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Hello and welcome in this module we will continue the discussion on dispersion in the optical 

fibers let us look at a specific case of how a Gaussian pulse would broaden as it propagates 

through the fiber let us assume that. 
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We have Gaussian pulse at the input of the fiber this Gaussian pulse can be represented by giving 

it is width which we will take it to be some two times To and an expression for this Gaussian 

pulse will be given as some amplitude we do not really want to bother about the amplitude so let 



us call this as some ψ0 e
-t2/T02

   okay so this is a Gaussian pulse which would be launched in the 

fiber at z = 0 so at z = 0 you are launching this pulse let me tell you what we mean by this pulse 

that is being launched actually what I mean to say is that this pulse would not be directly 

launched. 

 

Okay it would actually be multiplied I mean it could be modulated by a carrier and the 

modulated pulse can be written as e
-t2/T02

 times e
jω

0
t
 this ω0 is the carrier and this factor I mean 

this expression that we have written is how it the amplitude of the pulse changes with respect to 

time but in addition to this one there is also a transfers distribution of the pulse itself so that is 

f(x,y) or equivalently f(r, Ø) which tells us how the mode is distributed in the transfers plane 

right so we solved an equation for how the mode would be distributing the transfers plane. 

 

The fundamental mode in terms of r and Ø depends like this so J0 (ur)
jηØ

 or rather for the 

fundamental case this will be independent of frequency but I mean independent of the Azimuthal 

number but this that transfers field distribution so we will assume that this transfers field 

distribution does not change so you have in terms of the transfers plane a Gaussian type of a 

pulse okay or the J0 type of a pulse okay in time this would be varying as another Gaussian pulse. 

 

So there are two different aspects going on one is in transfers plane what is the distribution of the 

mode energy that is determined by the solution for the transfer field components which is 

essentially what we did in the mode theory and how a particular mode that fundamental mode or 

any other mode is propagating in with respect to z and time is given by this modulated term and 

how this modulated term will evolve through the fiber as it propagates okay so please keep in 

mind these two things. 

 

We assume that propagation does not change the transfers destruction the moral distribution of 

the energy remains as it is as it propagates through the fiber so therefore we do not really worry 

about what is happening to the transfers plane because we assume that nothing is changing with 

respect to the transfers field distribution the mode pattern remains the same only in time they are 

changing as Gaussian pulse there is a certain amplitude ψ0 

 



And then this pulse as certain with which is 2 times T0 it is also of course modulated by the 

carrier e 
jω

0
t 
let us describe this one as the pulse at z equal to 0 and time t are objective would of 

course be to obtain ψ (z,t) okay after we have propagated this certain arbitrary distance of z we 

want to obtain what is the expression for ψ(z,t) the easiest way to do this which also give you a 

numerical way of solving this problem is to go to the frequency domain. 

 

We can go to the frequency domain as long just is amplitude sixe zero is very small okay in the 

sense that you do not excite any non linear terms in the fiber which is quite good approximation 

for most communication systems as long as you are looking at a short distance communication 

for long distance communication unfortunately non linearity is will be there and this description 

is not sufficient then so for the linear propagation case we can go to the Fourier transform of this 

one and the write the Fourier transform of this. 

 

As you know or in fact one can actually write down the Ψ of ot as ∫ of A of ω or A bar of ω to 

denote the frequency component are the Fourier transform component times e 
jωt

 d ω so I am 

writing this Ψ of ot which is a time dependent function in term of it is Fourier transform well 

there is also 1/2Лwhich we should not forget so we can write this Ψ of ot as A of ω e 
jωt  

of 

course what is A of ω, A of ω is nothing but Fourier transform of this fellow right it is Fourier 

transform Ψ of ot e – 
jωt 

dt and if you look at what is the situation for this particular time 

dependent variable. 

 

You can substitute this here the amplitude size 0 being a constant simply move out of the integral 

and here you have e – t2/t02 e  
jω 

- – ω0 t dt so clearly this is a modulated waves from therefore 

first find the Fourier transform of this Gaussian pulse and then shift that spectrum by ω0 in order 

to get the modulated spectrum so you know in have to get the Fourier transform of this if you do 

that you know going back to the tables of e – to
2
/ to

2
 the Fourier transform of that one what you 

end up with is some other constants which let us call it as Ψ0 prime okay and you have e – to
2
/4 

ω - ω0
2
.  

