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Lecture -4
The Hilbert Transform

Today, we will discuss the Hilbert transform. Now, unlike the transforms that we have
learnt earlier, namely the Fourier transform and the Laplace transform, which take you
from let us say the time domain to the frequency domain. This transform is of a slightly
different kind; it takes a time domain signal to another time domain signal. So you are

not changing the domains.

The reason, why | am discussing this before, | have even started with the regular content
of the communication course; that is what we are going to follow in this class, because
this transform is a very useful transform, for representation of certain kind of signals
which, we shall be most commonly dealing with, namely the representation of band pass
signals. Since, we are going to deal with band pass signals quite a lot, it is useful

therefore, to have this analytical tool available to us in this representation task.

Later on, we will find that the, it has a very particular, very important application in
particular, for the case of certain for representing certain kinds of modulation schemes,
for example, the single side band EM modulation scheme.So, that will be one of the
major applications of this representation, so since this application will only come later.
Today, we will only discuss what the Hilbert transform is all about. What it is, how it can
be used for representing band pass signals in general; that is our mainly for today. To

start with, let us consider what Hilbert transform is all about.



(Refer Slide Time: 02:53)

Let me consider a linear filter, or a linear time invariant system; this transfer function is
something like this. Are you familiar with this function signum of f; it is a very simple
function. A signum of f is equal to 1 for f greater than 0 is minus 1, for f less than 0. So
what does it look like of frequency axis or f axis, this is a function, plot of the signum
function, signum of f, plus 1. Here, we will define the value at 0 to be 0 itself; the mean

value between the two extreme values.

Now, with this definition of the signal function, what is the ratio of the transfer function
that we are talking about here? Suppose | was to plot H of f, as depicted here, what will it
look like; just the opposite of this.Let this value be plus j, this value be minus j. Now that
is the mathematical picture of this filter. Can you tell me what will this filter actually do
to an input signal? How will it affect the input signal? Can you say something about the
effect that such a filter will have on any input that is applied to ((Refer Time: 05:03)).

Student: ((Refer Time: 05:04))
Please speak a little loud.
Student: ((Refer Time: 05:07))

There is going to be a phase shift of minus pi by 2 for every frequency in the input
signal; is it clear? So, this filter, we phase shift every frequency component present in a
signal by a value of minus pi by 2, so that is what the Hilbert transform does.



(Refer Slide Time: 05:37)

It phase shifts simply phase shifts all frequency components of the input by this amount.
So, if you were to look at magnitude characteristics of this filter, what will it be? It is
equal to 1 for all f. But this is going to be equal to minus pi by 2 of thefor fand since, it
has to be an odd symmetric function, it will be pi by 2 for f less than 0. So, that is what
Hilbert transform is. It is a filter which carries out a constant phase shift of minus pi by 2

radiance for every frequency component that is present in input signal.
Student: ((Refer Time: 07:02))

You see, real signals may have both positive frequency as well as negative frequencies,
when it gets phase shifted; phase shifted by minus pi by 2, the corresponding negative
frequency component. Every real signal will have a positive frequency component and a
negative frequency component. The positive frequency component will get shifted to the
minus pi by 2 and the negative by pi by 2, and the real signal for example, is a cosine

wave, if it is cosine omega naught t.

What will happen to this? It will become cosine omega naught t, minus pi by 2. Now
look at the spectrum of this in the positive frequencies. This will become minus j pi by 2
and negative sign will become e to the power plus j pi by 2. So, the real phase shift is
minus pi by 2, but that is only a mathematical effect of that one. Imagine negative
frequency components are always present in a real valued signal. So, that is something

that is purely a mathematical property.



(Refer Slide Time: 08:29)

Now, let us look at the same operation in different way. We know that the output of any
filter; see output of some signal, we want to understand what is the nature of the output
signal. We have said something about it, but we like to say something more about it.
What we have said is every frequency component gets phase shifted by minus pi by 2
radiance. Can | express the waveform y of t in this case in terms of x of t? That is the

next question.

What is the actual waveform like, for a given input waveform x of t and | know how to
find that in our review of signals and systems. We learnt that the output is a convolution
of an input signal and the impulse response. So, y of t is x t convolved with h t. So the
question arises; what is h of t for this filter so that, if | know h of t, | can affect this
convolution and find out what is the nature of y of t. So, now I will give you a small

exercise to do, because this is a simple exercise in Fourier transformation.

