
1

Digital Computer Organization
Prof. P. K. Biswas

 Department of Electronic & Electrical Communication Engineering
Indian Institute of Technology Kharagpur

Lecture No. # 27
I/O Subsystem Organization

Today we are going to discuss about what is called an input output or I/O subsystem. You know
that in any computer system, a number of input output devices including say keyboard, video
monitor, printer then again the hard disc is also considered as an input output or I/O system.

(Refer Slide Time: 00:01:12 min)

Now when we talk about this I/O subsystem, it is the unit which interacts with the input output
device. So if you look at any computer system as we have seen earlier that in a computer system
you have at the heart of the computer system which is the CPU and the CPU is connected with a
number of input output systems in addition to the main memory. So I will have a number of
buses few of the lines taken together will be called control bus then address bus and data bus. So
suppose this represents the control bus, second set of lines represents the address bus and the
third set of line may represent the data bus.

So whenever you connect to any input output device, you have to have an I/O interface unit. This
is what we will call as input output interface and this input output interface actually connect with
the input output device and as we said that this device can be of various forms. So actually this
input output interface, this is what interfaces the device with the CPU. So input output device has
two interface unit will have the connection with the control bus. It will also have connection with
the address bus and it will have the connection with the data bus, so the connection will be like
this. Now when we talk about an I/O subsystem, we can have three different kinds of I/O. The
first kind of I/O is called programmed I/O that means the input output device is under direct
control of the CPU, so any software which has to be executed to access the input output device

2

will be executed by the CPU. I/O operation will be initiated by the CPU, it will also be
terminated by the CPU. The second kind of I/O that we can have is called interrupt I/O. In case
of interrupt I/O whenever an I/O operation is to be initiated, the CPU simply informs the I/O
interface to start the I/O operation. At the end of the I/O operation the I/O interface will interrupt
the CPU informing that I/O operation is complete. Now whatever the CPU has to do with that
data either received from the I/O or sent to the I/O that the CPU can do now and the third kind of
I/O is what is called DMA or direct memory access and in this case the data is transferred
between the input output device and the main memory directly by the DMA unit. The CPU does
not come into picture at all.

So if I go for this programmed I/O in that case what will be the nature of the I/O interface unit?
If I expand this I/O interface unit, the I/O interface unit will have a number of components. The
first component will be that since every I/O device will have an unique address in the system, so
I have to have an unit called address decoder. So in this I/O interface unit, I will have an unit
called address decoder and you might be knowing that there are some other units which are
known as say in register, out register. Then I have to have what is called a command word and I
have to have another one called status word. So in this I/O interface unit if I go for the
programmed I/O kind of configuration, the I/O interface unit will have an address decoder, it will
have an in register so that for any inputting operation the data which is transferred from the input
device is stored in the in register then the CPU can read the data from the in register.

Similarly for an output device when a data is to be transmitted to the out or stored in the output
device or is to be sent to the output device, the CPU will write data into out register then from
the out register it will go to the device. Common register is mostly used to configure the I/O
operation that is at what speed the I/O should operate, what should be the word length or how
many bits will contain the data, what will be the error correcting message all those informations
will be configured in the command register. The status register will inform the status of the I/O
device. So these are the kind of things which you might have used in your microprocessor course
say for example if you want to connect an USART that is universal synchronous asynchronous
receiver transmitter so in that case what we have to do is we have program what is the baud rate
that is at which rate the data is to be transmitted.

You also have to program that how many start bits or how many stop bits you want to have, what
is the data length whether a character will consist of 7 bits or a character will consist of 8 bits, all
those informations are to be stored or to be written into the command register and then only the
I/O interface will act accordingly. Similarly the status register will be used, suppose the CPU
wants to read a data from an input device, so firstly by configuring the command register, it
configures that in which way the data communication will take place then the status register will
tell that whether the data which is to be read is available in the in register or not that is whether
this device is ready with the data. So that information will come from the status resistor and from
the status register whenever the CPU finds that the data is ready in the in register, the CPU can
read the data from in register. So for doing this after sending a command to the command
resistor, what the CPU has to do is the CPU has to remain in a loop always checking the
condition of the status register whether the data is ready or not. So only when it finds that the
data is ready, it reads the data from the in register and comes out.

3

So this is why this kind of I/O operations is called program I/O because all the input output
operations are directly done under the direct supervision of the CPU through some program.
Now each of this in register, out register, command register or status resistor they will have
different addresses that means I have to have some connection from the address decoder to the in
register. I have to have a connection from the address decoder to the out register, I have to have a
connection from the address decoder to the command register, I also have to have a connection
from the address decoder to the address register so that I can have unique address for each of
these registers. In some of the I/O interfaces you will find that the in and out registers they have
the same address.

