
1

Digital Computer Organization
Prof. P. K. Biswas

Department of Electronic and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture No. # 13
Memory Organization – I

Till now we have discussed about the CPU architecture and the CPU organization. Now in a
computer system, CPU is just one of the components. You know that in a computer we have to
have the CPU, the memory and the input output device and these three components taken
together forms the entire computer. Now when you talk about the memory, the memory
organization is something like this.

(Refer Slide Time: 00:01:29 min)

I can say that at the top most level, we have the CPU. Then this CPU has to interact with the
memory for getting the instruction as well as data. So just below the CPU, we can put a part of
the memory which we will call as main memory. So the CPU directly interacts with the main
memory that means whenever an instruction is to be accessed for execution or a data is to be read
or a data is to be written into all this access the CPU makes is with the main memory. The CPU
does not have any direct access with the disc and at the next level in the hierarchy, we can put
the disc or secondary storage. So this we will call as secondary memory.

Usually the size of the secondary memory is much larger than the size of the main memory and
the secondary memory is very cheap compared to the main memory. So that is why cheap as well
as slow. Now because secondary memory is very cheap, we can have huge amount of secondary
memory which mostly satisfies all the practical requirements. The main memory being costly, it
is not as large as the secondary memory. Of course in between the CPU and the main memory,
we can have another level of memory which is called a cache. So it is the cache memory which
comes in between the CPU and the main memory.

2

So we will talk about cache memory later. Right now let us consider what is the organization of
the main memory that is usually used and we will, for the time being we will assume that CPU
will have direct access over the main memory. Now when you come to main memory
organization, there are various ways in which the memory can be organized.

(Refer Slide Time: 00:04:21 min)

The simplest form of organization of a main memory is called a bare machine. I think in your
computer design laboratory, you had developed some microprocessor kits where you had to write
the monitor program for execution of a program, for storage of elements, for accessing any
function, for everything you had to write your own monitor program. You are not given any
monitor program. That means the entire memory space was available to you. Now you had to
decide that which part of the memory space will be occupied by the ROM and which part of the
ROM will contain the monitor program. Isn’t it? So a bare machine concept is just what you
have done in that laboratory. That is the entire memory is given to the designer, there is no
partition in the memory.

Now it is up to the designer to decide that which part of the memory will contain the monitor and
which part of the memory will be used as scratch pad that is for storing of temporary data, for
storage of raw data, for storage of processed data, everything. So everything has to be decided by
the system designer. Usually this is the type of memory organization which is used for
implementation of dedicated systems that is if I wanted to design a computer which is not to be
used for general purpose computing. I can have a computer for controlling some power plant or
for controlling some process. In that case the computer that I will use for that control operation, I
will not want that computer to do any general purpose computation. So there, because the entire
task is well defined, the designer can decide how to organize the memory so that the memory
organization will be more efficient. So that is the bare machine concept and obviously in this
case, this is a type of memory organization which is not very suitable for general purpose
computing.

3

So for general purpose computing, the type of memory organization that can be used is what is
called a resident monitor organization. What is this resident monitor organization? In case of
resident monitor, again I can assume that I have a memory module. Now when I say memory
module, this does not mean that it’s a single memory chip. A memory module can consist of
multiple number of memory chips but all those chips taken together that is the entire memory
space that is available, I can consider that to be a single memory module. In case of resident
monitor system, the memory is partitioned, divided into two partitions. One of the partition is
occupied by the monitor program or the operating system and the second partition contains the
user data or the user program. We have two clear partitions, one partition is occupied by the
operating system and second partition is occupied by the user program. Now in this case also
usually when I come for general purpose computing, in your design what you had done in the
computer design laboratory for storing the monitor program you made use of some ROM. But in
a general purpose computing it not the ROM. It is the same RAM which is also used for storing
the user program and user data.

