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Welcome back, and the small signal analysis. Now what about the frequency response

we already have a hint regarding the frequency response, we have already seen that this

C db is going to play a role in the frequency response. How do we calculate? You know,

in a comprehensive manner how do we do the more comprehensive response analysis?

We just  going to discuss some shortcut  which is  going to be a very handy in doing

frequency response analysis for more complicated circuits.

So,  all  of  you  definitely  might  have  come across  the  frequency  response  of  simple

circuits  like  common  source  amplifiers  and  for  many  of  it  may  be  redundant.  But

definitely as we said we have to cater to people even working in digital domain and for

them it is important that we have the basics been covered, before going to the system

level design.
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So, let  me talk about  common source amplifier  frequency response; so for that once

again all been to do is add the high frequency capacitance to the small signal model. So, I

will  redraw  whatever  I  had  earlier  the  same  model,  but  with  added  small  signal

capacitance. So, what are the capacitances? Let me mark the terminals g, d, and s. And

assuming that body is grounded, so you will have C gs, C gd, C db and C sb. Now B we

are assuming that B is grounded S is also grounded. So, C sb is not considered only C db.

Now, here we have the overall circuit we can find out the, first you know cruder or you

know,  more  complicated  way of  solving  this  question  is  to  find  out  the  differential

equation solution. Write down the differential equation in time domain at this node and

this node that becomes a couple differential equation. We can solve those to find the

solution of the time domain signal. But in general it  is much more convenient to do

frequency domain analysis, where we replace each of this capacitance with their complex

impedance which is going to be 1 upon S C gd, where S denotes 1 upon iota omega. 

In general, in network theory if you are having any capacitance or inductance you know

replace them by the corresponding complex impedance denoted 1 upon S C gd in case of

capacitance. And then the rest of the analysis is just like K C l or K V l analysis right. So,

here we can solve for these 2 node voltages unknown node voltages right. So, here if I

add another complication suppose if I put another source resistance r signal in general a

source will have some nonzero resistance, nonzero impedance. Suppose it is r signal. So,



in that case even the V g is not known to me. If I do not have r signal then V g is equal to

V signal or V gs, but in this case V the V g is not equal to V in if I have a r signal.

So, V g becomes an unknown. Likewise V d is another unknown. So, my intention is to

find out V d upon V in. So, I have 2 unknown voltages V d and V g. I can proceed with

you know common analysis I can write down the K c, let this node and the second node I

can solve those in terms of this  complex impedance and I can get a overall  transfer

function. For example, you know at this node if I write down the expression for K C l V

g times the impedance of this capacitor S C gs plus V g minus V in upon r signal plus V

g minus V d into S C gd equal to 0. This is the overall K C l currents going out of this

node V g into these 3 branches summed equal to 0.

Likewise, I can write down the equation at the drain node, so I can write down V d upon

r o plus V d upon R D plus V d upon the impedance of the this capacitor which is 1 upon

S C db. So, we get V d times S C db plus gm V g S which is once again V g minus 0.

And then the last component which is V d minus V g upon 1 upon S C gd. So, S C gd

this is the second equation. And here we have 2 unknowns V g and V d 2 equations we

can solve them and find out the exact expression for V d as a function of V in.

So, we expect it is going to be you know some polynomial in S mabe a not plus a 1 S

plus a 2 S square, second order because you have 2 capacitance. Likewise, B not plus B

1 S plus B 2 S square something of this sort this is a generic expression, I can you know

further factor it into more friendly equation 1 plus S upon of course, there is going to be

some constant term. So, there can be some constant term also.

So, we can factor it into the constituent linear terms 1 upon S plus p 1, 1 upon S plus p 2,

1 plus S upon z 1, 1 plus S upon z 2. So, this is the you know general way you know

most common way of finding out overall, overall voltages gain this is a small signal gain,

in terms of the frequency dependent parameters. Where p 1, z 1 they are call poles and

zeros, poles and zeros, which are dependent upon the r phi time constant seen in the

circuits right.

So, in general, this p 1 and C 1 they will depend upon 1 upon r equivalent C equivalent

the r C time constant in the circuits. So, this in course a lot more combustion whenever

we are trying to do this direct analysis it can be very combustion specially if we go for

more  and more  complicated  circuits,  we are  having more  and more  nodes  we more



unknown voltages it will become more and more number of equations and we cannot do

hand  calculation  based  on that.  A circuits  simulator  can  do  it,  it  is  a  running  on a

powerful computer, it can run many different solutions and find out the overall solution,

exact solution and exact frequency response. But for hand calculation for doing quick

analysis, we use some tricks we use some approximations we can, which can give us

approximately good results fairly reasonably correct results So that we can get started

with the design.

