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Hello and welcome to the moke on optical communications.  
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In this module we will discuss power spectral density of the pulse shapes that is a continuation of 

the previous module, where we had discussed the type of pulses that are normally used especially 

when you talk about baseband communications of course, we are not going to really do baseband 

communication here with optics, fiber optics, but it is necessary to know what would be the pulse 



shape that would have, because it would have an impact on the bandwidth and hence the 

performance of the system. 

 

So we have already seen that we have different pulse formats available or the line codes that are 

available, the popular ones are the polar format right and then you have the unipolar format and 

we have also discussed bipolar format okay. If you are concerned with pulse shaping at the 

optics level, then you are pretty much going to use a unipolar format, because if you are 

concerned with the pulses in the optical domain, then you are pretty much going to use the 

unipolar format, because in the polar format or in the bipolar format the optical power or the 

amplitude signal, amplitude could be positive or negative while that is still true in the optical 

domain if you are looking at the intensity modulation as one of the modulation that you are 

looking at then you cannot really have an optical power which is negative. 

 

So you end up almost using a unipolar format and if you were to try and use different pulse 

shapes that we had talked about in one of the earlier modules right. So we had talked about in the 

earlier modules about 67% duty cycle pulse, the 33% pulse shape or a 50% pulse shape these 

pulse shapes in the optical domain will have a certain bandwidth in the optical domain again. 

 

And the available bandwidth versus the bandwidth occupied by the pulse has to be adjusted 

appropriately. So if the bandwidth available is fixed, then you have to choose between different 

pulse shapes in order to be within the bandwidth that is allocated to us. However, the electrical 

signal that comes and modulates the optical carrier, so you have an optical carrier such as 

emitted by a laser which then goes into an external modulator right. 

 

This external modulator has another input in the form of the RF or the voltage signals RF voltage 

signals. These RF voltage signals will also have to be encoded in an appropriate way, because 

what happens is this RF voltage which is carrying the information is pulse shaped okay goes 

changes the optical carrier, the optical carrier which is now modulated move through the fiber, at 

the receiver you receive the optical field and once you have received the optical field you put a 

photo detector, you put the photo detector and get the electrical wave form back. 

 



So if this optical carrier is simply carrying the electrical data to us, if you look from the electrical 

data point of view you take the electrical data pulse format it, put it into the optical carrier and 

recover the electrical wave form back here. So from the electrical data point of view, if you are 

looking at it you can think of this as an equivalent electrical system okay. The optical part can be 

dissociated with this.      

 

And here again, in order to perform a proper electrical reception of the signal, you know you 

have the voltage wave form that you have received which is carrying data typically what to do is 

you put a match filter. So if you want to put a match filter you have to know what is a pulse 

shape. Again the pulse shape, the electrical domain will have an impact on the bandwidth will 

have an impact on the performance of the system. 

 

So it is necessary to pulse shape both in the electrical domain and in the optical domain, 

sometimes you do not do pulse shaping in the optical domain that is something that you do when 

you are modulating the phase of the optical carrier, there you try to keep the envelope of the 

optical carrier constant. However, the earlier generation optical communication systems utilized 

intensity modulation or on-off keying digital modulation wherein the intensity of the optical 

carrier was changed. 

 

So in the digital communication case there was, we were sending a sequence of optical pulses if 

the pulse was present it would represent a bit one and if there was no pulse it would represent a 

bit zero right. So these are different reasons why we pulse shape and that is necessary that why 

we are studying this pulse shape. So with that in mind let us look at the power spectral density of 

the pulse shapes. 

 

What is this power spectral density, we know what is power right, if you consider a simple 

sinusoidal signal and imagine that simple sinusoidal signal is actually being generated by an 

ideal voltage source. You give that across a resistor then there is an average power that is 

associated with that sinusoidal signal correct if you the instantaneous of course will be V
2
/ R and 

if you c consider for mathematical simplicity  R=1Ω kind normalization then this normalized 

power that you're looking at will be the normalized instantaneous power will be V
2
 right if V is 



the voltage of sinusoidal wave form and if you look at the average power because that is what 

you are interested in the resister actually dissipates this average power. 

