
1

Digital Computer Organization
Prof. P. K. Biswas

Department of Electronic and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture No. # 12
Pipeline CPU – III

We are discussing about the MIPS processor architecture. We have developed one data path for a
single cycle implementation of instructions and the data path as we have seen is like this.

(Refer Slide Time: 00:01:12)

In this one we have said that there are a number of data units which are duplicated. So when you
go for single cycle implementation of the MIPS processor, there are duplicated data units. We
have seen later that the other disadvantage of having single cycle implementation that is on an
average, the CPU performance will become poor. So an improvement over this that we had tried
is instead of trying for a single cycle implementation, we can go for multi cycle implementation.

2

(Refer Slide Time: 00:01:51)

In multi cycle implementation what we have done is we have broken this data path into a number
of steps. So there are 5 different steps and in addition to that, we can reduce the duplication of
data units. Say for example earlier we had one ALU and a number of adder units and all the add
operations are now being done only by this ALU. Of course because we are going for multi cycle
implementation, so we have to have a number of intermediate registers for storing the
intermediate balance. Then we just mentioned that after discussing this, that we will go for a
pipeline data path. That means how this can be converted to a pipelined architecture?

Now as we have said in case of pipelining that more than one instructions will be in the pipeline
simultaneously. Some instructions will be fetched, previous instructions will be decoded, the
instruction which was fetched before that will be executed, instruction which was fetched before
that will finally put the result in memory or in one of the registers. So these are different
operations that will be performed by different instructions may be during the same clock period.
So because we will have more than one instructions in the pipeline simultaneously, it is quite
obvious that for pipeline architecture, it is better that not to go for optimization of the adder. That
means instead of replacing all the adders with a single ALU, we will make use the same single
cycle implementation architecture as this and try to see how this can be converted to a pipeline
data path where we will have duplicated data units. So I have just redrawn this single cycle
implementation of the architecture here.

3

(Refer Slide Time: 00:03:47 min)

So you find that all the units which were there in the single cycle architecture, all of them are
present here. At this stage when an instruction is to be fetched, the data units which are involved
is obviously the program counter. The program counter has to give the address of the instruction
that has to be fetched. We have this instruction memory then we have this adder which
increments the program counter after an instruction is fetched. Then we have this multiplex or
selector which selects one among this implemented program counter or the branch address which
has to be generated during the execution phase. So one of this will be selected by this multiplexer
and the next program counter value will be loaded into a program counter where from the next
instruction will be fetched.

Once an instruction is fetched, we have said in multi cycle implementation that during the next
phase what we have to do is we have to decode the instruction. At the same time we have also
said that we can read the registers which are specified by the instructions, the values of the
registers which are required because we don’t know what is the instruction that is to be executed
until and unless the instruction is decoded. So this reading of registers is done in advance before
knowing what is the instruction. We have also mentioned that this read operation does not harm
the operation because even if the register values which are read, they are not needed. They will
be overwritten subsequently by the appropriate values.

So here also during the next phase, the registers will be read, simultaneously the instructions will
be decoded. This phase onwards whatever operations that has to performed depends upon the
decoder output. So this whole thing as you see that this is nothing but the single cycle
implementation of the processor that we have done. only thing that we have done here, only
change is now this operations are more organized that is all the operations which are to be
performed is broken into 5 pipeline stages. The first stage is responsible for fetching an
instruction from the memory and this stage we call as IF or instruction fetch stage. The next
stage is instruction decode or ID which we are specifying as instruction decode at the same time
register read.

4

Third stage is in the pipeline which is the execute stage, we are calling it as EX or execute and at
the same time if there is any memory reference operation to be performed, the address of the
memory is also calculated. So during this phase, it will be the execution of instructions for R-
type instructions as well as address calculation for memory if it is an intake instruction.

Fourth stage is actually the memory access stage. I mean this is the stage when either you write
into the memory or you read from the memory. So we have to write into the memory if the
operation to be performed is a store ward or SW type of operation. The data will be read from the
memory it will be, if it is load word or LW type of instructions. The final stage that is the fifth
stage in the pipeline we call it WB or write back. Write back means whatever is the output, the
data will be written back into one of the registers depending upon whichever is the destination
register that is specified within the instructions. When I discussed about the pipeline I said
whenever I have so many pipeline stages, in between every stage I have to have pipeline latches.
So here again between every stage, I will have a number of pipeline latches. So I will have a
pipeline latch here, I will have a pipeline latch here, I will also have a pipeline latch here.