I will also give you a hint as how to do it, but I like you to do it yourself. Exercise is to
prove that these two functions are Fourier transform pairs. Prove that j by pi t, and
signum of f are Fourier transform pairs. To prove this, | will just give you a hint. Do not
start with the signum function directly, because you will have a problem. It does not
satisfy the condition directly. So, a problem, it is a constant amplitude signal; it is not a
finite energy signal in the frequency domain. lit does not satisfy the condition.



So, you will have a problem doing it directly. So do it slightly indirectly. You consider
this function, which is basically, let us call this. Let me define this function G f with a
parameter alpha, and is defined as e to the power minus alpha f, for f greater than 0, and
e to the power alpha f, or minus e to the power alpha f, for f less than zero. Now, it is ok.
You can see that ((Refer Time: 11:17)), it is a finite energy in the frequency domain; this

is of course f.

So, first find the Fourier transform of this function or the inverse Fourier transform of
this function and take the limit as alpha tends to 0. So, if you carry out this exercise, you
will be able to prove that these two functions are Fourier transform pairs. So, | have
more or less done the job for you. You just have to sit down and write down the
equations to confirm that this is the result. Can | assume that you can do this? It will also
be a good check for yourself, that you can handle the Fourier transform, nicely by

yourself.

(Refer Slide Time: 12:11)

So, suppose we have this result; what does it mean? So, what is the Fourier transform of
minus inverse Fourier transform of minus j signum f, because the impulse response is
looking for the inverse Fourier transform of the system function or the transfer function.
They transfer function is minus j signum f, Signum f inverse Fourier transform is jpi t.
So this will simply become 1 by pi t, because minus j square is equal to 1. So, the inverse

Fourier transform of minus j signum fis 1 by pi t.



And therefore, we can now write; what y of t will be like? Incidentally, instead of calling
it a general signal y of t, since it is a very special operation, | denote this y of t, by a
special notation. | call it x hat t. x cap t. This symbol is usually called a cap symbol. We
call it x cap t and it is equal to the convolution of the actual input signal x t with the
impulse response 1 by pi t which, you can write and that is the definition of the Hilbert

transform.

X hat t, which is the output of this constant pi by 2 phase shift filter is related to x t,
through this convolution relation, and x hat t here, is a Hilbert transform of x t. ((Refer
Time: 13:57)) this convolution is this integral; x tau into h t minus tau d tau, h t minus
tau here would be, 1 by pi t minus tau and that is how this integral comes. | hope it is so
ok. You can do the Hilbert transform in two ways; one purely as this integral relating to
the input signal x of t to the Hilbert transform x hat t, or the other as an operation in

which, every frequency component gets phase shifted by minus pi by 2 radiance.
Any questions?
Student:((Refer Time: 14:52))

Why is it called a linear filter, because it satisfies the principle of superposition, and it is
only linear filter, that we can express in terms of the transfer functions or the impulse
response. So all filters that we normally deal with are linear filters. The superposition
integral is nothing, but the convolution integral. The convolution integral is basically,
coming out of the linearity of the filter. So, any filter which is specified by transfer
function or by it is impulse response. We are implicitly assuming it to be a linear filter.

Yes please.
Student: ((Refer Time: 15:35))

In this particular case, h f is not complex; it is really imaginary only. You see, in general
h of f, if any filter would be a complex valued function, and you will to represent a
complex valued function typically, you will have to make 2 plots. A magnitude plot
plotting magnitude of h of f, and a phase plot. We can do that also here in this case. It
happens to be purely imaginary, so one plot is good enough. If it is either purely real or

purely imaginary, one plot is easy to we will describe the whole thing.



(Refer Slide Time: 16:23)

But if you wish, you can still go back to the 2 plot system and what will be the 2 plots. In
this case, the amplitude plot transfer function will be a constant equal to 1, and the phase
plot angle of H f; what will this be? Minus pi by 2 for this, for positive frequencies and
plus pi by 2 for negative frequencies. So, this also is a description of the Hilbert
transform. This is the magnitude plot. This is the phase plot. So, the question was how do
we show the magnitude and phase plot in the Hilbert transform. This is how they look
like all.

Let us look at some interesting properties of the Hilbert transform in this slide. We
appreciate the properties of the Fourier transform and the Laplace transform; that is,
because some simple basic interesting properties of the Hilbert transform. Let me ask
you; suppose | take the Hilbert transform of x hat t; what will I get back without doing

any mathematics, can you tell me?

If | take the Hilbert transform once again, of the Hilbert transform of x t, minus x t,
because the total phase shift will become minus pi for every frequency component. So,
every frequency component goes through a phase reversal. So, the result that the whole
signal, this simply becomes negative of the original signal. So, this is very easy to prove.