 

Okay so the Fourier transform also a Gaussian function except that this is now centered at ω0 

which is the carrier frequency and it has a width which is 1/to2 so the larger the pulse in the time 



domain the shorter will be it is spread in the frequency domain and we are assuming that this 

spread in the frequency domain is much smaller compared to the carrier frequency so that is an 

assumption that we are making okay so this is what you are. 
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A of ω would look at z = 0 remember we are still at z = 0 we have not yet began to propagate the 

pulse through the fiber we are still at the fiber input now let us try to propagate this one and here 

you have to remember from the previous module that I talked about you have to consider Fourier 

transform as a sum of many, many frequency components each frequency component having a 

different amplitude and then visualize the propagation as each of these frequency components 

propagating along the fiber when they propagate along the fiber what will change they will pick 

up a phase factor of e – jβz correct. 

 

They will pick up a phase factor of e – jβz and that β will be different for different frequency so 

you have a pulse min time domain you got to the frequency domain you have a pulse in a 

frequency domain right and this frequency domain picture can be thought of as multiple 

frequencies in fact it would ban an infinite number of frequencies between the range but never 



the less we can think of them as multiple frequencies each having different amplitude and then 

has each of these propagate through the fiber. 

 

It will pick up a phase factor which is dependent on what frequency is propagating so at the 

output you simply some everything back and go back to the time domain by taking the inverse 

Fourier transform so that is all you are going to do you start with Fourier transform at here and 

then you go to the Fourier transform at the or inverse Fourier transform at the output end okay so 

let us do that one we have already done the Fourier transform part at the input side and we have 

seen how the spectrum would look like now I go back to the expression of Ψ at any z where I 

want right so this Ψ at any z after propagating a distance z should be given by the same 

expression except that I have this size 0 prime which is this constant e – to2 /4 ω - ω 02 times e 
– 

jβ
 of ω  x z this is the phase factor that is picked up. 

 

By the frequency component ω as it propagates through the fiber there is also d of ω okay so I 

have considered these terms of different frequencies they all have picked up a certain phase 

factor which is e - 
 jβ

 of ω x z and then I am simply summing everything back essentially taking 

the inverse Fourier transform, so this is all the equation that is there and if you want to solve so 

you can solve this using a simple numerical method, you start with the pulse at z=0 with respect 

to time you can discretized this, okay so you can discretized this you know some n number of 

points by using some discretization technique. 

 

And once you have done that one you can take the Fourier transform after you have taken the 

Fourier transform to each term you multiply this factor e
-jβ(ωn)z

 and then you take the inverse 

Fourier transform and what you get here would be ψz and tn so at a different distance what you 

get is your function which you are looking for it would be discrete you can visualize the 

continuous expression for the same.  

 

So the core of the algorithm here is this, you discretized that is your represent whatever that you 

want to transmit on a computer by a discrete function take the Fourier transform and do not 

forget to multiply each term by the appropriate phase factor and then take the inverse Fourier 

transform that is all that is there to it.     



In the assignment we will give you a code which will enable you to perform this assignment and 

see for yourself as you propagate the pulse through the fiber how that propagation would affect 

the pulse, you know how the pulse would spread out. So we will come back, we will give you the 

mat lab implementation for that one you can take a look at that mat lap implementation later. 

However, for analytical purposes let us try to see whether we can take the inverse Fourier 

transform this of this expression.  

 

How do I do that, well first of all I need to know how β is changing with respect to z, right. So 

how is β changing with respect to, sorry not z how is β changing with respect to ω I really do not 

know how β is changing with respect to ω, because it is quite a complicated expression that I do 

not even have a proper analytical value for that, analytical expression for that.  
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What I know is that the spread of the spectrum that is the spread of the pulse in frequency 

domain, the frequency domain band width as if you would say is much, much smaller than the 

carrier frequency ω0, because this is smaller I can approximate this β around a frequency carrier 

frequency I can write this β(ω) as a tyler series expansion β(ω0) and then you have +δβ/δω 



evaluated at ω0 multiplying it by ω-ω0 plus you have ω-ω0
2
/2! 2! Is 2 of course and then have 

δ
2
β/δω

2 
evaluated at ω0+ so on. 