So, rather than going through this more complicated step we go for approximation. So,

one of the key steps involved in that approximation and most of you might be aware of

that is dealing with the miller  effect.  So, all  we need to do is need to get rid of the

capacitance  connecting  2 different  nodes  and reduce  them to capacitance  connecting

between those nodes and AC ground. So, here the C gs is between the gate and AC

ground C db is between the drain and AC ground, but C gd is appearing between 2 nodes

of the circuits and that is leading coupling between these 2 equation.

If C gd were absent then the equation of the first node is solvable independently and

based  on  that  V g  I  can  solve  once  again  the  V  g,  gm  V g  as  and  get  the  V d

independently. So, that decouples the 2 nodes I can proceed step by step and find out all

the signal without doing this coupled solutions. So, that is the main motivation behind

using miller  theorem to decouple or disconnect  the small  signal parasitic capacitance

connecting  2  circuits  nodes  and represent  them by equivalent  capacitance  connected

between the those particular nodes and AC ground.

So,  what  I  would  like  to  do I  would  like  rid  of  this  C gd and represent  this  as  an

equivalent capacitance between this  node and AC ground. And likewise,  between the

other node and AC ground, this is what we would like to do. And miller effects come

handy that is what we are going to use for doing the simplification. So, without going

into the proof of miller effect which can be done in 2 lines, but I am just avoiding that. 
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Miller effects says that you know, If you are having 2 nodes in the circuits suppose you

are having some connections over here some blocks, I am just drawing 2 nodes node A

and you know node B another 2 nodes these are also connected to some other branches

and I am not drawing node B and we have Z AB connected over here.

If I am talking about the small signal, here you are having some relationship between the

voltages at A and B. This small signal voltage gain at B as compared to A is suppose you

know K. So, V B is equal to K times V A. Let me make it more clear. So, the small signal

at B is K times V A. So, there is a voltage gain from the node A to node B and the those

condition we can decompose this Z AB into an equivalent Z A connected between the

node A and ground and likewise equivalent  Z B connected  between the node B and

ground. And the where we proof the values we write the values just by equating the K C

l. The K C l at node A should remain same as the K C l in this case. And then we shown

that the Z A is going to be equal to Z AB upon 1 minus A likewise, Z B is going to be Z

AB upon 1 minus 1 upon A. 

So, if we apply this sorry K, I use the term K. So, it is really K that is a voltage gain from

A to B. So, if I apply the same concept in this particular circuit that we have just arrived

at, we can take an approximation we can say that the low frequency gain from gate to

drain. Mind it, there is a low frequency gain, ignoring the effect of capacitance the low

frequency gain between the gate and the drain. We know it is going to be equal to gm r o



parallel R D approximately equal to gm R D that is what we have done. We just read in

the last slide so the low frequency gain is just gm times R D minus time. And therefore,

the equivalent capacitance if I look at their impedance that is 1 upon you know, S C by

this analysis the equivalent capacitance become multiplied by C if I have to find out C g

that gets multiplied by C gd 1 minus A that is, minus times gm R D. And likewise this is

the C g dash which I am putting here.

So,  I  am calling  this  at  C  g  dash  which  is  the  blue  capacitor,  equivalent  capacitor

obtained by splitting this C gd into a capacitor between gate and AC ground, that is C g

dash. And that C g dash is just going to be C g B times 1 plus gm R D. And likewise, if I

call this the other blue capacitor C d dash which is obtained by decomposing C g dash

into an equivalent capacitor between drain and AC ground then this becomes C d dash is

equal to C gd times 1 minus 1 upon is basically 1 upon gm R D.

If I assume that gm R D is much, much greater than 1 then it is approximately equal to C

gd only. So, basically what I can do is I can simplify this circuit. Now my new simplified

signal small signal having C gs, it is having C g dash which I obtaining by breaking the

C gd I A having gm V g S. Likewise I am having the C r and R D and on this I have C g

dash which I have just arrived at by breaking the C gd once again, and I also have C db.

Now, these 2 capacitance C gs and C gd, C g dash can be combined together likewise,

whether capacitance can be combined together into a single capacitance because they are

appearing between this node and AC ground, and I can arrive at  resulting simplified

model for my frequency response.
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So, again call it C g which is equal to C g plus C g dash this is r o parallel R D and on the

other side I have C d which is once again sorry, C d which is once again C d dash plus C

db.

