
Digital Image Processing. 

Professor P. K. Biswas. 

Department of Electronics and Electrical Communication Engineering. 

Indian Institute of Technology, Kharagpur. 

Lecture-28. 

DCT and Walsh Transform. 

 

(Refer Slide Time: 0:27)  

 

Hello. Welcome to the video lecture series on Digital Image Processing. We will talk about 

the Discrete Cosine Transform, we will talk about the Discrete Walsh Transform, we will talk 

about the Discrete Hadamard Transform and we will also see some properties of these 

different transformation techniques.   

Now during the last two classes, when we have talked about Discrete Fourier Transformation, 

you might have noticed one thing, that this Discrete Fourier Transformation is nothing but a 

special case of class of transformations or a class of separable transformations. Some of these 

discussions, we have done while we have talked about the unitary transformations.   

Now before we start our discussion on the Discrete Cosine Transformation or Walsh 

Transformation or Hadamard Transform, let us have some more insight on this class of 

transformations. Now as we said, that Discrete Fourier Transformation is actually a special  

  



case of a class of transformations.     
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Let us see what is that class of Transformation. You will find that if we define a 

transformation of this form, say T(u,v) is equal to double summation f(x,y) where f(x,y) is the 

2 dimensional signal into g(x,y,u,v) where both x and y vary from 0 to capital N minus 1. So 

we are assuming that our 2 dimensional signal f(x,y) is an N by N array capital N by capital 

N array.  

And the corresponding inverse transformation is given by f(x,y) is equal to double summation 

again, we have this transformation matrix, transform coefficients T(u,v) into h(x,y,u,v) where 

this g(x,y,u,v), g(x,y,u,v) this is called the forward transformation kernel and h(x,y,u,v) is 

called the inverse transformation kernel of the basis functions. Now these transformations, 

this class of transformation will be separable if we can write g(x,y,u,v) in the form g1(x,u) 

into g2(y,v).   

So if g(x,y,u,v) can be written in the form g1(x,u) into g2(y,v) then this transformation will 

be a separable transformation. Moreover if g1 and g2, these are functionally same, that means 

if I can write this as g1(x,u) into g1(y,v) that is I am assuming g1 and g2 to be functionally 

same. So in that case, this class of transformations will be separable obviously because 

g(x,y,u,v), we have written as product of two functions g1(x,u) into g2(y,v).    

And since g1(x,u) and g2(y,v) so this function g1 and g2, they are functionally same. So this I 

can write as g1(x,u) into g1(y,v). And in this case, the function will be called as symmetric. 



So here what we have is, this particular transformations or class of transformations are called 

separable as well as symmetric. And the same is also true for the inverse transformation 

kernel that is h(y,u) h(x,y,u,v).    
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Now find that for a 2 dimensional Discrete Fourier Transformation, we had g(x,y,u,v) which 

was of this form e to the power minus j 2 pi by capital N into ux plus vy and of course we had 

this multiplicative term 1 upon capital N. so this was the forward transformation kernel in 

case of 2 dimensional Discrete Fourier Transform or 2D DFT.   

Obviously this transformation is separable as well as symmetric because I can now write this 

g(x,y,u,v) as g1(x,u) multiplied by g1(y,v) which is nothing but 1 over square root of capital 

N e to the power minus j 2 pi by capital N ux into 1 over square root of N e to the power 

minus j 2 pi by capital N vy.   

So you find that the first product g1(x,u) and the second term that is g1(y,v). They are 

functionally the same but only the arguments, x in one case it is ux and in the other case it is 

vy. So obviously, this 2 dimensional Discrete Fourier Transformation is separable as well as 

symmetric. So as we said that this represents a specific case of the 2 dimensional Discrete 

Fourier Transformation represents a specific case of a class of transformation and we had also 

discussed it uhh discussed the same when we have talked about the unitary transformation.   

In today’s lecture, we will talk about some other transformations belonging to the same class. 

The first transformation belonging to this class that we will talk about is called the Discrete 



Fourier Transformation or DCT. Let us see what are the forward as well as inverse transform 

kernels of this Discrete Fourier Transformation. So now let us talk about the discrete Fourier 

Transformation or DCT.   
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In case of Discrete Fourier Transformation, the forward kernel, the forward transformation 

kernel g(x,y,u,v) is given by alpha times u into alpha times v into cosine 2x plus 1 u pi upon 

2N into cosine 2y plus 1 into v pi upon twice N, which is same as the Inverse Transformation 

kernel which is given by x h(x,y,u,v). So you find that in case of Discrete Cosine 

Transformation, if you analyse this, you will find that both the forward transformation kernel 

and also the inverse transformation kernel, they are identical.   