I will leave the proof. It is obvious, | hope it is obvious.

The second one is, so Hilbert transform in the first one is the Hilbert transform or the

Hilbert transform of x t is minus x t. So, carry out the Hilbert transformation twice; you



get the same signal back except for change in sign. Now of course, let us look at some
special cases. Suppose | have a very simple signal x of t equal to cosine 2 pi f naught t.
What is your Hilbert transform for this? If x of t is cosine 2 pi f naught t, what is it is
Hilbert transform, sin 2 pi f naught t?

(Refer Slide Time: 19:04)

What is the Hilbert transform of sin 2 pi f naught t? So, the Hilbert transform of this
signal, | depict it like this is minus cosine 2 pi f naught t. So, these are very simple
signals. So, you can find obviously, without going through that convolution operation.
You have to judge for yourself whether, it is more beneficial to use a frequency domain
relationship to find the answer or to use a time domain relationship. In this case, it is
much better to look at the frequency domain, because in a frequency domain, we have a

single frequency component.

So, | know what happens to the signal. So, the Hilbert transform of sin 2 pi f naught t is
this. In general, suppose | now consider the complex sinusoid and take the Hilbert

transform of that; what will that be equal to?
Student: ((Refer Time: 20:04))

Minus j times, you have to be little careful. It will depend on the sign of f naught also. If
you we are assuming of course, that f naught here is positive. But suppose f naught is

negative, then it will be plus j, because we have so minus j into signum of whatever, is



the this parameter here, into e power j 2 pi f naught t. Please convince yourself that this
is correct.You have to take into account the sign of this exponent; it is exponent is
positive. See, when you have a real signal, there are both positive frequency components

as well as negative frequency components.

So, it makes sense to say that the positive frequency gets shifted by minus pi by 2 and the
corresponding negative frequency component gets shifted by plus pi by 2 or multiply,
just multiply with plus j and minus j. But when you have complex exponential, we have
only a single frequency component, either that is positive or it is negative. So when it
gets multiplied by minus j or plus j, will depend on whether this is positive or whether, it

is negative; are you with me on this everyone? Good, some other properties.

If you have any questions please raise it. | will try to make sure that all you understand
what | am saying. So | can assume that it is ok. What can you say about the energies of x

t and x hat t? What is the relationship between the suppose x of t is an energy signal.
Student: ((Refer Time: 22:18))

They will be same; why because mod of h of f is equal to 1, so the, if you look at in the
frequency domain x hat f in the Fourier transform of the Hilbert transform of x t, | denote
by x hat f, but this is equal to minus j signum f into x of f. So, look at the magnitude of
this; it is equal to and from Parseval’s theorem. We know that, the energy function can
be written in terms of this equability holds. So, this is the same for both of them. That
means, energy of x t and x hat t are the same. Similarly, if x t was a power signal, rather
than an energy signal, it could have been checked that the powers will remain the same

all.



(Refer Slide Time: 23:59)

So, the property that we have just discussed is that x t and x hat t have the same energy
or power as the case may be all. Next property and this one is also quite interesting. We
can almost deduce it from the case of the simple case that we discussed with the case of
sin wave. What is the Hilbert transform of cosine 2 pi f naught t, sin 2 pi f naught t?
What is the relationship between these two? They are orthogonal to each other. In
general, one can show very easily that x of n Hilbert transform would be 2 orthogonal

signals. So x t and x hat t are mutually orthogonal.

Mathematically, this is written like this. Of course, this statement is for energy signals
for the power signals. There will be a slight modification of this statement
mathematically. How do you prove this; proof, any ideas? One way is to substitute for x
hat t in terms of x t the convolution integral and see what happens to this integral; that
will be rather complicated, I can assure you. Is there a simpler way? If we can somehow,
go from the time domain integral to the frequency domain integral, and how do you do

that; a slight generalization of the Parseval’s theorem.

There is a generalized Parseval’s theorem available, which talks about two functions,
integral of the product of two functions. | am sure you know about it, but in case you do
not, I will just tell you that. So, by Parseval’s theorem, which is actually, the most

general form of the Parseval’s theorem, this time domain integral again, | will leave the



proof for you to work out yourself or look it up in some book. This will be equal to x f

into the conjugate of the Fourier transform of the second function.

So, this will become x conjugate f df. You can see that the normal Parseval’s theorem is
a special case of this. You can think of mod of x t square as for a real signal x square t as
x tinto x t. So, when you apply the generalized Parseval’s theorem on that, you will get x
f into x conjugate f. In this case, you will get x f and conjugate of the Hilbert transform,
the Fourier transform of x hat t, which is x hat f. So, as far as the proof of this is
concerned, as you know | am leaving it, as an exercise for you. Please see if you can do
it.

