
1

Digital Computer Organization
Prof. P. K. Biswas

Department of Electronic and Electrical Communication Engineering
Indian Institute of Technology Kharagpur

Lecture No. # 28
Error Detection and Correction

Another important consideration for I/O interfacing is error detection and correction because
most of the I/O devices are connected over the serial device and if the data is transmitted at a
high rate in that case it is quite likely that the data which will be read by the CPU will be
erroneous. So instead of giving the erroneous data it will be better that if you can detect, if there
is any error in the data that has been read from the device and if possible to correct the data.

(Refer Slide Time: 00:01:35 min)

So there are different error detection and correction mechanisms and particularly error detection
mechanism and one of the mechanisms that you already know is the parity bit. So by making use
of the parity bit, you can determine whether the data has been read is correct or there is some
error in the data but the difficulty with using parity bit you know that you can simply detect the
error but you cannot correct it. So another kind of coding technique which can be used for
detection as well as correcting the error bit is what is called a hamming code. Do you know what
is the Hamming code? Then let me roughly say what is the hamming code.

The Hamming code is something like this. Whenever you have a data stream, what you do is into
the data stream you introduce additional bits which are nothing but parity bits but in this case the
parity bits are generated in slightly different way than how it is generated in case of parity code.
So in case of hamming code it is something like this that every bit position in the bitstream
where the position is of the form 2 to the power i, for some integer i will contain a parity bit. So I
can take an example like this. First bit position, bit position one is of the form 2 to the power i
because 2 to the power 0 gives you 1.

2

That means the first bit location will be a parity bit, it will not contain a data bit. So first bit
location I will put as a parity bit P1. Come to the second bit location 2 which is again 2 to the
power 1 so that will also contain a parity bit that I will call as P2. Third location it is not of the
form 2 to the power i so that will contain a data bit and let me put it as D3 where the subscript
indicates the bit position. Fourth location which is 2 to the power 2 again will contain a parity
bit, I will put this as P4. Fifth location which is not 2 to the power i will contain a data bit that is
D5. Sixth location again it is not of the form 2 to the power i will contain a data bit, say it is D6.

Similarly 7th bit location will contain D7 because it is not 2 to the power i, 8th bit location again 2
to the power 3 that will again contain a parity bit. So this way it will continue. Now D3 D5 D6 D7
they are coming from the bit streams or data bit streams. I have to generate P1 P2 P4, so let me
take this small example. I have to generate P1, P2 and P4. Now how do I generate P1? While
generating P1, I consider the binary representation of the bit locations. So in this case the binary
representation of D3 is 0 0 1 1 something like this. So when I consider P1 you consider that P1 is
2 to the power 0. So for generating this P2 to the power zeroth parity bit, what is the zeroth bit in
the binary representation of the location of the data? If that is equal to 1 then all those data bits
will take part along with the parity bit in generation of the parity bit. So for example here this
binary representation of D3 is if I put it in the form of 4 bit binary number 0 0 1 1. This is the
zeroth bit in the binary representation of D3 and zeroth bit is equal to 1.

So for the generation of P2 to the power 0, I will consider all those data bits where the binary
representation of the position of the data bit in the binary representation of the position of the
data bit, the zeroth bit is equal to 1. See when I represent the position of any data bit in the form
of a binary number that will contain a number of positional bits. I put this as let me call this as j0,
j1, j2, j3 and so on. When I am coding this P1, I am generating P1. P1 is nothing but P of 2 to the
power 0. So I will consider all those data bits for generation of P1 where for which j0 equal to 1.
So what are the bits for which j0 equal to 1? For D3, j0 equal to 1, for D5 j0 equal to 1, for D7 j0
equal to 1. So these bits D3, D5 and D7 along with P1 will take part in generation of P1. So let
me put it this way, D3 D5 and D7 all these bits take part in generation of P1. When I generate P2,
P2 is P2 to the power 1. Sir P1 will not take part in generation of bits. Yeah P1 will also take part
say P1 will take part, even for generation. See what I need is suppose I decide that my parity will
be odd parity then odd parity will include P1 D3 D5 D7. Whichever way we generate but when I
talk about parity, parity includes parity bit. Including the parity bit what parity you are
maintaining?

Now if on the receiver side I will receive this entire bit stream P1 P2 D3 D P4 D5 D6 D7. Any of
the bits can be an error, even P1 can be an error. So if I don’t consider P1 in generation of the
parity bit, on the receiver side I cannot detect whether the P1 is in error. If you consider only D3
D5 D7 and without considering P1 because at the receiver end I don’t know that whether P1 is in
error or D3 is in error or D5 is in error or D7 is in error, even P1 can also be in error. This one
you are talking about? What is bit position of D3 that is the third position, it is the position which
representing the... If it is odd parity P1 XOR with D3, XOR with D5, XOR with D7 should
generate one. You mean that P1 has to be 1. Let us see.

