
Digital Computer Organization
Prof. P.K. Biswas

Department of Electronic & Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture No. # 06
Microprogrammed Control -II

Now let us see another aspect that is designing of micro instructions. Till now we have seen that
in the control memory, every location will have the number of bits which are same as the number
of control signals that you have within the system. Now in any system I can have hundreds of
control signals that means our control memory, every location must have hundreds of bits which
makes the control memory very big. So we have to think is there any way by which the number
of bits in every location in the control memory can be reduced.

One of the simplest way is instead of directly putting the control signals in the control memory,
you encode the control signals and put the encoded control signals in the control memory. So
that way if I have n number of control signals present in a system, the number of bits in every
location in the memory that we will need is log of n to the base 2 and then ceiling function of
this.

(Refer Slide Time: 00:02:10 min)

So that will be the number of bits needed in every location in the control memory but this has a
disadvantage. That is while analyzing the instructions that we have seen that in any cases, we
need more than one control signals to be activated simultaneously. Now when we are encoding
the control signals and putting them as encoded bit stream in the control memory that means
after reading a location from the control memory to generate the control signals, I have to decode
that encoded bit stream. So that has to pass through a decoder. In case of a decoder generating
more than one decoder output active simultaneously is not possible. So that puts a restriction that
if we have fully encoded bit stream to represent the control signals, I can generate only one

control signal at a time. I cannot generate more than one control signal at a time, so these are two
extreme cases.

One case is where every bit is assigned to a control signal which we call as horizontal
microprogramming. This is called horizontal microprogramming. In the second case when the
control signals are fully encoded and the encoded bit stream is stored in the control memory that
is called a vertical microprogramming. So these are the two extreme cases of
microprogramming. One is horizontal and the other one is vertical microprogramming. So none
of these are suitable for our purpose. So what we need is something in between that is we should
try to reduce the number of bits in the control memory.

Simultaneously we should also be able to generate the required number of control signals in
parallel. So what we need is something in between which we can call as diagonal
microprogramming. So in case of diagonal microprogramming, what we have to do is we have to
group the control signals in such a way that in a particular group, no two control signals will be
activated simultaneously. Whereas if I need two control signals to be activated at a time then
those two control signals must belong to two different groups. Within every group, the control
signals are fully encoded. So if this n number of control signals that we put into say m number of
groups then I need m number of decoders. Within every group the control signals are fully
encoded and because they belong to different groups and every group has a corresponding
decoder. So from every decoder I can generate one control signal and because I have more than
one decoders, so more than one control signals I can generate at a time.

So here I can reduce the number of bits but not as less as this, as in case of vertical
microprogramming. So the number of bits in this case will be more than the number of bits
needed in case of vertical programming but it will be less than the number of bits needed in case
of horizontal microprogramming. So I compromise on the number of bits to attend parallel
activation of the control signals. So how many fields you should have and in every field, how
many bits you should incorporate that is the topic of micro instruction design. So let us see how
we can design the micro instructions.

(Refer Slide Time: 00:07:40 min)

So let us assume that in a particular system, we have m number of micro instructions which are
designated as I1, I2 to Im. So these are the number of micro instructions. Micro instructions will
be identified by analyzing the instruction that you have in the CPU. Let me assume that I have n
number of control signals say C0, C1 up to Cn-1 or I can also rename as C1 to Cm that does not
matter. So I have m number of micro instructions and I have n number of control signals. So
whenever any micro instruction is executed, every micro instruction will activate one or more of
this control signals. In some cases it may be needed that a micro instruction generates only one
control signal. Some of the micro instructions may generate more than one control signal. So if it
generates more than one control signal, all those control signals are to be activated
simultaneously and that we have to consider while designing the micro instructions. We say that
a control signal Ci belongs to a micro instructions Ij, if the micro instructions Ij activates control
signal Ci. So that way more than one control signals can belong to a micro instruction Ij because
Ij may activate more than one control signals.