 

So if you are looking from the average power then you have to average the result but associated 

with the pure sinusoidal signal there is an non zero average power now if I change the frequency 

over here right and the amplitude of the sinusoidal signal the average power will also change 

okay but because the amplitude as changed if you keep the same amplitude it would be the same 

power however this power is now associated with this frequency right. So what power spectral 

density will tell you is. 
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What is the distribution of the power how is the power or the average to be sure so what is the 

average power how is it distributed across different frequencies okay you can imagine that you 

generate a voltage wave form okay V(t) corresponding to a frequency f(0) then corresponding to 

frequency f1, f2 and so on of course there are an infinite number of such frequencies and 

corresponding to each frequency you are going to plot the power okay if you see the power 

spectral density going something like this actually tells you the average power associated with 

the f0 component is so much. 



 

The average power associated with f1 component is this average power associated with f2 is this 

one of course because there an infinite number of frequencies and it is better to work in the 

continues domain in fact power spectral density is usually a continuous quantity which tells you 

how the power is distributed so for example this is called as two sided power spectral density 

PSD is the short form for that and of course power spectral density is the function of frequency f 

okay so this is the 0 frequency. 

 

And you can see here that the power spectral density is more or less uniform which is a 

characteristic of a real autocorrelation we will not get into that detail here so if you want to look 

at how much power is actually being associated with the band of frequencies which is cantered at 

f0 and let us this is the band that I have okay so this is the band that I am, looking at so in that 

band the power that is associated will be obtained by looking at the band width which is Δf  you 

know around f0 and the value of this power spectral density here may be PSD(f0). 

 

So the power that is associated with the band of frequency is Δf is obtained by looking at 

the power spectral density at the center frequency multiplied by Δf because this a two sided 

power spectral density you also have to consider an equivalent power or in equal amount of 

power in the negative frequency side so you usually end up having a two times PSD (f0) times 

Δf in fact when we talked about noise we wrote some spectral density formulas right so we said 

the noise associated with a load resister RL is given or is has a power spectral density of 4KT/ 

RL. 

 

And if you then consider a particular band of frequencies which had a band width of B centered 

at some f0 in this case the power spectral density is flat it does not depend on f0 so this is the 

same value but you multiply this one by 2B you are going to get the total power inside you are 

band with okay so this is the useful ness of power spectral density it tells you how the power is 

distributed across the frequency band okay because you are looking at frequencies around 0 this 

is the base band signal or the power spectral density of a bas band signal hence it is two sided 

you can also have a one sided power spectral density. 

 



For example noise wave form having a one sided power spectral density is given by N0 okay as 

function of frequency then if you consider a filter okay whose band width is b right then total 

noise in this band width is given by N0 x B okay so this is the power spectral density and it is 

usually measured in Volta square per hertz in the typical noise phenomenon or you can measure 

this one as watts/ Hz okay because N0B. 
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As to turn out to be in watt so you can measure the power spectral density in watts / Hz okay. So 

this is about the idea of power spectral density now let us jump right into finding the PSD of 

some of these waveforms that we are looking at we will be particularly interested in polar and 

uni-polar formats other formats which are important will not be covered in this course but they 

will appear in the exercises. 

 

So you will get a chance to look at the power spectral density of those formats as well, so let us 

begin by looking at PSDs of a general waveform okay that is we had not yet defined PSDs we 

have only given you the intuition behind PSD we are going to define PSD now, we imagine that 

we have a source remember this source is putting out bits at the n
th 

time it generates a bit BN 

okay. 



 

Since we are going to use binary line case this BN sequence will be 0 or 1 of course the 

modulation format or the line coding will change this what is the line coding do, bit 0 will be 

represented by -1 bit 1 will be represented by +1, what format is this? This is the polar format 

correct, so in the polar format we replace the symbols by numerical values and this is the 

mapping that we are going to do. 
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If you are looking at uni-polar format a 0 will be represented by number 0 and a 1 will be 

represented by a number 1 okay, so this is your uni-polar format but this is not just what is 

happening I given in the previous module we have talked about how this bits B and R generated 

you know from non data, non electrical data, electrical data, and all that process we have looked 

at. 