This is the much simplified model I have decoupled nodes. So, now, I have decoupled

my V g and I have decoupled my you know V d. And then the equation for V g and V d

become  very  simple  I  can  just  express  V  g  as  V  in  times  the  impedance  of  this

capacitance that is 1 upon S C g upon r signal plus 1 upon S C g. That is just voltages

division, this impedance of the capacitance impedance of the resistor r signal and this is

the V g as a function of V in. We have simplified further V in upon 1 plus r signal times

S C g. So, here we see that we are getting kind of, low frequency pole of the order V in

times 1 upon 1 plus S upon p 1 right.

So, where p 1 can be written as 1 upon C g r signal which is 1 upon C equivalent 1 upon

times 1 upon r equivalent. So, if I go towards lower frequency, the C g is almost open

circuited  because  1 upon omega C g is  very large.  In  that  case  there  is  hardly  any

voltages division entire V signal appears at V g. Therefore, this equation is telling me S

tending to 0, V g equal to V in. Whereas, if we go for higher and higher frequency the

impedance of this parasitic capacitance C g reduces as a result the V g is going to fall.

And that is also given over here the S increases as a result you even S becomes much



larger then p you are having a gain decreasing with S that is the magnitude of the gain is

decreasing with omega.

As a result you get a fall in the overall gain after you hit omega equal to p. So, and what

is the slope if I plot it in the log domain, if once I am having omega much greater than p

1 then the transfer function V g upon V in is approximated as V in divided by S upon p 1,

because we can ignore this one with respect to S upon p 1. And then this means that once

I am at omega much greater than p 1 my magnitude of this gain which is mod A V, V in

upon omega times p 1 is going to reduce proportional to omega. So, if I go for 10 x

increase in omega, my gain is go to go down by 10 x. In terms of d B again say, if I in

this region if I increase omega by 10 x if I am going from omega 1 to 10 omega 1 my

gain will drop by factor of 10 in d B it is 20.

So, I can say this will be a drop of 20 d B and therefore, I get a 20 d B per decade drop in

the mod A V on the C axis we have omega y axis A v. So, if I just consider this transfer

function, it says that after you hit omega equal to p 1 you are going to get a 20 degree per

decade drop. Likewise if I go for the output pole, once again I can, once I have the

expression for V in I can find out the expression for V d which is just gm V g S with the

minus sign multiplied by the total z that is seen over here. So, earlier we had only gm V

g S times r o parallel r d, but now we have gm V g S times r o parallel r D, parallel the

impedance of this capacitor which is 1 upon S C d.

So, if I ignore r o and this is just approximately equal to R D then basically one again I

have an expression which is R D parallel 1 upon S C d. Which is something like gm V g

S R D upon 1 plus S r C d times R D. So, once again if I look at the first term over here,

the numerator tells me the voltages gain is minus gm R D provided your S is very small.

So, for very small omega, once again the term over here can be ignored with respect to 1

whereas, in that case my overall gain is just minus gm times R D.

But if I am going for larger and larger omega once again this starts dominating and once

again you have the 1 upon S relationship coming. So, once again I can write this as

minus gm V g as R D upon 1 plus S upon p 2, where p 2 is the pole given by 1 upon C d

times R D. So, this is once again I can combine this V g S expression that we obtained

earlier. So, V g S as the function of V in we have already obtained. So, if I combine this



equation 1 and equation 2 I can write down 1 plus 2 will give me V g or V d upon V in

that is they are interested in.

So, first equation give me V g as a function of V in, second equation give me V d as a

function of V g. Combining this I can just eliminate this V g by putting V g as a function

of V in and therefore, I get minus gm R D into 1 upon 1 plus S upon p 1 times 1 upon 1

plus S upon p 2. So, what we say is that in this transfer function the gm R D term is the

low frequency term which will come when you ignore the effect of this high frequency

parasitic capacitance. But once you include the effect of this parasitic capacitance, then

you have  these  2  frequency  domain  frequency  dependent  terms  coming  into  picture

which say that at a higher frequency the gain is going to draw. And from this curve from

this you know expression we can find out what is going to be the shape of this transfer

characteristics mod A V with respect to omega.

So, in general if we carefully see what we have done in doing this simplification, we can

observe a circuit and all we have to do is find out the low frequency gain. So, first term is

the low frequency gain and then finds out what are the poles what are the high frequency

poles or the r p time constants associated with different nodes. So, these are the poles and

corresponding to that we are having the r p time constants associated with the 2 circuits

nodes.  So,  at  these  2  node voltages  in  the  circuit,  we have  found out  the  r  p  time

constants corresponding to the equivalent r and equivalent c. So, this is the step we are

going to repeat for analysis frequency analysis for more complicated circuits.