Now coming to this architecture, you will find that as long as the data flows in the forward
direction that is from left to right. So this direction, flow of direction from left to right when all
the instructions need the data flow from left to right, the pipeline gives maximum efficiency. But
there are two instances when the pipeline will suffer that is when the information has to move in
the backward direction that is from right to left. So we have two such situations. One is the right
backstage. When the data has to be written from the fifth stage, has to move from the fifth stage
to the second stage.

So this is one situation when the data will move from right to left and the second is this one that
is case of any branch instruction, you are calculating the branch address here in the execution
phase and the branch address that is calculated has to be loaded into the program counter in the
first stage that is instruction fetch stage. So these are the two situations when the data has to
move or the information has to move backwards in the pipeline. Whenever such situation arises,
the pipeline performance is bound to degrade but you have to see that how we can reduce that
degradation. Now one way that this can be handled is by means of the reservation table and you
find that this kind of architecture is nothing but a special case of generalized pipeline that we
have discussed.

5

(Refer Slide Time: 00:10:01 min)

So if you remember this figure, a generalized pipeline architecture where the data can move from
in the forward direction, data can also move in the backward direction. Now for any operation
how this different pipeline stages are to be used for execution for completion of a particular
function that has to be specified with the help of a reservation table and we had given two such
instances of reservation tables.

(Refer Slide Time: 00:10:34 min)

One for computation of function A and the other one for computation of function B. this
reservation table is nothing but specifying that during which time stave which of the pipeline
stages will be used for performing which operation. So if I go by this type of reservation table

6

type of concept, in that case you find that all the instructions which has to pass through this
pipeline will have its own reservation table.

(Refer Slide Time: 00:11:05 min)

Say for example if I go for, if the instruction which is to be executed is simply add R1 R2 R3, if
this is the instruction that is to be executed; the operation of this is R3 gets the value of R1 plus
R2.

(Refer Slide Time: 00:11:10 min)

So what is the first operation? First we have to fetch this instruction. For fetching the instruction,
the instruction fetch stage will be used. The second operation that is to be performed is decoding

7

the instruction as well as reading the register values R1 and R2 which is to be performed during
the ID stage.

The next operation will be you have to add R1 R2 which is to be performed by the execute stage.
Next is, the result has to go to R3. So output of R1 plus R2 is available at the ALU output which
will pass to this multiplexer. In the fifth stage, the data will be written back into register R3. So
this is how you find that all these pipeline stages will be used. Sorry here the operation will not
be R3 gets R1 R2 but it is R1 gets R2 plus R3 because the first register which is specified in the
instruction that is the destination register. However the sequence of the operations remain the
same. So if I want to design the reservation table for this instruction, what I will do is I will have
first pipeline stage which is IF then ID then execute, next is memory, the next is write back. Let
us see how the reservation table of this will look like.

During time step T0 this instruction will make use of IF stage. During T1 the next time period,
the instruction will make use of ID stage. During T2 it will make use of the execute stage. During
T3 what is the stage that is used? Write back cannot be done during T3 because now the data is
available here. Memory operation is not needed, so during T3 this instruction does not make use
of any of the stages. During T4 it will make use of this write back stage and the data has to be
written into register, so the unit that will be used is ID only. So during T4 again ID will be used,
ID and write back together because you have to select the multiplexer properly. [Conversation
between Student and Professor – Not audible ((00:14:45 min))] pardon. Because all the stages of
the pipeline, information has to flow through all the stages and that is controlled by the latches.
At every stage we have a latch.

So even if I am not making use of this data unit for transferring the data from this latch to this
latch, I need one clock cycle and that is what is T3. During T3 I am not performing any
operation, simply moving the data, the result from one latch to another latch. So this will be the
reservation table for this ID instruction. Similarly, I can’t (Refer Slide Time: 00:15:30). Sorry,
this will be during T4. Similarly, I can decide that what will be the reservation table for every
instruction. Now once you know this reservation table for different instructions, then I can go for
pipeline scheduling. That is once an instruction enters the pipeline, I can decide when the next
instruction can enter. That is following the pipeline state diagram that we have already discussed.
That is one way this can be done but however this can be improved. Let us see how this
improvement can be made. When I talk about this pipeline then what are the problems that we
can face in the pipeline.

The problems that you face in the pipeline are sometimes called pipeline hazards. One kind of
pipeline hazard is called a structural hazard. So this structural hazard arises if the hardware does
not permit combination of instructions that we want to execute simultaneously. Say for example
when we had converted the single cycle architecture to a multi cycle architecture, you will find
that in a single cycle architecture which is nothing but a variation of this without the latches.
Here I have used an instruction memory and a data memory, the instruction memory and data
memory are different. In multi cycle implementation what we have done? We have combined the
instruction memory and the data memory into a single memory unit.