And not only that, these transformations transformation kernels are separable as well as 

symmetric because in this I can have g1(x,u) equal to alpha u cosine twice x plus 1 u pi 

divided by twice N and g1(y,v) can be alpha times v into cosine 2y plus 1 v pi upon twice N. 

So this transformation the  Cosine Transformation is separable as well as symmetric.   

And the Inverse forward Inverse Transformation kernel and the Forward Transformation 

kernel, they are identical. Now we have to see what are the values of  alpha u and alpha v. 

here alpha u is given by square root of 1 upon capital N where u is equal to 0 and it is equal 

to square root of  twice by capital N for values of u equal to 1, 2 to capital N minus 1. So 

these are the values of alpha u for different values of u and similar is the values of alpha v for 

different values of v.     
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Now using this forward and inverse uhh Transformation kernels, let us see how the basis 

functions or the basis images look like in case of Discrete Cosine Transform. So this figure 

shows the 2 dimensional basis images or basis functions in case of Discrete Cosine 

Transformation where we have shown the basis images for an 8 by 8 Discrete Cosine 

Transformation or 8 by 8 2 dimensional Discrete Cosine Transformation.    
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Now using these kernels, now we can write the expressions for the 2 dimensional Discrete 

Cosine Transformation in the form of C(u,v) is equal to alpha u alpha v, double summation 

f(x,y) into cosine of 2x plus 1 into pi u upon twice N into cosine of twice y plus 1 pi v upon 

twice N where both x and y vary from 0 to capital N minus 1.    



Similarly the Inverse Discrete Cosine Transformation can be written as f(x,y) is equal to 

double summation alpha u times alpha v times C(u,v), so C(u,v) is the coefficient matrix into 

Cosine of twice x plus 1 u pi upon twice capital N into cosine of twice y plus 1 into v pi upon 

twice capital N and now u and v vary from 0 to capital N minus 1. So this is the Forward 2 

dimensional Discrete Cosine Transformation and this is the Inverse Discrete Cosine 

Transformation.   

Now you find that there is one difference. In case of Forward Discrete Cosine 

Transformation, the terms alpha u and alpha v were kept outside the summation, double 

summation whereas in case of inverse Discrete Cosine Transformation, the terms alpha u and 

alpha v are kept inside the double summation.    

The reason being in case of Forward Transformation because the summation is taken over x 

and y varying from 0 to capital N minus 1. So alpha u and alpha v, these terms are 

independent of these summation operation. Whereas in case of Inverse Discrete Cosine 

Transformation, the double summation is taken over u and v varying from 0 to capital N 

minus 1, so these terms alpha u and alpha v were kept or are kept inside the double 

summation operation.    
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So using this uhh Discrete Cosine Transformation 2 dimensional Discrete Cosine 

Transformation uhh let us see that for a given image what kind of output we get. So this 

shows this figure shows the Discrete uhh Discrete Cosine Transformation coefficients for the 

same image which is very popular in image processing community the image of Lena.    



The results are shown in two forms, the first figure, this is the coefficients which are shown 

in the form of intensity plots in the form of a 2 dimensional array. Whereas the third figure 

shows the sme coefficients which are plotted in the form of a 3 dimensional uhh in the form 

of a surface in 3 dimension. Now if you closely look at these output coefficients, you will 

find that in case of Discrete Cosine Transformation, the energy of the uhh coefficients are 

concentrated mostly in a particular region where the coefficients are near the origin, that is 

(0,0), which is more visible in the case of a 3 dimensional plot.    

So you find that here, in this particular case, the energy is concentrated in a small region in 

the coefficient space near about the (0,0) coefficients. So this is a very very important 

property of the Discrete Cosine Transformation which is called energy compaction property.    

Now among the other properties of Discrete Cosine Transformation which is obviously 

similar to the Discrete Fourier Transformation as we have said that the Discrete Cosine 

Transformation is separable as well as symmetric. It is also possible to have a faster 

implementation of Discrete Cosine Transformation or FDCT in the same manner as we have 

implemented FFT in case of Discrete Fourier Transformation.   