 

But the sources cannot you know you cannot just communicate numbers I cannot take an optical 

fiber and say +1 nothing the optical fiber will not do anything, right because it cannot recognize 

a number, so we have to convert this into waveforms, right and this is where we talked about 



NRZ type of waveform RZ type of waveform, right. So if my modulation format happens to be 

NRZ but polar format. 

 

If I have a sequence 101 then the waveform that would look like the assuming that this is the 

rectangular waveform that would look something like this correct, so this is my waveform, here 

you can identify the basic pulse shape the basic pulse shape but I am using is a rectangular pulse 

shape what is the duration of the rectangular pulse shape, TB seconds okay at each TB second I 

take the rectangular pulse shape. 

 

Multiplied by the appropriate bit if the bit value is +1 I generate a positive rectangular pulse of 

may be amplitude 1 and then send it out, okay. If the bit happens to be 0 then I have to invert this 

pulse because 0 is represented by -1 so that is the net result I take -1 and multiply it to a positive 

rectangular pulse I get a minus or a negative amplitude pulse and I send it out as it is okay, so 

that is what I am essentially going to do. 
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So if I am sending a sequence of such pulses and I do not know what is beforehand which bit is 

going to appear, right because the bit sequence if I know then there is nothing to communicate so 



in a sense you want randomness in the system and you get the randomness in the form of not 

knowing which bit comes next, we have also set something else we have said that it is possible 

that bit bn at the nth time might influence bit at n+1 bit at n+2 and let us say bit at n+l. 

 

If I am considering a ward of l letters okay, if I am word of l letters then it is possible that this bn 

might tell you or might be influencing all this as I said a proper representation of this is to 

assume that you are looking at a source with memory source with memory is called as mark of 

source modeling, okay. A simple modeling on the other hand would tell you that the occurrence 

of bn is independent then the occurrence of bn + 1. It is also independent of bn – 1. 

 

And in fact each bit that appears will be completely independent this in turn generates a sequence 

of random numbers okay or random bits the distribution of each bit will be according to a certain 

probability distribution function okay, so this sequence which consists of a sequence I mean the 

entire sequence which is nothing but a sequence of random numbers distributed equally 

identically distributed.  

 

But occurring independently is called as a IID sequence an IID sequence tells you that it is 

independent and identically distributed sequence we are going to assume an IId sequence, okay. 
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So we will assume that the sequence bn keeps you know being generated every Tb seconds and 

you are going to multiply this bn with an appropriate pulse is the pulse at 0 time you know some 

origin of reference that we are going to consider will be lasting from 0 to Tb, right pulse in time 

duration 1 or the time slot 1 will be from Tb to 2Tb, then you have 3Tb to 4Tb, 4Tb to 5Tb and so 

on, so you just given an appropriate number is a kind of think of this other train having this 

bogies right so each bogie will be represented by number -1,0,1,2 and so on. 

 

You can even think of the bogie shape as the pulse waveform, right so if I am looking at the n
th

 

bogie or the n
th

 time slot I am down here and I am looking n-1Tb to nTb that is the duration, right. 

So if it is a third times, third pulse I am sending it should last between 2Tb to 3Tb that is 

essentially what I am doing, and mathematically you can represent this train of pulses you know 

as we call them. 
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The train of pulses can be represented by multiplying the pulse that occurs at you know n
th

 time 

slot which is given by P(t-nTb) from your signals course you might know that if this is the basic 

pulse shape so let us call this as time t and let us say this is some Tb/2 this is –Tb/2 here I am 

showing you a rectangular pulse. If you are fancy enough you can actually have this pulse, right 

does not matter but the duration of the pulse has to be within 1Tb units, okay then what so if this 

is P(t) what would be P(t-Tb) this would be shifted in time by Tb seconds right. 

 

So the pulse would actually look like, so in the duration of -Tb to +Tb to there is nothing, but 

from Tb onwards you actually get this pulse, right so this is Tb from Tb/2 to 3Tb/2, okay. So this 

corresponds to pulse which has been shifted by one time duration, okay similarly you can think 

of the n
th

 time and you call this as some S(t) this would be the transmitted signal of course first 

let us consider a finite duration train, okay train of pulses going from n=-N to +N there is nothing 

specific about –N to +n you can take at 0 to N does not matter, 0 to N-1 does not matter. 