(Refer Slide Time: 14:12)

Similarly command and status registers they have the same address. There the idea is suppose in
out registers they have some address say AA, AA hexadecimal so with that AA address if I want
to write anything, the data will always come in the in register. If I want to read anything from A
address, the data will be read from the out register sorry it is opposite. Similarly here suppose
this has an address of AB both command register and status register, so with address AB if
anything is written into this it will be written into command register. If anything is read by the
CPU with address AB then the information will be read from the status register that means these
registers are unidirectional. To one register you can only write, another register can only be read.
Yes, may not be. I am taking a specific case, there are a number of situations when the I/O
interface unit will have much more number of registers than this.

This I/O interface unit can have an internal memory say for example if I want to design an I/O
interface for interacting with the key board, for interacting with the video unit in such cases the
I/O interface unit will have some internal memory in addition to these registers. So this is just a
particular example, a very simple example the system can be complicated further. Not only that,
the I/O interface unit can be a processor itself, this itself can be a sequential machine. So in some
cases if our I/O operation is very very complex in that case such simple interface may not be
sufficient. So for every I/O operation the task can be given to the I/O interface unit or I/O

4

subsystem, the subsystem will take care of the task in its entirety, it will not depend upon the
CPU. In such cases its I/O interface unit has to be a processor by itself. In many cases such units
are called I/O channels, I/O channel.

DMA is a kind of such channel, I will come to that. So in this case this in out registers, command
registers and status registers through this you can control all the input output operations. So
obviously this address decoder it will have a connection from the address bus. All these registers
in registers, out registers, command register and status register they will have connection with
the data bus so I can put it this way and at the same time, the control signals which come, this
control signals also propagate to these registers because among the control signals we have the
read signal, write signal and all those things so whenever a read operation is to be performed this
in register has to be activated. Whenever an output operation is to be performed or write
operation is to be performed either the out register or the command register will be activated
depending upon what address comes from the address decoder. So if you expand this I/O
interface unit, it will look like this and here I will have the I/O device and this kind of interface
unit is mostly suitable for programmed I/O kind of operation.

(Refer Slide Time: 00:14:17 min)

Now as I said that there is another kind of I/O operation which we call as interrupt I/O. In case of
interrupt I/O what is assumed is whenever some device needs some service, so in this case the
serve was the initiated by the CPU, it was terminated by the CPU. In case of interrupt I/O we
assume that whenever a device needs some service, the device interrupts the CPU. Now the
actions or the services for different devices are different. The service needed by a hard disc will
be different from the service needed by a keyboard or the service needed by a keyboard will be
different from the service needed by an output device like printer. So in the CPU, what the CPU
will do is on getting an interrupt it will identify that which interrupt it is and following that
identification it will execute a program which is called an interrupt service student and it is this
interrupt service student which meets the requirement of the device.

5

So whenever any I/O device needs some service from the CPU, it is the responsibility of the I/O
device to put the request, service request in the form of an interrupt. So I can have two different
kinds of interrupts. One kind of interrupt is called a priority interrupt which you have done with a
8085 microprocessor where you might be knowing that there are different types of interrupts 7.5,
6.5, 5.5 trap and all these things and there is another interrupt which is called INTR. All these
interrupt lines have got different priorities, trap has got the highest priority, INTR has got the
lowest priority or among the vectored interrupts trap has got the highest priority and RST 5.5 has
got the lowest priority.

See if I go for this priority interrupts what are the units that we need? Firstly because a number
of devices can put the interrupts simultaneously to the CPU, if the interrupts are not simultaneous
then I don’t have any problem. If only one device puts an interrupt at a say, at a time then that
interrupt can immediately be acknowledged and serviced but the problem comes when more than
one devices interrupt simultaneously. In that case a decision has to be made that out of all these
devices which device has to be serviced first. I have to set some interrupt priority level and to do
this what I need is a priority encoder so this is what is known as a priority encoder.

Priority encoder has got a number of input interrupt lines; these lines have got different priority
levels. Now out of all these lines if more than one line’s are active simultaneously then the line
which has got highest priority among them will be selected and passed to the output of the
priority encoder. Now along with this, what is needed is because now I have a number of devices
connected together and many of them can give interrupt simultaneously, when the interrupt is
acknowledged by the CPU then the device whose interrupt is acknowledged that the device must
know so that the device can start operation. So along with this priority encoder, we also have to
have another unit, the reverse unit which we call as a decoder so this is a simple decoder.