Find out the low frequency gain and then find out the r C time constant at different

circuits nodes. That is, find out the small signal equivalent resistance; call it 1 upon r 2

equivalents and find out the small signal equivalent capacitance C 2 equivalent. What is r

2 equivalent? That is the small signal resistance between that particular node and AC

ground. So, at this drain terminal if you see; what is the small single resistance between

drain and AC ground that is just r o parallel r D. Likewise, what is the C 2 equivalent?

That is the small signal resistance seen between the drain and the AC ground that is just

C d. That gives me the r equivalent, C equivalent corresponding to the pole arising at the

drain terminal. Same thing applies at the gate.

At the gate terminal if I see the small signal equivalent capacitance between this gate

terminal and AC ground is C g. And small signal resistance at this node between this



node and AC ground this is r signal, because V signal once we have taken out r signal out

of  it  this  is  an  becomes  an  ideal  source,  it  does  not  have  any resistance.  So,  these

represent the internal resistance of the source. So, the equivalent small signal resistance

between this point and the AC ground is just r signal, equivalent small signal capacitance

between this node and AC ground is r C g. And therefore, 1 upon C g times r signal gives

us the pole the p 1. And once we have this low frequency gain minus gm R D and we

have this 2 poles we have the frequency dependent transfer function of the amplifier

ready. From there we can do more detail analysis we can find out the transfer for the

magnitude and phase response of these circuits.

So, we are, once we have this AC analysis done the last. So, we have done DC analysis,

we have done the small signal analysis and finally, we have done the frequency response

we will into little bit more detail of the frequency response, but just to complete the story

we are also going to look into very quickly the noise analysis that we have just discussed,

and how to you know link it with the circuit analysis. So, for doing the noise analysis

once again we are going look into the small  signal  model  and trying to  see how to

incorporate the noise signal at the MOSFET device. So, I directly draw the circuit we

have R D and MOSFET which is going to have it is own noise.

(Refer Slide Time: 25:01)

I can represent the noise source of the MOSFET as of the R D as the equivalent current

source that is what we have seen, that is 4 K T upon R this is the i n square f. That is the



mean square noise spectral density of the R D. Likewise; I know I have a channel current

noise for the MOSFET. I will call it i n square channel of the MOSFET which is equal to

4 K T gamma gm. And I also have the 1 upon f noise of the MOSFET coming in series

with the gate which is you know K upon FWLCOX.

Now, if I want to find out only the effect of this noise sources I can set the input source

as 0. I can set the input source to 0, I do not apply any external signal. I just want to find

out because of these noise sources within the resister and within the MOSFET what is

going to be my output noise voltages V o n square. That is the mean square output noise

voltage. So, I can directly do the analysis here as well, without going to the small signal

model, but It will be more convenient more clear if I go to the small signal model.

So, I am drawing the V n square g at the gate that is corresponding to the 1 upon f noise.

I am drawing the i n square channel which is 4 K T gamma gm. We are also having the R

D which is going to give you another noise source right. So, this is 4 K T power r, this is

gate terminal source is grounded and we want to find out what is the V o n square.

Remember these are noise square current square. So, we have basically  first of all  2

current sources over here 4 K T by r, you have the channel current noise 4 K T gamma

gm and we also have the trans conductance term which is going to convert  this V n

square g into another channel current, which is going to come because the gm term, gm

square V n g square.

So, remember we have to deal with gm square because this is V n g square multiplied by

gm square it will give you the effective noise current in the channel. So, based on this it

is easy t o see means we have to just look at the square terms. We do not have to worry

about the polarity of each of these current sources. So, this is the current which is coming

between the drain and the AC ground. Remember this is V DD. So, from the point of

view of the small signal it is AC ground.

So, we can ground it. So, this 4 K T upon is coming between the drain and the source this

i n square channel 4 K T gamma gm again coming between drain and the AC ground; so

i n square channel coming between drain and the AC ground. R D as usual between drain

and AC ground, because it is drain and AC ground. And likewise the gm square term

which is going to convert this noise gate voltage V n g square to V n g square multiplied



by gm square gives you gm square V n g square as a drain to source current source the

current noise current.

So, there are 3 currents that are coming in parallel and all I need to do is some them up

and multiply with R D square. Because these are current square and we need to add up

the mean square values of these currents. So, basically what I have to do is output V o n

square is equal to be equal to 4 K T upon r plus 4 K T gamma gm plus gm square K upon

FWLCOX times R D square that is all. And now what we have seen is it is convenient to

represent the noise as an input referred noise.