8

(Refer Slide Time: 00:16:24 min)

Now if I use a single memory unit for storing both the instruction and the data then what problem
we will face? Here you find that in this particular case, I can have a situation that one instruction
can be fetched. Simultaneously during the same clock period, some other instruction can access
the data memory either for reading the data or writing the data. If I combine these two in a single
memory unit that is both the instruction and the data into the same memory, in that case such a
type of operation will not be possible; either you can fetch the instruction from the memory or
you can read data or write data into the memory.

(Refer Slide Time: 00:17:15 min)

9

One of the two operations you can do, you cannot do both. That means fetching the instruction
and accessing the data memory simultaneously is not possible. Whereas that is possible, if I have
this instruction memory and data memory separately. So if I combine these two then obviously
that leads to some bottle neck in the pipeline that is simultaneous instruction read and data read
is not possible. This is a kind of hazard which is given by the pipeline and that is because of the
hardware limitation. This kind of hazard is known as structural hazards. So one such structural
hazard in this pipeline architecture is avoided by having separate memories for instruction and
data.

The second kind of hazard that we can have in a pipeline is called a control hazard. Control
hazard comes due to the fact that some decision has to be taken based on the output of some
instruction while other instructions are already in the pipeline. Say for example a branch
instruction. We have said, we have taken an instruction like this branch one equal R1 R2 then
OFFSET. this is an example instruction that we have taken. Now here it says whenever R1 and
R2 are same then you have to take the branch and the branch address will be the OFFSET value
away from the current program counter value.

Now find that whether this branch has to be taken or branch is not to be taken that depends upon
the output of this instruction. That means whether R1 and R2 they are equal or not that you will
come to know only in the execute phase. So if you have to decide that what will be the next
program counter value only after execute phase, that means at least for two clock periods the
pipeline will not be able to take new instructions. This is the problem which is called pipeline
stalling, stalling the pipeline. That means you are not allowing new instructions to enter the
pipeline and that problem will always be there because I can never know without executing the
instruction whether the branch is to be taken or branch is not to be taken. but we have to find out
some optimization. So what is the optimization that can be made? One optimization is branch
prediction that means to predict whether the branch is to be taken or branch is not to be taken. In
the simplest case, we can assume that branch is not to be taken.

(Refer Slide Time: 00:21:40 min)

10

So whenever this branch one equal R1 R2 offset that enters this pipeline that goes through all the
stages. In case of stalling what we have to do is until and unless this stage is complete, that
means until and unless we know that R1 is equal to R2 or R1 is not equal to R2, we don’t allow
new instructions instructions to enter the pipeline. In case of this prediction when I am predicting
that branch is not taken, I will not stop instructions from entering the pipeline. When the first
instruction that is branch one equal that moves from IF to decode stage, the next instruction from
the sequence will enter the IF stage. My prediction is branch will not be taken. So the next
instruction already enters the IF stage.

When the branch one equal comes to this execute stage, the next instruction which was in IF
stage comes to ID and the third instruction will come to IF stage. Only after this, I will come to
know whether the branch will be successful or branch will not be successful. In case the branch
is not successful then all these instructions will pass through the pipeline as it is. In case the
branch is successful in that case, the time taken by these two instructions in this pipeline stages
will be wasted because in that case the next instruction that will be fetched into this IF stage that
will come from the branch address, not from the same sequence in which the instructions are
already there.

In this particular case, possibly it will not lead to any problem because the operations that you
are doing in ID is only registered read and we have already said that even if you read the
registers, you are not executing on them. You are not doing any performance on them. So
possibly the operation that you do even in this ID stage that is not harmful. But there can be
situations in case of other pipelines that whatever operation you do in these two stages, that may
already modify some of the data which is harmful. So that has to be carefully looked into
whenever you design a pipeline, if you have any such data modification during these stages.
However for our example that is not harmful, only when the time taken by the instructions in
these two stages are wasted. [Conversation between Student and Professor – Not audible
((00:24:16 min)) how do you make sure that those two instructions which we attached will not be
executed] No, they have come from where? IF to ID. Yes sir. IF to ID, then the instruction which
has come to ID that has to go to execute stage. Yes sir. So I can have the control unit, if the
control unit decides that the branch is to be taken that means my prediction was wrong. What I
will do is I will not load this to this latch. So that it does not enter the execution stage because the
moment it enters the execution stage, it is going to modify the data. So that I will not permit.
That is to be taken by the controller. So this is one approach, when you predict that branch is not
taken. The other approach can be that branch is taken, that is also another prediction. This can be
further defined based on the history.