So usually what is done is the operating system usually decides on the secondary storage or hard
disc. When you switch on the machine that is when the machine is booted, the operating system
is read form the hard disc and put into this part of the memory. So this memory also has to be a
random access memory. It cannot be a read only memory because we have to write the codes, the
monitor codes into this part of the memory. Now this again being a RAM what can happen is the
user program while execution, due to some error can try to access this monitor area or it can try
to write something into the monitor area in which case the monitor itself will be corrupted. So
you don’t want the user program to be able to modify anything into the monitor area of the
memory. So what we essentially need is protection of the monitor or protection of the operating
system against any user program.

So how that can be done? Whenever the user program tries to access any of the memory location,
the program will generate the address of the memory location which is to be accessed. Now if the
part of the memory or the partition within the memory which is occupied by the operating system
or the monitor is well defined. Then I can check on the address that is being accessed by the user
program. If essentially what I have to have is what is called a fence address and now the strategy
will be something like this.

4

(Refer Slide Time: 00:10:32 min)

While execution of a user program, the CPU generates the address. The address of the memory
location that is to be accessed while execution of the user program. I also have a fence address
which is the boundary between the user area and the monitor area. So I have to compare this
fence address with the address that is generated by the CPU. So I have to compare these two
addresses.

(Refer Slide Time: 00:11:25 min)

Now coming to this figure, you will find that if I assume that this part of the memory address,
here address starts form zero that is the operating system occupies lower part of the memory. So
all the addresses of the user area will be greater than the fence address. So simple comparison

5

that I have to make is the address generated by the CPU, whether it is greater than fence address
or not. If it is greater than fence address then only I know that the user program is trying to
access user area only. In that case the address is a valid address and the user program will be
permitted to access the memory. If it is less than or equal to the fence address that is the address
is not greater than the fence address, then obviously I know that the user program is trying to
access the monitor part of the memory which is not permitted. So if address is not greater than
the fence address, in that case some interrupt is to be generated and let us call this interrupt to be
trap and following this trap interrupt, the user program has to be terminated because it is trying to
access a memory which is not legal. So you have to make use of this simple strategy to protect
the monitor part of the operating system from the user program and it’s a very simple strategy.
You find that this can be implemented in one of the two ways. It can be implemented using
software, it can also be implemented using hardware.

If you try to implement this using software then the advantage that you get is the fence address
becomes flexible but the disadvantage is whenever a memory location is to be accessed by the
CPU that means for every memory read or every memory write, I have to compare whether the
address generated is greater than fence address or not by execution of some program. So
effectively the memory access becomes very slow. So to avoid that what can be done is we can
have a comparator, hardware comparator and using hardware this address generated can be
compared with the fence address. It is the hardware comparator which will decide whether there
will be a trap or the user program will be allowed to access the requested memory location.

Now if I use hardware and fence address also I implement in hardware, in that case fence address
becomes fixed. Now what is the problem that we face if we make a fixed fence address in
hardware? In that case this particular location is fixed so I cannot upgrade the operating system.
because today if I load an operating system which may need say 40 kilobytes of memory and few
days later I want to upgrade the operating system which will need 60 kilobytes of memory. So if
this much is 40 kilobytes, a part from the user program will also be occupied by the upgraded
operating system. So this part will be 20 kilobytes which is beyond the fence address that means
this portion of the operating system is no more protected. So what we want is we want a fast
comparison using hardware. At the same time we have to have a flexibility so that the fence
address can be changed. So the suggestion can be that instead of implementing fence address in
hardware, let us have a special purpose register called a fence register. So we will make use of a
fence register. So whatever is the content of the fence register that is the fence address.

So now this comparator input will be this fence address will come from the fence register and
this address will obviously come from the CPU. Whenever I upgrade the operating system, in
that case what I have to do is the fence register content has to be changed. So there must be some
privileged instruction using which we can change this fence register content. The fence register
content cannot be changed by anybody because in that case there will be chaos. So there must be
some privileged instruction using which you can change the fence register content and that gives
you the flexibility of upgradation of the operating system. Now there is another way in which
this protection can be obtained.