 

These terms are going to be small so we can neglect them and this term δβ/δω at ω0 in the 

literature is denoted as β1, so you have ω-ω0.β1+ω-ω0
2
/2.β2, β2 denotes the second order 

derivative of β with respect to ω which is evaluated at the carrier frequency ω0 and this β(ω0) 

can be written asβ0 itself, so this is the approximate expression for β(ω) I have neglected all the 

third order and higher order terms. In case this neglection is not good you can include those term 

also, okay. 
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So now we have expanded β(ω) which then makes this e
-jβωz

 phase factor as e
-jβ0z

 e
-j(ω-ω0)β1z

 and 

there is also this e
-j(ω-ω)2

/2 β2z, okay so let us put this one in to this expression into this 

expression here and then evaluate the inverse forego transform so I get ψ (z t) the pulse envelop 

at the input is given by 1/2π some constant ψ0ˊ so I am taking that one out of the integral and 

what I am left here is e
-T

0
2 

Ω -Ω o
2
/4 e

-jβ0z 
e

-jΩ-Ω0
 x β1z e

(jΩ-Ω0)2
/2β2z now I remember I have 

forgotten to include e
jΩt

 here in the inc\verse forego transform correct I have e
jΩt 

x
 
dΩ

 
that factor 

I forgot top include. Now let us include that so I have e
jΩt

 dΩ. 
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What we will do is we will substitute Ω- Ωo by some dummy variable u okay and therefore this 

gives you d Ω= du this integration was anyway going from – infinity and + infinity the 

integration will remain the same so you get ψ0ˊ /2π integral e
-t02 

u
2 

/4 e
-j 

β0z e
-ju

 β 1 x z right for 

Ω- Ωo I am substituting u and then have e
-j
 u

2 
β2 z/2 e

j 
but what is Ω is nothing but u+ Ωo, so I 

have e
j
 ut e

j 
Ω0 T d Ω. 

 

Now look at this term e
j 

Ω0 T term does it depend on frequency no it does not depend on 

frequency so you can actually remove this e
j 

Ω0 T term outside the integration you can also 

remove this e
-j
Ω0 term be

-j
 β0 x z term because that is also independent of frequency β0 evaluated 

at Ω0 is actually a constant therefore that term can be removed e
j 
Ω0 T tern can also be removed 

in fact if you remove them you end up with this equation which is e
j 
Ω0 T –β0 x z. 

 

This would actually tell you how the carrier would have propagated if it was not modulated okay 

so it would have simply told you how that the carrier would have propagated if it is not 

modulated and this is in fact defining the phase velocity. This is what in meant when I the earlier 

module I said carrier travels at phase velocity Ω0/ β the carrier is propagating at this phase 

velocity. So I have removed this one. 
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So in this expression I have removed that what is now remaining can be grouped again together 

okay so there are terms which are u
2 

dependent so I can group this term with this one I can write 

this e
j
u(t)  e

j 
uβ1 (z) so I can write this one and says ψ0ˊ /2π I am not writing this e

j 
Ω0 T –β0 x z 

term but you have  to assume that the term there so you have e
j 
u is a common factor so I can 

write this as t-β1 x z okay interesting I have t-β1 x z and then I have e- first there is u
2 

then you 

have t0
2 

/ 4 + jβ2 z/2 it that okay so this is this one integrated of course with respect to du so this 

is what I have. Now I can write this t- β 1 , this is the only place where “t” term is there, so I can 

write this t- β 1 z as some τ, finally I know that the function would actually be inter  with 

respective to τ right?  so instead of time it would be τ, and that τ . 
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 Which is given by t- β 1 z, you will appreciate this one better if you remember what β 1 is, β 1 is 

actually ∂ β / ∂ ω. But remember we had defined a group velocity as Ug = d ω/ d β or 

equivalently ∂ ω/ ∂ β, so ∂ β/ ∂ ω must be 1/Vg , so it is like a group ∂ay, β 1 is like a group ∂ay 

happening, so divided by l will give you the group ∂, okay. 