We also say that given two control signals say C1 and C2, we say that these control signals C1
and C2 to be compatible. We say these two control signals C1 and C2 to be compatible if C1
belongs to Ij implies C2 does not belong to Ij and vice versa. That is C1 belongs to Ij implies C2
does not belong to Ij and C2 belongs to Ij implies C1 does not belong to Ij. If this is true then we
say that this control signal C1 and C2 they are compatible. So once you define the compatible
control signals, we can define what is called a compatibility class. So compatibility class is
defined as a set of control signals such that the control signals within that set are pair wise
compatible. So compatibility class will define as a set of control signals which are that is if say
control signals C1, C2 and C3, this forms a compatibility class. This indicates that C1, C2 are
compatible, C1 C3 is also compatible and C2 C3 they are also compatible. So is that compatible
that the definition that you have given for the compatibility C1 C2? So compatible for only one
instruction Ij or another instruction? With respect to one instruction they are compatible. May be
for an instruction Ij they are compatible.

At first or any other instruction, for any other instruction they may not be compatible. So what
we have to do during the design is we have to identify the set of control signals which are
compatible with respect to every instruction. So when I say that a set of control signals forms a
compatibility class that means the control signals within that set are pair wise compatible. So if I
take any pair of control signals within that set, they must be compatible. That is what is a
compatibility class. Here we have to identify the control signals which are compatible with
respect to every micro instruction. So that is what we have to do while designing. So in this case
this design can be performed in an analytical way. So let us take an example to see how the
design can be done. I take a very simple example with only say 4 micro instructions. So let us
take an example.

(Refer Slide Time: 00:15:18 min)

So here I consider 4 micro instructions say I1 I2 I3 and I4. So suppose we have these 4 micro
instructions and the control signals which are activated by I1 are let us say a b c and g. The
control signals which are activated by I2 let us say those are a c e and h. Control signals which
are activated by I3 let us say those are a d and f and the control signals which are activated by I4
let us say those are b c and f. So we find that for this example the total number of control signals
that we have are a b c d e f g and h. These are the total control signals that we have for this
example, out of which I1 activates a b c and g, I2 activates a c e and h, I3 activates a d and f, I4
activates b c and f. Now before designing the micro instructions for this particular example let
me define one more term that is maximal compatibility class. So here we have defined what is
the compatibility class.

(Refer Slide Time: 00:17:44 min)

I define another term which is maximal compatibility class. So we will say that maximal
compatibility class is a compatibility class to which no other control signals can be included
without introducing incompatibility. So it is a compatibility class. We have said a compatibility
class as the set of control signals which are pair wise compatible. So if I have a compatibility
class such that I cannot insert any other control signal to the same class without introducing an
incompatibility then that particular compatibility class is called a maximal compatibility class
that means that compatibility class cannot be expanded further by introducing new control
signals.

(Refer Slide Time: 00:19:20 min)

So it should be quite obvious that our design should try to find out maximal compatibility classes
because only when I have a maximal compatibility class then only I can guarantee that I can
minimize the number of bits. If the classes are not maximally compatible then minimization of
the number of bits is not guaranteed. So we will try to design the micro instructions keeping in
mind that we have to find out the maximal compatibility classes. Now how do you do it? We do
it hierarchically. We follow different steps say in step number 1 or S1 I assume that I have
defined compatibility classes but every compatibility class consists of only one control signal. So
if a class is having only one control signal that does not valid our compatibility class definition
because there is no other control signal. So there is no question of incompatibility. So in step
number one, I consider that all these control signals as independent classes. So I have a b c d e f
g and h, so each of them forms a compatibility class by itself.

In step two I too try to find out the compatibility classes containing two control signals. For that
what I do is I take every control signal one after another and try to find, try to pair that with some
other control signal in such a manner that compatibility is not violated. So first I will take the
control signal a and try to see whether along with a, I can put some other control signal or not. So
that still that pair will remain compatible. So here you find that if I take a, I have to see whether
b can be paired with a. It cannot be paired because I1 activates both a and b. Can c be paired?
No. Can d be paired? No, because I3 needs both a and b simultaneously. The e cannot be paired
because I2 activates both a and e simultaneously, f cannot be paired, I3 activates both a and f
simultaneously, g cannot be paired because a and g they are activated simultaneously by I1. And
h again it cannot be paired because I2 activates both a and h simultaneously.