6

(Refer Slide Time: 00:16:46 min)

In this case we have said that we have a fence address. Instead of this, what I can have is I can
have something called a base register. The CPU can generate the logical address and that is more
logical because whenever you write a program, the program is compiled by the compiler to give
you the executable code. Now if the program directly has to give you the physical address within
the main memory where the data is to be loaded or where the code is to be found, in that case the
compiler has to know that where from the program will be loaded in the main memory which the
compiler does not know beforehand. So that is why the addresses which are generated by the
complier they are all logical addresses and this logical address assumes that always the user
program will be loaded from location zero logically.

Now with that logical address you have to add a base address. The base address will depend
upon where from in the main memory, the program is loaded. So to that logical address, if you
add the base address what you get is the physical address in the main memory. That means now
the fence address can be replaced by the base address and the CPU will generate the logical
addresses zero onwards. So this scheme will now be slightly different instead of fence address,
we will have a base address and the base address will be stored in what is called a base register.

7

 (Refer Slide Time: 00:18:20 min)

The CPU will generate logical address. Let me put it as LA and this logical address can never be
less than zero, it has to be zero or more. So whenever the CPU generates the logical address, you
add this logical address with the base register content and that gives you the physical address in
the main memory where the instruction of that data will be found. So you will find that if I go for
this scheme, I don’t need any comparison because the base address content can be same as the
fence address. The CPU is generating logical address which is zero or more that is added with
the base address. So this ensures that whatever physical address that you generate, that address
will always be greater than the base address. If I set the base address depending upon the monitor
program size or the operating system size, this scheme ensures that user program will never
access the monitor part of the memory.

Now still this is not the organization that we want because as it appears that when I said that
main memory is divided into two partitions. One is given to the operating system and another
partition is given to the user that means this is an organization which is suitable for single user
system. In a single user partition, I can load only a single user program at a time. I cannot load
more than one user programs at a time. But typically what we want is a computer should be able
to execute more than one instructions at a time. So before I go into the memory organization
which is needed for that, let us see what we actually mean by a multiprogramming system or a
multiuser system.

When I work on a work station or on a server, you know that many of you can work
simultaneously on a computer which was not possible in earlier computer systems like DOS
based system, like PC XT or PC AT which were based on the DOS operating system, Ms DOS
operating system. In those systems not more than one person could work simultaneously, Not
only that, not more than one program can be executed simultaneously. Whereas in recent
computer systems like Unix based systems or Windows based systems, whether it is Windows
NT or Windows 95 or Windows 98 more than one user program can be executed simultaneously.

8

That means I must have something in the system which permits more than one program to
execute at a time. Now what is that?

(Refer Slide Time: 00:21:52 min)

Whenever you compile a program and the program is ready for execution but you have not
started executing the program. So that is a job which is called a new job. That means that the job
is just ready, any time I can execute it. The moment I initiate execution of this job then it
becomes a ready job. When the job becomes ready that means it is ready for execution, any time
the CPU can start execution of this program. As we have said that a program or a data can be
accessed by the CPU only when the program or data resides in the main memory whereas
whenever you compile a program to make a new job, the executable code of that program resides
on the hard disc.

In an Unix based system, usually the code which is generated is called as a dot out file. So if I
want to execute that executable code, I give a command a dot out. When I give the command a
dot out then the program becomes ready because a dot out on the disk cannot execute by itself. I
have to give the command a dot out only when the program becomes ready and when it is ready
it will wait for the CPU.

So what does this ready mean? Because the CPU cannot access anything from the disk, it has to
access from the main memory that means whenever the program is ready, it must reside in the
main memory. From the main memory I can have, in the main memory I can have more than one
jobs and CPU will select the jobs one after another for execution. So even when many of you
work on the computer system simultaneously, it is not that the CPU is working, is executing all
your programs simultaneously. but the CPU is executing your programs in a time multiplexed
fashion. But this multiplexing is done at such a fast rate that it appears to the user as if the CPU
is executing your program only, it is not doing anything else but practically it is being executed
in a time multiplexed fashion.

9

So whenever I give a dot out command the program becomes ready and so I say that the program
has moved from the new state to the ready state. When the CPU actually starts execution of the
program that means it takes a job from all the jobs which are ready, that program becomes an
active program. So the job or the program moves from ready state to active state and finally
when the program is complete and it comes out of the system, we say that the program is halted.
Sometimes the program in execution is also called a process. So we say that the process is halted.
So this is the entire path, entire states through which a process or a program has to pass.