So, this is the output noise voltage V o n square that we are calculating. How to refer it to

the input? What is the equivalent input noise at the gate which captures this entire output

noise? So, input referred noise can be written as V o n square divided by a square or a V

square where a V is the magnitude of the gain. What is the magnitude of the gain? At low

frequency if I assume the low frequency behavior a V is gm R D therefore, a V square is

gm R D square right.

So, then I divide the whole by gm r B d square and therefore, R D square gets canceled

and V i n square will be 4 K T upon gm times R D plus gm square times R D times 4 K T

gamma upon gm plus K upon FWLCOX. That is the input referred noise V in square.

And we see some interesting results we see that the input referred noise is inversely

proportional to R D. We would expect that if R D it is large, it is 4 K T r noise voltage

will be large, but here we say that input referred noise is lower if we increase R D. Why

once again the same phenomena:  because larger  R D also amplifies  the input  signal

going to the output.

So, although it is producing some noise, but it is also amplifying the signal. So, that as

compared to the, as compared to the input referred noise over here you know, the signal

strength will be increased. So, if I talk about the signal strength at the output that will be

amplified because of R D. Therefore, the noise or the signal to noise ratio that is getting

improved  if  you  are  having  larger  R  D.  Likewise,  we  see  that  there  is  a  strong

dependence on gm. So, if you are increasing gm the first 2 stages definitely first 2 term

definitely tell us, larger gm means large smaller input referred noise.

So, having as larger gm for the input device which can be obtained either by increasing I

D or it can be obtained by increasing W by L. So, W by L or larger I D will help me in



reducing the first 2 terms. Likewise, the second term larger W as well as L will help me

reducing the 1 upon f term, which is very significant not for low frequency operations.

We will see that we have to reduce the 1 upon f noise that is going to be you know,

taking care by choosing larger W and L.

But once again remember if you are choosing larger W and L, what is the issue? We

know that larger W and L mean lot of parasitic capacitance. All the capacitance that we

have discussed will scale up that will make your circuit smaller slower, parasitic poles

will  become lower and therefore,  your frequency response the lower cut  off  the,  the

higher cut off frequency will be lower, bandwidth of the circuit will be limited. So, if you

are trying to reduce the input referred noise it can you know, ultimately trade off with

your area as well as the bandwidth or the speed of the circuit.

Likewise if you are relying on gm to increase your signal or reduce your noise once

again larger gm means either larger W by L or larger I D. So, either it can you know

increase you power consumption because of larger I D or once again if you are choosing

larger W by L it can increase your capacitance and hence, the circuit can become slower.

So, there is a lot of pros and cons the moment you try to fix one parameter try to adjust

the noise, it trades off with your gain, it can trade off with your power consumption, it

can you know trade off with your linearity, that we have not discussed in so much detail.

So, this is the step we are going to follow for rest of the circuits and you know, just to

complete this discussion if I plot this you know transfer characteristics, if I try to see they

are 2 terms. One is the 1 upon f dependent term and other 2 terms are constant term. So,

the frequency at which this 1 upon f term becomes constant to become equal to this

constant term is generally referred to as 1 upon f corner frequency of the circuit. So, this

is your V n square and at this f, the contribution of this 1 upon term is becoming equal to

the contribution of this constant term that is called the 1 upon f corner frequency. Beyond

this point the 1 upon f noise is picking up it is contribution is increasing steeply. Above

this point above this frequency the white noise term the frequency independent term that

is more prominent.

So, in case your signal is in this region, that is below 1 upon f definitely, it will get

corrupted by very large noise in this region. So, we need to take care of that. So, corner

frequency happens to be another very important concern while doing noise analysis in



circuits. So, this is the analysis we are going to follow, this is the, this is the scheme

overall starting from DC analysis DC biasing point go into small signal low frequency

analysis, frequency response, transfer characteristics the you know, magnitude and phase

response and finally, the noise analysis. So, they are the 4 basic tools we are going to

repeatedly use in designing more complicated building blocks for our analog front end.

So, we will start our discussion on the front end amplifier, start with the building blocks

the differential  amplifier,  with active load we will  also look into current mirrors and

when finally, develop the entire scheme with appropriate DC biasing, with optimization

of  noise we took optimization  of you know, bandwidth and looking at  the complete

picture. And then we will use the front end amplifier with some other signal processing

schemes to take care of some of the critical issues that is 1 upon f noise specially, in case

you are dealing with very low frequency signals.

So, that is  going to  be covered tomorrow. And hopefully we will  be completing the

analysis of a front end amplifier based on the material that we have prepared today. 

Thanks a lot.