 

So here is what I am considering of course what I want is not just this finite sequence of pulses 

because you assume that communication has been happening from time t=-∞ and it will go on up 

to be t=+∞ to obtain that I take the limit N to ∞, right so I keep adding more and more number of 



pluses into this, this is your signal that is being transmitted, okay. Now the power spectral 

density is defined as the Fourier transform of this time limited signal, okay the magnitudes 

square of the Fourier transform which is then averaged and divided by the total duration of the 

pulse train, okay. 

 

And you let this total duration go to ∞, okay here if P(t) is the basic pulse shape from Fourier 

transform theory we know that the pulse P(t) has a Fourier transform of P(f), okay so let us 

substitute that into this and we also know that the Fourier transform of P(t-nTb) will be in the 

Fourier domain that would be P(f) it is a pulse that is shifted in time therefore in frequency it gets 

multiplied so you have e
-j2πfnTb

, okay. So let us substitute these values into the expression and 

then see what we are going to get. 

 

So I have S(t) here, the Fourier transform of S(t) is S(f) and I can obtain the Fourier transform so 

if I have to do the Fourier transform I take the Fourier operation over here to the entire pulse, 

then I interchange the limits of Fourier and f, okay and I go to the Fourier transform bn is a 

sequence that does not have a Fourier transform whereas the Fourier transform of this P(t-nTb) is 

precisely this fellow, so if I take the Fourier transform what I get is S(f)=P(f) and this does not 

depend on the time slot so I can just pull it out you have the limit N going to ∞ Σn going from –

N to +N you have bn. 

 

And then you have e
-j2πfnTb

 this is a Fourier transform but we do not want the Fourier transform 

what we want is magnitude of furrier transforms square is actually is s(f) x s complex conjugate 

of f okay so s complex conjugate of s you take this equation and conjugate the complex number s 

okay p(f) might be a complex number corresponding to a given value of f this is the furrier 

transform which is complex so p(f) becomes p complex conjugate of f.  

 

The bit sequence bn is not really complex it is a real number that we have chosen but for 

notational consistency let us put a conjugate there also to remind our self that this is a conjugate 

that is coming from. And when you take the conjugate of this fellow – becomes + sin only thing 

is while you have you can take the conjugate here you have variable n okay when you have a 



summation like this if you want to take the square you have to actually put one more summation 

right because this is some of like it is like a+ b and you want to take the square of that.  

 

So you can obtain that by writing a+ b then multiplying it by a + b okay so you get a
2
 + ab + ba+ 

2 sorry b
2 

so that is the actual way of writing it right. 
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So you can write (a + b)
2
 as a + b and a + b okay this is square this is not magnitude square 

therefore you just wrote the same thing twice and this can be written as some ai I = 1 to 2 and 

this can be written as aj j = 1 to 2 okay so using this same ideas we are going to write down the 

s(f) mode square and then put the averaging operator. Okay so this s(f)
2 

= p(f) magnitude square  

why is p of f magnitude square well you are going to get p complex conjugate of f there right. 

 

So this would be that and then you have limit of n going to infinity you have n = -n to + n right 

you have bn e
-j2π fnTb 

you also have some m = -n to + n you have bm right e
+j2π f 

bm complex 

conjugate +j2πf m Tb you can then rearrange this summations okay so would be as it is the limit 

would also remain the summation her can be pull to the left so I am going to use a shorter 



concise notation I say summation of n and m okay and the limits of –n to + n is kind of 

understood I am not going to write that one.  

 

Just to simplify the equation how it looks okay so this is what it is and then you have bn bm 

complex conjugate okay and her you have -j2π fnTb her you have a +fmTb but you can write 

down this by writing this as n-m tb okay, now do not forget to put the averaging operator. 
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So if you put the average operation you are going to put on the sample average for what you 

mean by on sample average please refer to any of the probability courses that are being 

conducted we would not unfortunately do not have the time to spend on that one and you can 

also show that when you do the averaging here actually suppose to put the average on the 

random variables these are not random okay. 