 The other important property of the Discrete Cosine Transformation is the periodicity 

property. Now in case of Discrete Cosine Transformation, you will find that the periodicity is 

not same as in case of Discrete Fourier Transformation. In case of Fourier Transformation, 

we have said that the Discrete Fourier Transform is periodic with period capital N where N is 

the number of samples.   

In case of Discrete Cosine Transformation, the magnitude of the coefficients are periodic 

with a period twice N where N is the number of samples. So the periodicity in case of 

Discrete Cosine Transformation is twice of the period in case of Discrete Cosine 

Transformation is twice of the period in case of Discrete Fourier Transformation. And we 

will see later that this particular property helps uhh to obtain data compression and a 

smoother data compression using the Discrete Cosine Transformation and not using the 

Discrete Fourier Transformation.   

The other property which obviously helps uhh the data compression using Discrete Cosine 

Transformation is the energy compaction property because most of the signal energy or 

image energy is concentrated in a very few number of coefficients near the origin or near the 

(0,0) uhh value in the frequency domain in the uv-plane.  



So by coding few number of coefficients we can represent or we can uhh represent most of 

the energy most of the signal energy or most of the image energy, so that also helps uhh in 

the data compression using Discrete Cosine Transformation, a property which is not normally 

found in case of Discrete Fourier Transformation.     
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So after discussing about all these different properties of the Discrete Cosine Transformation, 

let us go to the uhh other transformation which we have said as Walsh Transformation.so 

now let us discuss about the Walsh Transform. In case of 1D, the Discrete Walsh Transform 

kernels are given by g(x,u) is equal to 1 upon capital N into product minus 1 to the power 

bi(x) into b n minus 1 minus i(x) where the product is taken over i equal to 0 to n minus 1.   

So you will find in this particular case that capital N gives you the number of samples and the 

lowercase n is the number of bits needed to represent x as well as u. Sorry this is, u not x.  So 

capital N is the number of samples and the lowercase n is the number of bits needed to 

represent both x and u and in this case, the Forward Transformation kernel is given by g(x,u) 

is equal to 1 upon capital N into product i equal to 0 to lowercase n minus 1 minus 1 to the 

power bi x into b n minus 1 minus i u.     
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Now in this particular case, the convention is say if I represent bk(z). bk(z) represents the kth 

bit in the digital representation of z, digital or binary representation of z. So that is the 

interpretation of bi(x). So using this, the Forward Discrete Walsh Transformation will be 

given by W(u) in case of 1 dimension will be given by 1 upon capital N, summation f(x) into 

product i equal to zero to lowercase n minus 1 minus 1 to the power bi(x) into b n minus 1 

minus i(u), where x varies from 0 to capital N minus 1.   

The inverse Transformation kernel in case of this Discrete Walsh Transformation is identical 

with the forward transformation kernel. So h(x,u), the inverse Transformation Kernel is same 

as product i equal to 0 to lowercase n minus 1 into minus 1 to the power bi(x) into b n minus 

1 minus i(u). And using this inverse transformation kernel, we can get the inverse Walsh 

transformation as f(x) equal to summation u equal to 0 to capital N minus 1, W(u) product i 

equal to 0 to lowercase n minus 1 minus 1 to the power bi(x) into b n minus 1 minus i(u).   

So this is the inverse kernel and this is the inverse transformation. So here you find that the 

discrete Walsh Transformation both the forward transformation and the inverse 

transformation, they are identical uhh only thing is the difference of the multiplicative factor 

1 upon capital N. But otherwise because the transformations are identical, so the algorithm 

used to perform the forward transformation, the same algorithm can also be used to perform 

the Inverse Walsh transformation.     
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Now in case of 2 dimensional signal. So in case of 2 dimensional signal, we will have the 

transformation kernel as g(x,y,u,v) which is equal to 1 upon capital N product i equal to zero 

to lowercase n minus 1 minus 1 to the power bi(x) into b n minus 1 minus i(u) plus bi(y) into 

b n minus 1 minus i(v).    

And the Inverse Transformation kernel in this case is identical with the forward 

transformation kernels so the inverse transformation kernel is given by 1 upon capital N 

product again i equal to 0 to lowercase n minus 1, minus 1 to the power bi(x) b n minus 1 

minus i(u) plus bi(y) b n minus 1 minus i(v).    
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So using this Forward Transformation kernel and the inverse transformation kernel, now we 

find that the inverse as well as the forward Discrete Walsh Transformation can now be 

implemented as W(u,v) is equal to 1 upon capital N, double summation f(x,y) into product i 

equal to 0 to n minus 1 minus 1 to the power bi(x) into b n minus 1 minus i(u) plus bi(y) into 

b n minus 1 minus i(v).    

