuss the drift diffusion model in great detail in the next module.