The devices will give an interrupt suppose this is, I name this as interrupt request line and this is
the interrupt request line zero. When an acknowledgment comes, the acknowledgment should
also reach the device and the acknowledgment will be generated by the decoder unit, so this is
interrupt acknowledgment zero. Similarly we will have interrupt request one, interrupt
acknowledgment one which will also be generated by the decoder will go to the device which is
connected to this interrupt request one line, so this is interrupt acknowledgment one.

Similarly if there are say m number of devices then this will be interrupt request m and similarly
an interrupt acknowledgment m will be generated by the decoder. Now before an interrupt is
actually entertain by the CPU, the CPU has to compare what is the level of the interrupt which is
coming from a device with respect to the interrupt level or priority level of a task which is under
execution. So if the CPU is executing a task of which the interrupt level is say 5, now while that
task has been executed if another device whose interrupt level is say 2 puts an interrupt then if
the priority of interrupt 2 is less than the priority interrupt 5 then this new interrupt will not be
accepted. Whereas if the priority of 2 is greater than the priority of interrupt level 5 then the new
interrupt will be accepted, so I have to have some memory element which will tell me that what
is the current priority level of a job which is under execution. So this gives you the current
priority level. I have to compare this current priority level with the new priority with which an
interrupt has come. So I must need a comparator, one of the inputs to the comparator will be
from the current priority level and the other input to this comparator will be from the new

6

interrupt priority level that has come. So this is a comparator let me call this input as A, this
input as B.

So I will have an output which will actually give the interrupt request to the CPU. So this is the
actual interrupt request to the CPU and I will generate this interrupt request following some
logic. So my logic will be that if a priority level low indicates a high priority, I can have different
types of logic. Suppose at the input I have 8 devices, so I can have priority levels from 0 to 7. I
can assume that a priority level zero is the maximum priority or highest priority or I can also
assume that a priority level 7 is the highest priority. So accordingly this comparator has to be set.
So if I assume that the lowest priority level indicates the priority is actually high that means
whenever B is less than A then only this interrupt will be generated. So it will be an output
whether B is less than A or not. So if B is less than A, then only you are generating an interrupt.
So obviously this interrupt has to be accepted by the CPU and when the interrupt is accepted by
the CPU in turn the CPU will give an interrupt acknowledgment.

(Refer Slide Time: 24:00)

On getting an interrupt acknowledgment that means the CPU is now going to take the new task.
So the current priority level which was set in this current priority register that has to be changed,
it has to get this new priority level. So along with coming to this comparator, this priority
encoder output should go to the current priority level register and this has to be loaded. So I have
to have a load input to this and this has to be loaded whenever an interrupt acknowledgment
comes, so interrupt acknowledgment will be given by the CPU. This interrupt acknowledgment
will give a load input to the current priority level, when this current priority can be loaded into
the current priority register and at the same time whenever this acknowledgement comes, it also
has to give a signal to the decoder, decoder makes use of this current priority to generate, to
activate one of the decoder output lines.

So whenever this acknowledgment comes from the CPU that means the new interrupt is being
accepted, when this new interrupt is accepted, the current priority is changed. The new priority

7

value along with this interrupt acknowledgment signal that comes to the decoder and accordingly
the decoder generates an interrupt acknowledgment signal which goes to the device which is
being selected. So this is the total scheme of an interrupt controller, if I want to use the priority
interrupt scheme. So this whole thing is the priority interrupt controller. Yes. That is what I have
assumed, it can be reverse also. For this case interrupt level zero is of highest priority. I can have
the reverse also, I can make interrupt level 7 to be the highest priority but in this case this
comparator output will be changed instead of B less than A, I have to make it B greater than A.
(Conversation between Professor and Student: Refer Slide Time: 26:20). That has to be done by
the device itself, device controller has to take care of that.

Say in the device controller, the device controller will put an interrupt request then it has to wait
for an interrupt acknowledgment, until and unless it gets the interrupt acknowledgment the
interrupt request line should be kept high that has to be taken care of by the device controller in
this configuration, correct. However in case of 8085, such a type of thing is implemented in
8085. So if two interrupt comes say RST 7.5 and RST 5.5 simultaneously then RST 5.5 goes into
an internal register. So after 7.5 is serviced, 5.5 will also be serviced. There are additional
interrupt controller chips also. Yes, some question from this side.