 

This exponential -j2π fn-Tb is not random so the random is comes only from the bit sequence 

which is random which we do not know so that is the random or the averaging operation that we 

have put ion there are some mathematical constrained when and how you can inter change you 



know the average operation when you can write down the summation before average of 

operation later but that is of not really much of a concern to us now okay. 

 

After this how to obtain the PST have to divide this one by t which is the total time duration what 

is the total time duration well I have transmitted how many pulses my index n or m goes from – 

n to +n right which means there are 2n+ 1 pulses and therefore the duration is 2n+ 1 x tb okay I 

will remove this or I can just keep it this way but of course n has to go inside so I have to pull 

this limit operator on to the outside of this one. 

 

So I can just do this one rewrite the whole thing I will write this as limit of n going to infinity 

you have p (f) magnitude square divide by 2n+1 x tb okay. So please note that the denominator is 

increasing if the numerator has you know become finite and if the de dominatrix keeps on 

increasing than the PST might actually equal to 0, let us see weather that would be the case. 
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 Now everything else seems to be alright only thing is how do we evaluate this averaging 

process? What is the meaning of that? What it means is that at the n
th

 sequence, you are looking 

at bn, at the mth timeslot you are looking at bm complex conjugate, then you are looking at bn×bm, 



complex conjugate product , and then you are looking at what is the probability of this particular 

sequence according, okay. In what possible ways bn can vary, it can be for the polar form which 

let us consider as the first example, bn can be +1 the next the sequence at the m
th

 slot can be +12 

right, you can have +1 here may be -1, you have -1, you have a +1, and you have a -1 and a -1, 

okay. 

 

The product will be 1, +1,-1,-1and +1 there are an equal number of +1’s and equal number of -

1’s. If you now assume that all the bits are equally likely, that is to say all bit combinations are 

equally likely to occur then this probability would be ¼, ¼, ¼ and ¼, thus when n ≠ m this 

happens when n≠m of course, then if multiple the probability with the value add it next to the 

probability with the value probability value and sum it you are going to get a big0. 

 

This is the averaging process what happens when n=m that is on the n
th

 time slot itself what can 

happen? Well then in that m=n, and you are looking at magnitude of bn
2
 and then you are trying 

to average this, if bn can take on +1, magnitude square will be +1
2
 which is +1, if bn takes on -1 

the magnitude square will also be +1 because its -1 
2
 right? And if you assume the probability to 

be equally likely as we have assumed of +1 and 1, this would occur with the probability half, this 

would occur with the probability half, therefore when you add them to gather way them, or find 

the average value.  
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The average value will be equal to 1, okay these two conditions can be concisely return as <bn 

bm>= δ nm =1 , where δ nm is the chronically δ function which would be equal to 1, n=m it 

would be 0, when  n≠m, okay so for the polar format this is what we obtain so you can actually 

go back and see what is the meaning of that. 

 

So here you can replace this bm complex conjugate by δ nm, so when you replace that what you 

are saying is, out of the two summations that you have that one on n, and ne on m, you choose 

only those terms where n=m, through away all the cases where n≠m, so if you take only those 

cases which where n=m you are going to get the path spectral density as.  
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So let us call this as parse spectral density PSD(F) =lim (n -∞) p{(f)}
2 

/ 2n+1(Tb), and then you 

have a summation, right which could be when n=m that could exists only that case so this is the 

case n=m, but n is going from –n to +n, and there is a 1 here , what happen to the exponential, 

well the exponential vanished, why did the exponential vanished? Because when n=m this fellow 

will be equal to 1, its exponential of j(o)=1, and what is the summation of this one? This is 

simply 2n+1. 

 

Correct this is simply 2n+1, therefore PSD that you are looking for is given by, this is for the 

polar format, okay so it is given by {p (f)}
 2

 /Tb, in the next module we are going to look at the 

meaning of this PSD as well as we are going to look at what happens to polar RZ format and 

NRZ format, thank you very much. 
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