(Refer Slide Time: 27:12)

If you have this, what is the value; what is the value of this integral? So, what you are
saying is integral of x t x hat t b t is equal to integral of x hat f x hat conjugate f, sorry, x
f into x hat conjugate f b f. Let us substitute for x hat f. It is equal to x hat conjugate f is
equal to j signum f. We have taken it as conjugate into x conjugate f minus j signum f
becomes plus j signum f, because of the convolution operation. So, it becomes X

conjugate f, because of the conjugate operation.

This is equal to x hat conjugate f. | am substituting for this. This is equal to j signum f
into mod of x f square d f and this is equal to what is the value of this integral; it is
obviously, 0. What kind of a function do you have inside the integral? It is an odd

function of f,x f mod square for a real signal, is an even function, magnitude square



function or magnitude function. Magnitude spectrum is an even symmetric function.
Signum f is an odd symmetric function. The product would be an odd symmetric

function and therefore, the value of this integral is 0, which proves our result.

So, you must judge in the case of problems in Hilbert transform ((Refer Time: 29:08)) to
do the required operation in frequency domain or time domain. It is so easy to show this
in the frequency domain, but if you were to proceed in the time domain, it will be much

more involved to prove the same result.

(Refer Slide Time: 29:33)

The last, but very important property is the following. This is something slightly more
involved. I will just take the result here, and again ask you, to see if you can prove it. If
not, we will discuss it in one of the problems, ((Refer Time: 29:55)), but try. Suppose
you have two signals; I will call them ¢ t and m t and they have what we say non
overlapping spectra. That is in a frequency domain they do not overlap ((Refer Time:

30:25))signals, but in a frequency domain, they do not overlap.

Since obviously, if they are overlapping, one of them will contain lower frequency
components. The other will contain higher frequency components. So, without loss of
generality, let m t be the low pass function. So, we say that m t is low pass means, it is
spectrum easily occupies the lower frequency components and c t is high pass in that
sense. It could be the other way round, but we have just decided to do this. Then if you
consider the Hilbert transform of the product of these two functions, these two signals.



If you look at the Hilbert transform of m t into c t, it will turn out to be nothing, but m t.
The same low pass signal the m t, which is being used here, multiplied by the Hilbert
transform of c t. So, proof of this at the moment; | am leaving that as an exercise. If
necessary we will discuss it in the tutorials, but it is something that you have to sit down
and prove. It is not obvious so; therefore, do not attempt to visualize it away. You will

have to sit down and work it out.

(Refer Slide Time: 32:11)

But as a consequence of this the two special cases, which are particularly relevant to us,
because we deal with such situations quite commonly, is when c of t, the so called high
pass signal happens to be a, what we call carrier signal of some high frequency omega
naught. And m t is a signal with much lower frequency band; that is the highest
frequency component m t is smaller than omega naught. Then, that condition will be
satisfied and what will happen to the Hilbert transform of this thing if you apply that

result?

It will become m t into the Hilbert transform of cosine omega naught t. It will be m t sin
omega naught t. So, this is a very important special case of that. Similarly, m t sin omega
naught t will be minus m t cosine omega naught t; are you with me? So, this more or less
is a reasonably good introduction to the Hilbert transform definition and its properties.
We next look at the application of the Hilbert transform in representation of signals



particularly, representation of band pass signals, which is what | mentioned in the

beginning that it has major applications there.

To do that, if you have any questions, if you want a discussion on some concept that we
have discussed so far, you can take a couple of minutes or | proceed further now. I like to
kept this as interactive as possible. So, if you have any questions, please come up with
them; no questions? So, it is fair for me to assume, that the concept of simple enough for
you to have totally absorbed at the moment; is it ok? Let us look at the next concept. The
next concept that I am going to introduce based on Hilbert transform introduction that we

just had is a concept of analytic signals.

Let us say, x t is a real valued signal and then let me first, give you a little bit of
motivation.We have discussed earlier, and have discussed at length. | am sure, when you
had course on signals and systems, that it is much more convenient for analysis, to work
with the complex representation of a sinusoid, then the sinusoid, then the trigonometric
representation of the sinusoid. Example; instead of working with cosine omega naught t,

it is much more simple to work with e to the power j omega naught t.

So, in this case, in that sense, e to the power j omega naught t is an analytic
representation of cosine omega naught t. You want to generalize this concept of arbitrary
signals, any signal; not necessarily only sinusoidal signals. That is our motivation behind
what | am presenting here. And obviously, from our analogy with the real signal, from
our analogy with the sinusoidal signal, such analytical signal must necessarily be a

complex signal.