Now in between there is another state that is while the program is active, sometimes it may need
some I/O operation. If it is an interactive program, the program may sometimes wait for getting,
wait to get some input from the user. The user has to feed the input from the keyboard or maybe
the program will read something from the disk. So it has to initiate a disk read operation or
maybe the program will try to give you some print out in between while execution. So it has to
send some data, some output to the printer or maybe any other device. So while execution the
program may try to access some device in between. So whenever the program tries to access
some device that means it wants to perform some I/O operation during that period it is not
making use of the CPU, it is waiting for that I/O operation to be complete. What the CPU will do
during that time? The CPU has to execute the other program, it cannot remain idle.

So the first program which initiates an I/O operation, we say that the program will go to an I/O
wait state. So from active state, the process will move to I/O wait state, when the process is
waiting for some I/O operation to be complete and by after sending these two I/O wait state, the
CPU will take another job, another process from the ready queue make that active and start
execution of that. Now for the first program which was there in the I/O wait state, when the I/O
operation is complete then the process will again try to access the CPU.

So what you can do is but the CPU is already executing some other process. So there are two
ways either you can move from wait state to active state directly but which will not be very
logical because CPU is working on some other process at that time and is expected that the
process which is being executed by the CPU at that time will again go for some I/O operation
later. So hoping that what we can do is you move the process from the wait state to ready queue
or ready state. So in the ready state, it waits for the CPU to be free next time and the process
which was being executed earlier that can move from active state to wait state. So these are the
entire number of states through which a process has to pass before the process is complete or the
process is halted.

10

(Refer Slide Time: 00:28:14 min)

So by this it is quite clear that I have to have a number of processes in the ready queue or a
number of processes to be ready simultaneously for maximum benefit or maximum utilization of
the CPU which is not supported by this resident monitor memory or the organization that we
have said because here I have a single user partition and the single user partition can contain only
ones user program. So one modification to this which can be done is something like this.

(Refer Slide Time: 00:28:33 min)

Let us have a single user partition that is a resident monitor system. A part of the memory is
given to the operation system and this is the user partition and we want to use this same user
partition to contain multiple number of jobs. That means whenever a job will be become active,

11

the job has to be there in the user partition. So what we can make use of is what is called
swapping in and swapping out operations. So I have this secondary storage which contains the
executable code of all the programs. So I will put it like this. So it contains the executable code
of all the programs. There is one program in the main memory in the user area, the program
which is active that is currently being executed by the CPU. At certain point of time, this user
program wants to perform some I/O operations. So when it wants to perform some I/O operation,
what we want is some other user program should be brought in from the secondary storage to the
main memory which can become active.

So for doing that what I have to do is the user program which is already in the main memory that
has to be swapped out to secondary storage. Now this user partition in the main memory
becomes free. So once it becomes free, I can swap in a new process from the secondary storage
into the main memory which can now be executed by the CPU. So we find that this simple
configuration can be converted to a multi programming or multi user system by making use of
the swap out and swap in operations. but you keep in mind that every swap out or swap in
operation means disk access and a disk is a very slow device compared to main memory or
compared to the CPU. So until and unless the swap out followed by swap in operation is
complete, the CPU cannot start execution of the new program. That means during the time when
swap out and swap in operations are continued, the CPU will remain idle. So though this solves
the problem or converts a single user configuration to a multi user configuration but this is not an
efficient solution.

So the next hierarchy in the next higher level what can be done is instead of having a single user
partition, let us have multiple number of partitions so that we can overlap CPU execution with
swap in and swap out operations. So the simplest configuration that can be thought of, that was
thought of was something like this. Let us now have 4 partitions. One partition as before will go
to the operating system. The remaining space is divided into three partitions. One of the
partitions we will call as buffer space one. The second one will be called as buffer space two and
the third one is actually the user ready where a program is to be executed. As before we have the
secondary storage containing the executable code of all the programs as well as all the data. So
our assumption is the secondary storage is large enough so that it can contain all the executable
codes which are to be executed on the machine. It will contain all the data which will be required
by any process which will be executed on the CPU. So we are not putting any limit on this hard
disk.