 

 

So β 1 is inversely promotional to Vg, so you can write this one as t-z/Vg, so what you can see 

that eventually the Gaussian pulse would be arriving at a velocity which is dependent on group 

velocity, not on the phase velocity, the carrier would arrive at the phase velocity where as the 

pulse would arrive at the group velocity. 

 

What is left?  Here this sees one big term which you can think of as some d
2
 okay, where d is a 

constant because inside if you look at it T02
 
is a constant β 2 is a constant, because that’s what 

we have assumed you have evaluated β 2 at that particular point, it is z is a constant, because you 

are looking at a particular value of z, right? So this is the constant which you can write this as d
2
, 

and really what is happening to this equation? Including this 1/ 2 π is that you are simply looking 

at the inverse Fourier transform of this e
-u2d2

 term. 



 

Okay, if you are not comfortable having “u” around, since “u” is a dummy variable, you can 

simply write this as e 
– ω 2 d2 

term and I know that this is a Gaussian pulse shape and inverse 

Fourier transform should be a time dependent term, which would be like e 
–t2

/t
2
, give or take 

some constants are there. 

 

You know there is if this was divided by 4 then this would have been okay, because you have e
-

t2
/d

2
 since it is not then you can multiplied and divided by 4, and then this would be e 

–t2
/4 d

2, 
so 

the point to note here is that what we have in the bracket here are rather in the expression for the 

integral is actually nothing but simple Gaussian inverse Fourier transform of a Gaussian function 

okay. 

 

Rather than calling this as some constant d
2
 let us be little more clever and call this as t

2
 but 

because this would depend on some set I am going to call this a t
2
(z), okay I get e

-t2(z)
 but at a 

given set this t
2
 is a constant , so please don’t forget that, and this inverse Fourier transform will 

be e
-t2

/t
2
(z), there is a factor of 4 or something, okay you don’t really have to worry about that 

factor 4. 

 

Okay so this is what we have interesting what is t
2
 (z)? t

2
 (z) is given by T0

2
 /4+J β 2z/2, how is 

t
2
z a complex number? Well it is complex because of its j β 2 terms but what is the implication of 

this? Let us look at what is the Fourier transform so the final result φ (zt) is given by all those 

constant of c , because there is a inverse Fourier transform there would be one more constant. 

 

So let us called all those constants as some constant c , okay, and you have the carrier term 

arriving here which its own phase velocity e 
j ω 0t

-β 0z and then you have the Gaussian function 

but remember now, this was the Gaussian Fourier transform but it is not this T that I am looking 

at, it is actually that this T-Vg that I have to look at, because this is the fourier transform of the 

Gaussian but Te is itself is given by t-ß1z, so here it is that , so you get e
-(t-z/Vg)2/4T2z

, this is the 

Gaussian pulse that I have obtained, forget about this factor of 4 here, the point is the pulse width 

has now become the function of z. 

 



In fact z is this number you can write this one in terms of its, magnitude call this as Tm
2
 (z) and 

also write this angle. So this would be the angle θtm of z, again this is a function of z, because 

you are evaluating a different values of z, but if you fix the value of z, this is all going  to be 

constant, so I can write down in terms of magnitude and phase angle, so I can write this fellow as 

e
-(t-z/Vg)2/4Tm2z) 

and then you have angle here which is  e
j θtm(z)

.This e
j θtm(z)

 can go onto the top and 

essentially become a constant phase for you. 
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So there is a phase factor associated with this one, so you can evaluate this one or you can write 

down 1/T
2
 as some magnitude and a phase angle. In any case whatever you do, you will see that 

there is a magnitude and a phase angle that is present and this phase is the function of z, this give 

raise what is called as the chirping in optical fibers. Chirping is the phenomenon in which the 

instantaneous frequency keeps on changing and that chirping is coming because of this θtm (z). 