Similarly when I try to generate P2, I will take all the bits where the bit position when
represented in the form of a binary number there j1 has to be equal to 1 because P2 is P2 to the

3

power 1. So you find that in all these bits, what are the bits for which j1 equal to 1? For D3, D3 j1
equal to 1, D5 no. D6 again j1 equal to 1, D7 j1 equal to 1. So I will consider these bits, D3 I will
consider D6 and I will consider D7 then when I generate P4 that is P2 to the power 2. So I will
consider all those data bits for which j2 is equal to 1. So what are those bits for which j2 is equal
to 1? It is four that you are generating so that has to come into picture then D5, D6 and D7. So I
will call this as say check 0, I will call this as check 1, I will call this as check 2. So if I want odd
parity in that case when I generate P1 my requirement should be P1 XOR with D3 XOR with D5
XOR with D7 that should be equal to 1. If I want even parity then P1 XOR with D3 XOR with D5
XOR with D7 should be equal to 0.

(Refer Slide Time: 16:45)

Similarly when I generate P2 and if I want odd parity, of course if I want odd parity for P1 I
should have odd parity for P2 also. So if I want P2 and I decide for odd parity then P2 XOR with
D3 XOR with D6 XOR with D7 that should be equal to 1. Similarly for P4, it is P4 XOR with D5
XOR with D6 XOR with D7 that should be equal to 1. So this equation will tell me that what is
P1, what is P2 and what is P4. Sir what is the initial? There is no initial. I have equation P1 XOR
with D3 XOR with D5 XOR with D6 XOR with D7 not D6 P1 XOR with D3 XOR with D5 and
XOR with D7 that should be equal to 1. Now you find that all this bits D3 D5 and D7 they are
known, only unknown is P1. I don’t have any other unknown term. So this way I can generate
P1, P2 and P4.

Now when I transmit it on the receiver side, you perform similar operation and see whether the
parity is maintained or not. So on the receiver side, if I have a situation suppose D3 is in error, I
don’t have any other bits in error, only D3 is in error. So on the receiver side if I perform similar
operation then you will find that these check bits will indicate error where D3 appears. Now here
D3 appears in check zero, D3 appears in check one. So only these two checks will indicate error,
check two will not indicate any error because D3 does not participate in check two. So there if I
put a condition that wherever I make an error, at whichever check level I get an error I set the
corresponding bit equal to 1 and wherever I don’t get any error, the corresponding bit is set equal

4

to zero. So here since D3 is in error so I will get check level zero equal to one because this keeps
an error, check level one will also be equal to one because that is in error. Check level zero will
give me a zero.

Now if I simply decode this it is 0 1 1 that is equal to 3, so that tells me that bit D3 is in error
and because it is a binary number, a binary bit whenever there is an error I simply, what I have to
do is simply compliment it and I get the corrected. So similarly if suppose D7 is in error; if D7 is
in error then all this check bits will give me error that means all of them will become equal to 1.
so it is 1 1 1 which is equal to 7 so immediately tells me that it is D7 which is in error, I can
correct it only for seventh bit error. It cannot, that it cannot correct. So this can detect as well as
correct to limited extent. So it can detect single bit error, correct single bit error but even that
gives a lot of improvement but the advantage over simple parity check is that in case of parity
check, we can just find out whether the data is in error or not. Here I can detect a single bit error,
I can also correct a single bit error.

However both that is the parity check odd the Hamming code this assumes that I have one, if I
have one bit error then I can correct it, more than that again I am helpless I cannot do anything.
But generally in communication system I mean whether you want to transmit a data from one
place another place or you transmit a data from one device to another device, the error comes
because of disturbance. And whenever you have a disturbance, it is not a single bitted but a
number of successive bits will be there in which case this schemes does not give you any
advantage. (Conversation between Professor and Student: Refer Slide Time: 17:45). There are
different coding schemes, there are different coding schemes in which that can be reduced but in
computer system what has become very popular is what is called a CRC code, CRC or cyclic
redundancy check.

(Refer Slide Time: 00:18:12 min)

So whenever we talk about cyclic redundancy check then for every such coding scheme there is
one polynomial which is called a generating polynomial and depending upon the different forms

5

of generating polynomial, I can have different types of codes. And in this case what will be the
code length for this cyclic CRC code length that depends upon what is the generating polynomial
that you will take. Now I will not go in to any theory of this cyclic redundancy check.