Now what can be done is an user program which is being executed by the CPU can be contained
in this user area. The buffer area will contain, buffer one area will contain a process which is to
be swapped out and buffer two will contain a process which is being swapped in from the
secondary storage. So I will have a situation like this. From buffer one I will swap out a process
on to the secondary storage, I will swap in a new process from the secondary storage, put it into
buffer area two and simultaneously the process which is there in the user area that can be
executed by the CPU. So I can have overlapped swap in swap out and CPU execution which
improves the efficiency of the CPU and an improvement over this. But still this is not a very
good solution because all these operations whether it is swap out operation or swap in operation
or execution of a process by the CPU all of them will access the main memory. Now whenever
the swap out operation is accessing the main memory, no one else can access the main memory.

12

Similarly when the CPU is accessing the main memory for execution of a program, none of these
two can access the main memory. So though it appears that it is an improvement over this but the
improvement is not very significant. What you have is a single memory module. In a single
memory module I have single address bus, I have single data bus. So because it is single address
bus and a single data bus, so even if I have multiple number of processes, one for swapping out
one for swapping in, one for execution of the program but all of them cannot provide the address
to the address bus simultaneously. only one of them has to give the valid address.

Similarly all of them cannot write the data, cannot send the data on to the data bus
simultaneously or all of them cannot get the data from the data bus simultaneously. Only one of
them can send a valid data onto the data bus. So there even the access of the address bus or the
access of the data bus has to be multiplexed that means accessing of the entire memory has to be
multiplexed. So these operations of swapping out or swapping in or execution of the user
program they are not really independent they become dependent, one dependent upon the
operation of the other. So even this configuration a multiple partitions does not give the
advantage as we expect over this. So that means we have to go for further modification. So the
next memory configuration that was thought which was an improvement over this is what is
called MFT.

(Refer Slide Time: 00:35:58 min)

MFT means multiprogramming with fixed number of tasks. So this task, job, process or a
program we will use interchangeably. So this task means a process. So MFT is
multiprogramming with fixed number of tasks and this one that we have said, it is nothing but a
special case of MFT where we have only 3 partitions. So in case of MFT, the organization that is
used is something like this. This memory module is again divided into a number of partitions but
in this case number of partitions are very high. So I have a large number of partitions in the main
memory. The partitions may be of same size or different partitions can be of different size. one
of the partitions as before will be given to the operating system and let us assume that this

13

partition may be of size say 100 k. this partition may be of size say 60k. This one may be of size
say 120 k, this one may be 40 k and so on. So I can have different partitions of different size.

Now obviously because I have so many partitions in the main memory and every partition can
contain an user process. so if there are n number of partitions, n number of different programs
can reside in the main memory simultaneously and because there are n number of programs
residing in the main memory, so the degree of multi programming of the system is n that means I
can keep n number of processes in the ready state simultaneously and any of those processes can
be executed by the CPU anytime. So all n processes are ready for execution. so you say that the
degree of multi programming of this system is n. I have different partitions and once these
partitions are met, they are fixed that means this partition size is 100 kilobytes and it is fixed.
This partition size is 60 kilobytes and that is fixed.

Now whenever a new job is to be made ready that means, I have to transfer the job from
secondary storage to main memory in that case that job has to be put in one of these partitions.
So I have to look for, out of all these partitions in the main memory which partition is free that
means which partition does not contain some other process already. So this new job I can put in a
free partition, provided the size of the partition is more than or equal to the size required by the
job. So in order to enable that I have to maintain a number of information’s. The information is
that for every partition what is the starting location of the partition, what is the size of the
partition, I also have to maintain information about what is the status of the partition that means
whether the partition is free or the partition is already occupied.