A more careful analysis of you know by going to the tables of a Gaussian function will actually 

show that, this expression which we have written down, for4 T
2
(z), can be written as c/T(z)/T0  e

-

(t-z/Vg)2/T2(z)
 is a phase factor, e

j ϕ(zt)-ß0(z)
, so this would be the expression for ψ(z,t), taking all these 

constants T0   is of course the original pulse width or there is a square root here, so T0   is the 

original pulse width and T(z) is the pulse width at any point z. 



 

I have just separated them out in terms of it phase and magnitude angle, so this ϕ(zt) is basically 

ω
0
t coming from the carrier term plus there is also ϰ (t-z/Vg)

2
 and because of this T

2
(z) term , 

there is ½ tan
-1

2αz/T0
2
, where α itself is a different parameter, α is basically ß2, so you can 

actually see that if you are little more careful in Fourier transform this is what you’re going to get 

and what is interesting about this is that at z=0, you might have certain pulse, you know a 

Gaussian pulse, but at a different value of set, you know the pulse would have nicely spread out. 
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And this width is given by the T
2
 (z) or rather it is function of T

2
(z), we will also see that, if you 

look at it in terms of carrier frequency, you will see that, first let me draw the pulse on envelope, 

now let me fill up the modulated waveform, so the frequency of the carrier is actually increasing, 

so this phenomenon is called as chirping. You can look at the assignment for some more details, 

for careful details about the mathematics involved here. I have just given you the intuitive 

picture, so let me summarize whatever we have done here. 

 

We said that dispersion is a very important topic in optical fiber and that is clearly so, because it 

causes pulse to spread out and once pulses start to spread then the rate at which you send pulse4, 



that is you send in one pulses you have to wait until the pulse has to spread properly, because if 

you send in a pulse before the pulse spreading has been taken into account, then the pulse as it 

propagate would spread and then it would actually invade into other pulses territory. 

 

So it essentially starts to talk to the other pulses giving rise to what is called the inter symbol 

interference, so pulse spreads and gives rise to inter symbol interference. Here are many different 

type of pulse4 spreading phenomenon which is the dispersion phenomenon, material dispersion 

arises because of the material, waveguide dispersion arise because of waveguide dispersion 

chromatic dispersion arises because3 of the geometry effect in single mode fibers. 

 

Polarization mode dispersion we will talk about it in later stage and then we also have another 

dispersion which is multimode fiber dispersion, that is intermodal dispersion, which anyway 

does not really figure into our course at this point, when calculating how a Gaussian pulse would 

spread, the reason we took Gaussian is because kind of simple to analyze analytically , you could 

have taken any other pulse in a numerical method we will supply you can actually see that for 

yourself, nicely Gaussian pulse spreading out or any other kind of pulse that is  spreading out. 

 

The idea is to start at whatever the pulse is given to you at z =0 and then go to the frequency 

domain picture, when you go to the frequency domain, you will get the spectrum and then you 

will propagate each component of that spectrum along the fiber. As this component propagates 

this will pick up e
-jß (ωz)

 phase factor and that has to be taken into account, for the case of 

Gaussian analyze, you know Gaussian pulses, there is a nice inverts for a transform for a 

transform that you can do and what you essentially see is that, the pulse not only spreads out, 

actually it is amplitude also decaying, as you can see when we drew the pictures. 

 

The pulse might not have started at the amplitude but as its propagates its amplitude decays also 

its frequency changes, there is a chirping that is going on, and this chirping depends on sin(ß2), 

this ß2 is positive. Corresponding to what is called as normal dispersion, then there is a spreading 

of pulse. However when ß2 is negative , the pulse initially contracts and then of course begins to 

spread again, so this kind of a behavior of pulse initially contracting and spreading , there is a 



region in  which the pulse is actually getting short and it’s called a anomalous dispersion and that 

happens when sin(ß2) is negative. 

 

So all this, problems do occur in addition to pulse spreading is also called as chirping and one 

has to take care of these factors when deciding an optical communication system. So we will 

stop her and we will take up the question of additional things, additional factors that affect the 

design of the single mode optical fiber such as attenuation and non linear effects in the , later 

modules. Thank you very much. 
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