This is the interrupt acknowledgment, the other one is the current priority level. So the logic is
because this decoder has to activate one of the decoder outputs. Which decoder output has to be
activated, that depends upon this priority which has been accepted. So that is why it needs this
input as well as this interrupt acknowledgment both are needed to generate an output signal high.
The other kind of interrupt which can be used is what is called a Daisy chaining.

(Refer Slide Time: 00:28:16 min)

In case of Daisy chaining we don’t have such a complicated circuit. Daisy chaining concept is
very simple, say I have a set of data lines which are connected to the CPU, I have a single
interrupt request line. So these are the data lines or data bus and this is the interrupt request line,
in turn an interrupt acknowledgment will come from the CPU. I will connect a number of

8

devices on the system. See this is device number 0, I have device number 1 like this, I will have
see device number m. The Daisy chaining concept is whenever a device puts an interrupt, all the
interrupts are connected to the same interrupt request line. So I can have some wired or kind of
connection. All the devices are connected to the same data bus and this is usual, there is nothing
special about it. What is special is the way the interrupt acknowledgment signal is connected.
What is done is whenever the CPU gives an interrupt acknowledgment, the acknowledgment
goes through the first device. From the first device, the first device gives an interrupt
acknowledgment output signal, this output is connected to the interrupt acknowledgment input of
the next device and this way it continues. The device m will get the interrupt acknowledgment
from device m minus 1.

Similarly device m will give an interrupt acknowledgment out signal which will go to device m
plus 1. So this way it continues. For any device say device j the logic is like this, interrupt
acknowledgment of j will be active provided you get an interrupt acknowledgment out from
device j minus 1 and interrupt request of j minus 1 and enable j minus 1, this is not true. So the
concept is every device will have an enable signal, so device can put the request only when the
corresponding device is enabled. Now because the acknowledgment signal moves from one
device to another device in the form of a chain, so we find that this device one can get an
acknowledgment signal from device zero only if there was an interrupt to the CPU. The CPU
gives an interrupt acknowledgment signal, first is it reaches the device zero but for device zero
the condition is something like this, enable of device zero and interrupt request of device zero
inward of this if this is true.

This means two things either the device was not enabled or the device was enabled but it did not
put the interrupt. Only in this case the acknowledgment signal will reach device one from device
zero and the same logic follows. Acknowledgment signal will reach device two from device one
if this is true for device one. Similarly device one can generate an output acknowledgment if it
gets an input acknowledgment and the input acknowledgment can come from device zero if this
is true for devices zero. So we find that the acknowledgment signal flows from one device to
another device in the form of a chain. So that is why it is called a Daisy chaining priority
interrupt scheme and here of course some priority is in built because the device which is nearest
to the CPU has the highest priority. Isn’t it? Suppose both device zero and device one both of
them put interrupts simultaneously. Then because device zero is enabled and it has put the
request so ireq and enable and these two invert it it becomes zero that means device one does not
get the acknowledgment signal.

So device zero can start the operation but device one cannot start the operation. So some priority
is already in built in the scheme that is a device which is nearest to the CPU will get the highest
priority, device which is farthest from the CPU will get the lowest priority. You have to short
this. No, actually these adapters are like that. If you connect it, it will be through this, if you
disconnect it in that case that will be shorted, that is how the adapters are made. In fact this kind
of scheme was used in, have you seen the earlier HP machines, HPIB called HP Hewlett Packard
interface bus or something like this. HPIB was using this kind of scheme, that is any number of
devices you just connect one device to the other device by a… (Refer Slide Time: 00:35:10)
that’s all. You can connect any number of devices on the system.

9

(Refer Slide Time: 00:35:22 min)

Coming to the other kind of I/O operation that is DMA or direct memory access. Now in this
earlier scheme whether we go for programmed I/O or an interrupt I/O or basic operation is to
transfer the data from the memory to a device or getting the data from a device storing it into
memory. In case of a programmed I/O, the CPU itself will take the initiative to read a data from
a memory, write that into an output device or read a data from an input device and write it into
memory. That means the data has to be first read by the CPU then only it has to be given to the
proper destination, transferred to the proper destination and that is through both in case of
programmed I/O as well as interrupt I/O. In case of programmed I/O the initiative is taken by the
CPU, in case of interrupt I/O the interrupt signal tells that when that action has to be performed
but the action is done by the CPU. In case of DMA the concept is slightly different. Whenever
you have to transfer some data, may be from an input device to the memory or from memory to
the I/O device in that case the CPU does not come into picture.