If it is occupied which process is occupying that partition, that information is also needed. So all
those information’s can be maintained in the form of a table. Now whenever a new job has to be
moved from the secondary storage into the main memory, it will be the responsibility of the
loader. I hope you know what is loader. So it will be the responsibility of the loader to see that
which partition is free and what is the size of that partition. So if the loader finds that there is at
least one partition which is free and the size is also more than what is required in that case the
loader can bring the job from the secondary storage and put into the appropriate partition and
after putting the job into this partition, that information table is also to be modified because
earlier status of that particular partition was free. Now it has to be made occupied.

Now when you put a new job into this partition, there are two algorithms which can be followed.
One is called first fit algorithm. What is this first fit algorithm? I can have a number of partitions
which are free and the information of all of them are kept in the table. What the loader can do is
loader can just scan the table starting from the first entry. Whenever it finds a partition whose
size is more than the required size and the partition is free that partition can be given to that
particular job. But what is the disadvantage? Wastage of memory. Suppose this 100 kilobyte
partition is free, 40 kilobyte partition is also free and I have a job whose size requirement may be
say 39 kilobytes. So because I am scanning that entry in the table starting from the beginning, I
find that this is 100 kilobytes which is more than the size required and it is also free. So this 100
kilobyte partition will be given to the job but what will happen to the remaining 61 kilobytes?
Because I have fixed partitions, that 61 kilobytes cannot be used by any other process. So the 61
kilobytes memory becomes wasted and that is what is known as fragmentation. In this case it

14

will be called as internal fragmentation because it is an wasted memory within a partition. So it is
called internal fragmentation.

So though the first fit algorithm is very simple because I just scan the table entries from the
beginning. Whenever I find a free partition of sufficient size, I allocate that partition to that job.
So this allocation strategy is very simple but the problem is it can lead to more of internal
fragmentation. So the improvement over this allocation strategy can be what is known as best fit
strategy. In case of best fit strategy what you do is wherever I find a partition which is free and
of sufficient size, I don’t allocate it immediately. Rather what I do is I scan through all the entries
in the table, check for all the partitions and I find out a partition, free partition whose size is
nearest to the size that is required and more. So if I follow that strategy, you will find that though
this 100 kilobyte partition and 40 kilobyte partition both of them are free, following this first fit I
have allocated 100 kilobytes but following the best fit I will not allocate this but I will allocate
this one, in which case out of this 40 kilobyte of partition, 39 kilobyte will be used by the process
and 1 kilobyte will become internal fragmentation whereas in the earlier case 61 kilobyte was
internal fragmentation.

So now amount of internal fragmentation by this best fit algorithm is always minimum but only
problem is the complexity of this algorithm is very high compared to the complexity of this. So
this leads to internal fragmentation. An internal fragmentation we have defined that which is
internal to a particular partition. There is another kind of fragmentation which is called an
external fragmentation. An external fragmentation is both the fragmentations or memory
wastage. in case of internal fragmentation it is the memory wasted within a partition and external
fragmentation in case of MFT technique will occur when I find that I have some jobs to be
executed but the job cannot be fitted in any of the partitions because the size is less. So coming
to this if I have say this 120 kilobyte is already occupied by some process and I have another job
which needs a 105 kilobytes. I can have a situation that all these partitions are free but none of
them is greater than 105 kilobytes. So though I have a job to be executed, I have a number of
partitions which are free but this job cannot be fitted into any of these partitions because size of
all these partitions is less than the amount of memory that is needed.

So again now this is a fragmentation because I consider this as a memory wastage. The total
amount of memory is more than the size required but I cannot fit this memory because size of
every partition is less than the size required. So again I consider this as an wastage of memory
and the fragmentation arising out of this, we will call this as external fragmentation. So this
external fragmentation is not part of a partition whereas the internal fragmentation is the
fragmentation which is part of a partition because the entire partition is not used by the process
which has been allocated partition.

Now if we modify this MFT technique, in that case it is possible that the internal fragmentation
will be avoided altogether. That is instead of having partitions of fixed size, we can make
partitions of variable size and partitions will be created as and when required. So if there is a job
of say 120 kilobytes, I will make a partition of size 120 kilobytes not more than that. So by
modifying this MFT to what is called MVT technique, I can eliminate or minimize; why
minimize, I will come later on. I can eliminate this internal fragmentation. that we will do in the
next lecture.