Now let me say that given a generating polynomial of a cyclic redundancy check how you can
generate the CRC bits, just a very simple scheme. Suppose the generating polynomial of a cyclic
redundancy check is given something like this say x to the power 16 plus x to the power 12 plus
x to the power 5 plus 1. Now this is a generating polynomial which is used for a particular kind
of CRC code which is called CCITT - CRC. Now there are different standards, the different
standard uses different polynomials, now these powers of x in this generating polynomial that
tells you that where you have to put an XOR gate in a code of length say 16 bits. So given this
polynomial, this polynomial can be implemented with the help of a set of shift registers and a
number of XOR gates. Sir, x to the power 16. Is it x to the power 15 or x to the power 16?

So here it will be something like this, suppose this is the CRC code which is implemented by a
number of shift registers 4, 5. So this is bit 0, this is bit 1, bit 2, bit 3 and bit 4 and the output of
this, after fifth bit I put an XOR gate. The output of the XOR gate goes to the next shift register
and here the bits will be from 5 to 11, so b5 b6 b7 b8 b9 b10 and b11 from b11 again it goes to an
XOR gate. This XOR gate output goes to another shift registers and here I will have the
remaining bits b12 b13 b14 and b15, I have total 16 bits, 0 to 15. Total code length is 16 bits so this
is b0 to b15. Now again I doubt whether it is x to the power 15 or x to the power 16, I think it is x
to the power 16 not x to the power 15 because you find that for x to the power 5, I am taking the
output from b4 that goes to an input of the XOR gate.

Similarly for x to the power 16 there is output of b15 which will go to an input of an XOR gate.
And in this case the XOR gate will be placed here, output of this goes to the input of XOR gate.
Here I will feed the data and this output will be connected to b0 and also to the other inputs of to
other XOR gate. Sorry, this inputs will not come from here, this inputs will come from this place.
The final output is the content of all these shift registers that is your CRC code. So you find that
the powers of x that indicate that at which locations in this set of shift register I should place an
XOR gate. Similarly I can have other polynomials for example a CRC-12 that uses a polynomial
of x to the power 12 plus x to the power 3 plus x plus 1, it is the polynomial for CRC -12. There
are some standard polynomials.

Now again in this CRC code you find that this can simply detect an error, it cannot correct the
error. Error correction is not possible in the CRC code. So in this case whenever an error is
detected simply the transmitter has to be informed that this chunk of data is erroneous, it will
transmit that chunk of data that’s all. This does not have any power of correcting the error. Data
input is data stream that you want to transmit, it’s a bit sequence, a bit sequence that you want to
transmit that will come to this data input one after another in the sequence in which they will be
transmitted. Output is the content of all this shift registers. All this bits gives you the CRC code,
so it should be like this that after you send all the data bits, the data bits have been sent
simultaneously, it is also pushed into this set of shift registers following this logic. So after all
the data bits are transmitted, you have to transmit or in our case it has to be stored on the device.
So after storing this data bits you have to store all the bits which are there in the shift register that
gives you the CRC code.

6

No, data is the actual data that I want to transmit. Suppose I want to transmit a data stream
something like this 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 0 something like this. So when I want to transmit
this first I will transmit 1, I will transmit 1 simultaneously this one will be pushed into this set of
shift registers following this location then I want to transmit 0. So when I have pushed this one in
this set of shift registers, this bit combinations are different, different from what it was earlier.
Now I am transmitting 0, simultaneously 0 is also being pushed into this. Then I am transmitting
1, simultaneously 1 is also pushed into this.

Now whenever I push a new bit in this that is combined with the previous state of the shift
registers and the new state is doing store, so finally when this last 0 has been transmitted this 0
was also pushed into shift registers. So when this last 0 is transmitted at that time this shift
registers content will be something. Now what is that something that depends upon how this
XOR gets are been placed and whatever is the content of this that gives you the CRC code for
this particular bit stream. So at the receiver side, I have to regenerate this CRC code then check
whether the CRC code which is being transmitted and the CRC code which is been generated
they are same or not. If they are same I assume that the data that have received is correct. If they
are not same then I have to assume that the data that have received is not correct.