So with a I cannot pair any of the control signals. Let us see whether with b I can pair any of the
control signals or not? bd, be, bh. What else? I think with b, no other control signal can be
paired. Then I can have a pair of cd, I can have a pair of de, I can have pair dg, I can have pair
dh, I can have pair ef, I can have pair eg, I can have pair fg, I can have pair fh and I can have pair
gh. So these are the compatibility classes containing two control signals each. So once I form the
compatibility classes containing two control signals each, from the previous step I removed all
the control signals which are subset or the compatibility classes which are subset of some
compatibility class at the next level. So here you find that except a, all others are subsets of some
compatibility class in step 2. So I will retain only a and remove all other control signals from
here.

Then I go to next step 3. In step 3 my objective is to try to find out compatibility classes
containing three control signals. So for that what I will do? I will take every compatibility classes
from step 2 or we have compatibility classes containing, all the compatibility classes containing
two control signals each and try to insert another control signal in that still maintaining the
compatibility property. So if I do that in step S3, you find that I will have a number of
compatibility classes like bde, bdh, deg, dgh, efg and fgh. So by analyzing this I can find out
that.

(Refer Slide Time: 00:23:46 min)

So again once I find out the compatibility classes containing three control signals each, again I
remove from the previous step all the compatibility classes which are subset of some
compatibility class in step S3. So here you find that except cd, all other compatibility classes can
be removed because they are subsets of some compatibility class in step number S3.

So once I have this S3, then I should go for next step S4 where we will try to find out
compatibility classes containing four control signals each and here you will find that I cannot
insert any other control signal with any of the classes in S3. Say for an example bde, with bde I
cannot include a, with bde I cannot include b is already there. So I don’t have to consider that. I
cannot include c, because b and c they become incompatible, d is already there. What about f? d
and f? They are activated simultaneously by I3. So I cannot include f in this because in that case
df will become incompatible. Can I include g? No, because b and g they are activated
simultaneously. Can I include h? h, I can include so that comes at the next one. So I have these
two bde and sorry, with bde here, I am trying to find out compatibility classes with four. So can I
include h with this? e and h they are activated simultaneously by I two, so I cannot include any
other control signal with bde.

So similarly if you analyze all of this, you will find that I cannot generate any compatibility class
having four control signals. So at this step four, this will be phi because I cannot generate any
compatibility class with four control signals. So now we find that after forming this, these are the
maximal compatibility classes that I have. a is a maximal compatibility class because we have
seen that I cannot pair any other control signal with a, still maintaining compatibility. So it is a
maximal compatibility class. cd is again a maximal compatibility class because I cannot pair any
other control signal with cd still maintaining the compatibility property. Then all these also
become a compatibility class. each of them is a compatibility class and they are maximal. So I
have 1, 2, 3, 4, 5, 6, 7 and 8; 8 maximal compatibility classes.

So once I find out this compatibility classes, I complete one stage of my design because now I
have to encode these compatibility classes as different fields. The next stage is I have to find out
whether all these maximal compatibility classes or needed or not because you find that many of
the control signals are common in different compatibility classes.

(Refer Slide Time: 00:28:58 min)

B appears here, b also appears here, d appears here d also appears here, h appears here h also
appears here. So though I have obtained the maximal compatibility classes but it is quite natural
that may be all these maximal compatibility classes are not needed to be coded. If I can find out a
subset of all these set of maximal compatibility classes which will include all the control signals.