And the summation has to be taken over x and y varying from 0 to capital n minus 1. And in 

the same manner because the forward transformation as well as the inverse transformation 

they are identical in case of discrete Walsh Transformation. The same expression if I replace 

f(x,y) by W(u,v) and the summation is taken over u,v varying from 0 to capital N minus 1.   

What I get? It is the inverse Walsh transformation and I get back the original signal f(x,y) 

from the Transformation coefficients W(u,v). So you find that here the same algorithm which 

is used for uhh computing the Forward walsh Transformation can also be used for computing 

the inverse Walsh Transformation. So now let us see that what are the basis functions of this 

Walsh Transformation? And what are the results on some image?     
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So for Walsh transformation, the basis function appears like this or the set of (basi-) basis 

images appear like this. Here the basis images are given for a 4 by 4 uhh 2D Walsh 

Transformation and if I apply this Walsh Transformation on the same image say Lena, you 

find that this is the kind of result that we get.    

So here again, you find that the property of this Cosine Transformations that is the 

coefficients near 0, they are having the maximum energy and as you go away from the origin 

in in the uv-plane, the energy of the coefficients reduces. So this transformation also has the 

energy compaction property but here you find that the energy compaction property is not as 

strong as in case of the discrete Cosine Transformation.    

So here, the coefficient energies which is mostly concentrated in this particular region uhh is 

not that strong as the compaction of energy in case of discrete cosine transformation. And by 

analysing this forward as well as inverse transformation Walsh Transform uhh kernels Walsh 

Transform Kernels. You can again find out this that this Walsh Transformation is separable 

as well as symmetric.    

Not only that for this Walsh Transformation, it is also possible to have a fast implementation 

of 2D Walsh transformation almost in the same manner as we have done in case of the 

Discrete Fourier Transformation where we have computed the first Fourier Transform of 

FFT.     
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So in case of Discrete Walsh Transformation, the first implementation of the Walsh 

Transformation will be even simpler and in this case, the first transformation can be 

implemented as W(u). So here we are seeing that because the walsh transformation is 

separable, so the same way in which you have done the Fourier Transformation 2D Fourier 

Transformation that the Walsh Transformation 2D Walsh Transformation can be 

implemented by using a sequence of 1 dimensional Walsh Transformation.   

And that is also true in case of Discrete Cosine Transformation. So first you perform 1 

dimensional Walsh Transformation along the rows of the image and then the intermediate 

result that you get on that you perform 1 dimensional Walsh Transformation along the 

columns of the intermediate matrix. So you get the final Transformation coefficients. The 

same is also true in case of Discrete Cosine Transformations.   

Because the Discrete Cosine Transformation is also separable. So to illustrate the faster 

implementation of the Walsh Transformation, I take the 1 dimensional case, so here the fast 

implementation can be done in this form. I can write, W(u) is equal to half of W even(u) plus 

W odd(u) and W(u plus capital M) is equal to half of W even(u) minus W odd(u).    

So you find and in this case u u varies from 0 to capital N by 2 minus 1 and M is equal to N 

by 2. So you find that almost in the same manner in which we have implemented the first 

Fourier Transformation. The Discrete 2 dimensional uhh or Discrete Walsh Transformation 

Fast Discrete Walsh Transformation can also be implemented in the same manner.    



Here we divide all the samples of uhh of which the Walsh Transformation has to be taken 

into even numbered samples and odd numbered samples. Compute the Walsh Transformation 

of the even numbered samples. Compute the Walsh Transform of the odd numbered samples, 

then combine these two intermediate results to give you the Walsh Transformation of the 

total number of samples.    

And because this division can be recursive, so first I have N number of samples, I divide 

them into N by 2 odd samples and N by 2 even samples. Even and odd samples can be 

divided into four number of odd samples and even samples.    

And if I continue this and finally I come to a stage where I am left with only 2 samples, I 

perform the Walsh Transformation of those two samples, then hierarchically combine those 

intermediate results to get the final Walsh Transformation. So here again by using this fast 

implementation of the Walsh Transformation, you may find that the computational 

complexity will be reduced drastically. Thank you.   