Now this not correct does not mean that only the data is erroneous, even the CRC code it self can
be erroneous because error might have occured in the CRC code, it might not have occurred in
the data. But when I am regenerating CRC code because my data is correct, I will generate the
correct CRC code but the CRC code that I am receiving that is erroneous so again there will be a
mismatch but I don’t have any way to find out whether the error has occured in the data bits or
error has occured in the CRC bits. So I assume that the whole think is erroneous, so I ask that
transmitter to retransmit the entire bit stream. Even accidentally, it may so happen that even if
your data bits are wrong the CRC code that you have generated accidentally matches with the
CRC code that you have received but in that case you don’t have any other way, you have to
accept whatever you have got. Sir we have to transmit CRC code? Otherwise how can you
check? You cannot check it.

And actually this CRC is used whenever you store a set of data on a disc. See in every sector, I
store the data in the form of bit stream so initially the bitstream will be stored followed by the
CRC code. So for every sector I have the data bits followed by CRC code. Sir data transmission
is in serial? Data transmission is serial, I may decide that after say 50 bits I will transmit the CRC
bits, I may decide after 1000 bits I will transmit the CRC bits that is up to the designer. But
unique means that depends upon what is the content of the data, data stream. Data stream bits
how will you… For every bit stream you have an unique CRC code but again this CRC codes
can simply detect and accidentally it may not detect also but that you have to accept.
(Conversation between Professor and Student: Refer Slide Time: 31:10)

All zeros, yeah. So in summary let us see what all we have done in this course. Yeah, people are
trying for it, with CRC it cannot be done, you cannot correct. See the advantage of CRC is it
takes care, it generates a code by considering a chunk of data. Hamming code considers a single
bit not a chunk. (Conversation between Professor and Student: Refer Slide Time: 32:05). That is
why your chunk of data which is to be generated for which a CRC code has to be generated
should be much larger than the CRC code length. If I go for a CRC code of 16 bits may be my

7

data length should be 1 kilobits. Again economy should be the major criteria. So that your data
length along with the CRC code that should give you complete packet. Sir, example. Yeah there
can be 12 bit codes and usually 12 bit or 16 bit they are used. That is what I said just now, if I go
for 16 bit CRC my data length should be much larger than that. So may be I should go for say 1
kilobits or data ,16 bits CRC for 1 kilo bits of data something like that, otherwise it will be not be
economy. Not, 2 kilo bytes, why 2 kilo bytes? 1 kilo byte plus 16 bit, CRC is generated for block
of data. So your data stream along with CRC will form a packet so that data packet is to be
transmitted.

(Refer Slide Time: 00:34:10 min)

So in summary let us see what all we have done in this course. Initially we have started with the
CPU design. We have started with CPU design and the specific aspect of CPU design that we
have done in an elaborate way that is the timing and control circuit design and along with this
timing and control circuit we have seen that what is hardware control unit and what is a micro
program control unit. After this we have seen that what is pipelining and pipelining CPU. then
when we discussed about this pipelining, pipelining concept we also have talked about
something like collision vector that decides that how the pipelining scheduling has to be done
that means what are the time instance when a new job can be placed into a pipeline that will not
lead to any collision and we have seen that concept is particularly important when I have
multifunction pipeline. So after doing this we had gone to memory hierarchy. Isn’t it?

So the next thing that we have done is the main memory organization and in this we have seen
the evaluation of different memory organization, memory architectures then finally what we had
talked about is what is called paged segmented memory management while your basic memory
management or basic memory organization is the paging organization and on top of paging we
have imposed sorry. the basic memory organization is the segmented memory organization and
on top of segmentation, we have imposed the paging technique for better memory management,
ease of memory management and after main memory organization I think what we have done is

8

cache memory and there we have seen different models of cache memory starting with
associative memory then direct mapped memory and also what is called set associative memory.

So we have said that the associative cache memory is more flexible but at the cost of additional
hardware, on the other extreme we had the direct mapped cache memory where the hardware is
minimum but at the same time there is a possibility that you will have more number of cache
miss. So a compromise between these two that is less hardware, at the same time I want to have
more number of cache hits so that is given by what we have said about the set associative cache
memory, so that the blocks in the cache memory are partitioned into different sets and within a
set it is associative.

So after cache memory the next topic that we have discussed is I think buffer cache which you
have said that it is an interface between the secondary storage device particularly the devices
which are blocked storage device, so it is an interface between the blocked storage device and
main memory and the buffer cache is maintained in the main memory and for management of the
buffer cache or replacement of buffer cache contains the policy that is used is least recently used
policy. After that we have discussed about the file system and when we discussed about the file
systems, we have talked about what is meant by an inode or an index node of a file. We have
said that all the information about the file is contained in the inode including the disc blocks
which contained in the file data. Then we have discussed algorithms of inode allocation at the
same time we have also discussed about the block allocation and then finally today what we have
discussed is about the input outputs of system and the issues related to input output subsystems.
So this forms our entire course.