(Refer Slide Time: 00:30:00 min)

Then that subset I can encode to generate my desired control signals. So this is a subset which is
called a minimal cover. So what we have to find out is a minimal cover of this set of maximal
compatibility classes. So what we have to find out is minimal cover of the maximal set of
compatibility classes. So I have to find out of maximal compatibility classes that let us put as
MCC, MCC stands for maximal compatibility classes. So we have to find out minimal cover of
maximal compatibility classes. So once I find out the minimal cover that is a minimal subset of
the set of maximal compatibility classes which includes all the control signals and we will try to
include only those control signals with every field corresponding to every maximal compatibility
class in the minimal cover. Now this can be done by using a tabular method. We will use a table
which is called a cover table. What is this cover table? In this cover table for every maximal
compatibility class we will have a row and for every control signal we will have a column.

(Refer Slide Time: 00:31:42 min)

So with the help of this maximal compatibility classes that we have generated, I find that because
there are 8 maximal compatibility classes, so in the cover table I have to have 8 rows. Those
rows we designate as say k1, k1 means it is a maximal compatibility class containing the control
signal a only.

(Refer Slide Time: 00:32:00 min)

Then we will have k2, it is a maximal compatibility class containing the control signals c and d.
We have a row k3 containing the control signals b d and e. We have to have k4 containing the
control signals b d and h. We have k5 containing the control signals d e and g. We have k6
containing the control signals e f g or dgh, the next one d g and h. We have to have k7 containing
the control signals efg. The next one is efg and we have another row for compatibility class k8
containing the control signals f g and h. So these are the number of rows that we will have.
Again we will have a column for every control signal.

So for a we will have one column, for b we will have another one, c d e f g and h. So I have
columns corresponding to every control signal and I have rows corresponding to every
compatibility class. Now this table has to be filled up like this. For every row wherever a control
signal corresponding to a given column is present, I will put a cross in the corresponding
location. So for k1, row k1 which contains only the control signal a I will put a cross in this
location. So this row corresponding to k1 and column corresponding to control signal a. For k2
which contains control signals c and d, I will put crosses in both these column c and d. k3 which
contains b d and e, so b d and e. For k4, it contains b d and h, so I will put b d and h. For k5 I will
put d e and g, so I will have crosses in d e and g. For k6 it is d g and h, so I will have crosses d g
and h. k7, e f and g so I will have crosses e f and g, k8 f g and h so I will have crosses f g and h.
So I complete the cover table.

Now from this cover table I have to find out those maximal compatibility classes which forms a
minimal set of maximal compatibility class. So how do I do it? I study this cover table, find out
the columns. I study the columns, if there is any column which contains only one cross that
means that is a control signal which is included only in the maximal compatibility class
corresponding to the row where the cross is present. So I get a cover table. In this cover table I
will try to find out the columns containing only one cross. If I get any column which contains
only one cross that indicates that the row where the cross is present, that is the only maximal

compatibility class which contains that control signal. There is no other maximal compatibility
class containing the same control signal. Now what is our aim?

Our aim is I will try to remove some of the maximal compatibility classes to get the minimal
cover such that the minimal cover will contain all the control signals. Now while trying to
eliminate some of this maximal compatibility classes, these are the compatibility classes such
that corresponding to that in a column I have only one cross. Those compatibility classes cannot
be removed because if I remove that compatibility class in that case, those control signals will
also be removed. So in the minimal cover, those compatibility classes must be retained. So these
are compatibility classes which are called essential compatibility classes and in our minimal
cover we must retain the essential compatibility classes.

(Refer Slide Time: 00:38:30 min)

So you find that by studying this I have two columns, the column corresponding to a and the
column corresponding to c. These are the two columns which contain a single cross that means
the corresponding compatibility classes k1 and k2, these are essential compatibility classes. So
because these are essential compatibility classes they must be retained in our minimal cover.

(Refer Slide Time: 00:39:07 min)

So k1 and k2 are essential MCC’s. So these two k1 and k2 must be retained in the minimal cover.
Other members of the minimal cover now we will try to find out. For that you have to follow few
steps. Again by studying this compatibility class, I mean by studying this cover table, first you
have to identify if there are any columns which are identical. If there are more than one columns
that are identical that means the corresponding control signals are also identical. So in such cases
I will remove all such columns except one which are identical. So I will retain only one column
and the rest of the columns which are identical to that will remove because all those control
signals are identical. So by studying this cover table, you find that there is no such situation.
There are no columns more than one columns which are identical. So I cannot remove any of the
columns like that.