So basic concept is whatever operation that was to be done by the CPU is now done by a
separate controller which is the DMA controller. So whenever some device puts a request to
transfer some data from the device memory to the main memory, the device puts a request signal
to the DMA controller. In turn DMA controller gives a signal to the CPU that it wants to perform
some DMA operation. On getting that signal the CPU gets a DMA acknowledgment and what is
done after the DMA acknowledgment? Whenever the CPU generates a DMA acknowledgment at
the same time, the CPU releases all the buses the data bus control, bus address bus everything.
Those are no more physically or logically connected to the CPU. Now this DMA controller
becomes the bus master. So what it does is it reads the data from the memory, sends that to I/O
device or reads the data from the I/O device sends that to memory. So all the operation which
otherwise would have to be done by the CPU, now it is to be done by the DMA control.

So accordingly the DMA controller will have to have a number of registers because it has to
know that which device has to be activated. Simultaneously it also has to know that which
memory location is to be accessed either for reading purpose or writing purpose. So number of

10

units that will be present in the DMA device will be same as the number of units that you have in
the CPU, more or less same it is not identical. So some of the units will be say memory address
register, I have to have memory address register, I also have to have an information about what is
the length of the data that has to be transferred that is count. So if I want to transfer say 100 bytes
of data from the main memory to a device, in that case what I can do is I can simply increment
the memory register address by one in a loop of 100 and that can be controlled by this count
value. And similarly I also have to have some control unit which will give the control signals to
the memory as well as the I/O device.

On the other hand I have to have an I/O address decoder because may be a number of devices are
connected to the same controller, same DMA and the DMA controller has to activate one of the
devices, so there has to be an I/O address decoder. In addition to this there has to be a bus control
unit and in addition there will be a number of other things like in some cases whenever the data
is to be transmitted by the different bytes are packed together to make a single packet and that is
transmitted. All those different additional control signals can be accommodated in the DMA
controller. So on one side the DMA controller will be interfaced with the memory so for that we
need the address lines, we need the read write signals, we need the bus request, bus request
signal which will go to the CPU following this bus request the CPU has to give a bus grant signal
which will come to the DMA controller from the CPU and on getting this bus grant signal from
the CPU, the DMA controller can start operation and obviously I have to have the data lines. So
this is the part, this side is to interface the DMA controller with the memory and the CPU.

On the other side the DMA controller has to be interfaced with the device so that means I will
have a number of control lines for controlling the I/O device I also have to have a number of data
lines which will carry the device data. So now we find that the responsibility of this DMA
controller will be that on one side it will be interfaced with the device, so it can get the data from
the device and on the other side it is interfaced with the memory, so it can send the data to the
memory. Similarly it can get the data from the memory and send the data to the output device
and while performing this operation, the read and write operations by the CPU is no more
needed. Got it? And because of this additional registers in this DMA controller, the operation of
the DMA controller can be much faster than that in case of the CPU because in case of CPU
firstly the CPU has to read the data, get it into its internal register then from the internal register
it has to send the data to the destination, so two cycles are always necessary if I want to transfer
the data through CPU whereas similar operation can be done in a single cycle by making use of
this DMA controller.

Again when you come to the DMA controller, I can have two different options. As I said that I
mean this is a kind of channel because this DMA controller itself is a processor which can work
independently of the CPU. So again in this case of DMA controller or channel as we said that
such kind of devices are also called channels, I can have two types of options, one is called a
selector channel and other one is called a multiplexer channel. What is the selector channel and
what is the multiplexer channel? Suppose I use the same DMA controller to which a number of
devices are connected.

Now a selector channel, what it will do is suppose all the devices want to get some service
simultaneously. Then a selector channel will select one of the devices that device will complete

11

its operation then only the operation of the other device will be initiated. In case of multiplexer
channel, the operations of different devices are time multiplexed that means if there are say 5
devices connected, first device will operate for say 1 milli second then during second one milli
second period the second device will operate, may be the operation of the first device is not yet
complete. So multiplexer channel multiplexes the operations of multiple devices which are
connected to the DMA controller, in case of selector channel the DMA channel the DMA
controller selects one of the device, the device completes its operation then only the operation of
the next device is initiated. Now which type of channel we should go for? Whether we should go
for the selector channel or we should go for the multiplexer channel that depends upon device
characteristics.

Say if the devices are very fast in that case I can go for selector channel because as we have said
that once a device is selected, the device has to complete its operation then only the next device
can start operation. So if the first device takes a small amount of time then the second device can
wait until and unless the operation of the first device is complete but if the devices are very slow
in that case the waiting time may not be tolerable. So if the devices are slow, we should go for
the multiplexer channel. If the devices are fast enough then we can go for the selector channel.
So let us take some break.