What happens is whenever some instructions are executed, you maintain the history of the
instructions which are executed. The situations become more complicated but more
sophisticated. So in the history whenever such a branch instruction is encountered, you go back
to the history to check earlier execution of same branch instruction, what happened. Whether the
branch was taken or branch was not taken? If you find that in earlier case branch was taken, you
assume that branch will be taken. If in the earlier case you find that the branch was not taken
again then you assume that branch will not be taken. So accordingly you select that which
instruction next has to come to this IF stage. However these are all refinements and obviously in
this case you need extra amount of memory, additional memory to maintain the history. So

11

obviously there are some advantages and disadvantages in every approach, so that is about the
control hazard.

(Refer Slide Time: 00:26:23 min)

The third kind of hazard that we have in case of pipeline is called data hazard. Now what is this
data hazard? Suppose I have a sequence of instructions like this add R1, R2, R3 and we have said
that this operation performs addition of R2 and R3 and the result goes to R1. Suppose the next
instruction is subtract R5, R1, R4. This is the next instruction and this will perform the operation,
R5 gets the data which is R1 minus R4. What will be the performance of this pipeline in this case
because you find that the second instruction cannot be executed until and unless R1 is written
into because only then the right data is available for this subtract instruction. Now coming to this
pipeline, what happens? the first instruction subtract will come here instruction fetch, then it will
come to ID, then it will come to execute, then it will pass to memory and only in the write back
stage R1 will be written back into the stage interference.

Coming to the second instruction, you will find when the add instruction is in this stage that is in
the memory stage, the second instruction is in the execute stage. So when the add instruction is
in the memory stage, the second subtract instruction which is the immediate next that is in the
execute stage. and in the execute stage it expects the correct value of R1. Isn’t it? But the correct
value of R1 has not been set yet. that will be set only after the write back that is in the fifth stage.
So if we don’t take any extra precaution then this subtract stage will utilize the previous value of
R1 because the correct value of R1 has not yet been restored but in R1 you have some value. So
this subtract operation will make use of the previous value of R1 which is the wrong one to give
you a wrong result into R5. Isn’t it? So naturally this is again another kind of hazard and no
compiler will give you this error. This error will come only at the output. We have to take extra
precaution to take care of such problem. So how this can be done? [Conversation between
Student and Professor – Not audible (Refer Slide Time: 00:29:34 min))] What can be done is you
find that when the subtract instruction is in the execute stage, at that time the value of R1 is
available at the out of ALU that means at the output of this latch. So here what we can do is I can

12

bypass these two stages, for R1 value. What I can have is I can have a feedback from this to this
ALU input. That means here I have to have a multiplexer, one more multiplexer. One of the
inputs to the multiplexer will come from the register file, the other input to the multiplexer will
come from the ALU output itself. Now the controller has to decide that which one to select. So
whenever such a type of data hazard situation comes, now the controller has to select the ALU
output to be fed to ALU input and the subtraction operation can continue as needed. So while
doing this, what I am doing is effectively I am bypassing this memory access stage. I am also
bypassing the write back stage, getting the data directly into the ALU input from the ALU output
itself. So this is a mechanism which is called a bypass mechanism, sometimes it is also called
forwarding mechanism. So solution to this hazard can be by bypassing or forwarding.

We can have these three kinds of hazards in the pipeline architecture. The structural hazard, as
we have said that this can be avoided by duplication of resources however it is not possible to
avoid it always. There will be some situations in which structural hazards will come and in that
case pipeline will suffer but by duplication of resources, we can ensure that the performance
degradation will be as minimum as possible. Similarly we can have control hazards and this
situations are bound to come, we cannot avoid it. But what can be done is in such cases, I can
move this adder which is used for computation of branch address to this place to this place. Now
this adder is in the execute stage. If I move this from the execute stage to ID stage because even
in ID stage all of them are available, whatever is this offset that is available, whatever is the next
program counter value that is also available. So if I move this adder from the execute stage to the
ID stage, then i can even save one clock period for taking the branch. So when this control
hazard can be removed but it cannot be totally avoided.

The third one is data hazard. For avoiding the data hazard, we can make use of the bypassing or
forwarding mechanism. In this case what is needed is in this register to ALU circuit, register to
ALU data path I have to make some more modifications. That means I have to put one more
multiplexer here, control circuit has to be designed accordingly so that control circuit will
identify, can locate such data hazards and generate the control signals accordingly, so that the
data to the ALU is available at the appropriate point. Is that okay? So with this, I will stop this
pipeline architecture and the processor architecture as such. So next class onwards we will talk
about the other components of the computer system.