Next what we have to do is we have to again by studying the columns, we have to find out if
there is any column which is a subset of other column. So if there is any column which is a
subset of some other column then the column which is subset that is called a dominated column
and the column of which it is subset that is called a dominating column. So if there is any
dominating column in the cover table, I remove that column.

(Refer Slide Time: 00:41:23 min)

So you find that by studying this cover table, I have these two columns b and d where b is
dominated column and d is the dominating column because for every cross in column b, there is
a cross in the same row in column d. So for this I have one cross here, for this also I have one
cross here. So what I try to do is I remove the dominating column. So this is a column d which
dominates column b. Is there any other such column? f and g. g is the dominating column which
dominates over the column f. So I also remove this column g from the cover table because g is
the dominating column which dominates over f. I also removed d which is a dominating column
which dominates over b.

So once I remove this, after that what I do is I form a reduced cover table because I have
removed some of the entries. So what will be the reduced cover table now? We have seen that
the MCC’s k1 k2 they are essential. So I have to retain them in the minimal cover. So in the
reduced cover table I will have rows corresponding to the other MCC's. I will have row
corresponding to k3, I will have row corresponding to k4. I will have row corresponding to k5,
k6, k7 and k8 where k3 is equal to bde, k4 is bdh, k5 is deg, k6 is dgh, k7 is efg and k8 is fg and h.
The columns that I will retain are b e f and h because a and c, they being corresponding to the
essential MCC's, I have to any way incorporate that. So in the reduced cover table I removed
that.

Similarly d and g we have removed them because those are the dominating columns. So the
remaining columns I retain and the MCC's which are not essential that I retain in the reduced
cover table. So after doing this, the reduced cover table looks like this one. So this becomes my
reduced cover table. So once I have this reduced cover table, now as we have done in case of
columns that the dominating columns we have removed. In the reduced cover table, I try to find
out whether I have rows, some of the rows may be dominating some other rows. So in this case
our approach will be that a row which is dominated that will be removed. In case of column, the
column which is dominating that we have removed. In case of rows our approach will be reverse
that is a row which is dominated that will be removed. So if you do that, you find that k5 and k6,

these two are dominated rows because in case of k5 I have only one cross in column e which is
also present in case of k3. For k6 I have only one cross in column h which is also present in k8.
So these two rows k5 and k6 they are dominated rows so I remove k5 and k6, because these are
the control signals which are present in other MCC's. So I can as well remove that.

(Refer Slide Time: 00:43:12 min)

Now we have to select from the remaining k3, k4, k7 and k8 what are the MCC's that we should
get in the minimal cover? So now if you study this, you find that I have two options. I can have
k3 and k8 along with k1 k2 because then I cover all the control signals. If I just incorporate k3
and k8, I have b e f g because f and h are present in k8 and b e are present in k3. Similarly I can
also have k4 and k7 instead of k3 and k8. Then also I cover all the control signals. So by minimal
cover can be k1 k2, anyway I have to retain them because they are essential.

In addition to this I can have k3 and k8, so this can be one minimal cover or I can have k1 and k2
those being essential have to be retained in any of the minimal covers and the remaining two can
be k4 and k7. So these are the two minimal covers that I can have. So now the micro instructions
that we have to design can follow either this or this. So this indicates that in micro instructions, I
have to have four fields. One field corresponding to k1, the other field corresponding to k2, other
one corresponding to k3 and k8 so there are 4 fields. Here also I will have 4 fields corresponding
to k1, k2, k4 and k7. So I can use any of this minimal cover to design my micro instructions and
within every field, the bits or the control signals can be fully encoded. So this is the formal
design approach which can be used for designing the micro instructions.