So, we need to define or introduce the concept of an analytical, which is obviously,
going to be very, very complex and it would have the similar simplification, which is
offered by the normal complex exponential representation of a sin wave. So, we
introduce for real valued signal x of t, it complex analytical representation as x sub p t.

We will soon come to the point as to why we use the subscript p in a few minutes.

Its real part is x of t, x p t is a complex valued signal, its real part is the same real values
signal with which we started, but it is imaginary part; it has an imaginary part is the
Hilbert transform of x t. So, that is the concept of an analytical signal. An analytic signal

has this composition. It will now see that your complex exponential is a special case of



this representation, is not it, this is cosine omega naught t, this becomes j sin omega
naught t, which is e power j omega naught t. So, that becomes a special case of this.

And, this is more general form of that analytic representation, we will see. We will try to
get used to this, and try to develop a feel for this representation as to what it can do for
us. Now, one of the things that you can see is before | do that, let me again discuss
conceptually as to some what is significance of this representation.

(Refer Slide Time: 38:16)

Suppose | work with a signal like this. Let us consider the signal m t cosine omega
naught t. Suppose | ask you a question as to or may be let us make it, slightly more
general, omega naught t plus theta. Suppose | ask you to visualize the signal as a
waveform that | mean, it is a product of two signals. We are going to discuss this kind of
product signals in detail when we discuss modulations. Let this be the, as be the time as,
any other to discuss, what is the nature of the signal; what does it look like?

Assume that m t is a ((Refer Time: 39:00)) signal of which has a ((Refer Time: 39:02))
low frequencies. It is a low pass signal and when | say a low pass signal, essentially, it
contains lower frequencies. Much lower than so called what we typically, gave the name
as carrier frequency omega naught. So, this is the highest frequency component of m t is
much smaller than omega. So, let me make it more ((Refer Time: 39:27)), let us say, this

is the message signal m t, this is what it looks like the waveform m t.



And, the carrier looks something like this or the cosine wave looks something like this
much higher frequency. So, it will be ((Refer Time: 39:42)) look like. Can you say
something, is it easy for you to imagine that this is what the product will look like? Let
us if not, let me do some manipulations. Basically to visualize this, you have to answer
only one question. It is obvious that the product signal is a fluctuating signal, fluctuating
at this rate. It is the same cosine wave signal, cosine omega naught t signal with some

instantaneous amplitude, which is governed by the value from t.

Suppose | ask you the question; what is the instantaneous amplitude at time t? How will
you answer that question? It is m t or something else. Let me do a slight expansion of the
trigonometric identity. This is m t cosine theta, cosine omega naught t, minus m t sin

theta sin omega naught t. So, what is this instantaneous amplitude?
Student: ((Refer Time: 41:12))

This no, it is if you remember, if I want to go from here to here, this always has to be
positive quantity and what will this be equal to? It will be m square t cosine square theta,
plus m square t sin square theta. This is simple trigonometry for you; simple
trigonometry; is it ok, which if you have to simplify, a will be square root of m square t,
which is how much? Well ((Refer Time: 41:51)) mod of m t, the sin information will be

lost and it has to be a positive function.

So, really speaking, if I write something like this, what | am saying is that instantaneous
amplitude is governed by the modulus of m t, the positive value of m t; m t itself will be
positive and negative. For example, the original signal was like this. It was going
positive and negative. But if | look at this signal, as if I want to look upon this as a
waveform, | can ask the question, it is a sinusoidal. 1 know this is sinusoid of high
frequency to visualize it. The important question is what is the instantaneous amplitude

of that sinusoid?
Student: ((Refer Time: 42:34))

| am talking of amplitude as against this function m t. So, | am not saying this is equal to
mod of m t cosine omega naught t plus theta. But to visualize it of asking, what is the
amplitude of the signal at time t? The answer is the amplitude is whatever, is the

magnitude of m t.



Student: ((Refer Time: 43:00))

No, amplitude has only one. See the question; you have appreciate amplitude has only
one significance. If | say a cosine theta or minus a cosine theta; what is the amplitude a ?
That is what | am referring to. You are appreciating what | am saying. Now the
amplitude does not, minus the minus sign has to be incorporated to the phase

information. Is it clear?

So, | am talking about instantaneous amplitude. So if you look, so that is one way of
visualizing this signal. The important signal, why | brought this up here is, at such a
signal, you can see, in terms of some fine variations, whose amplitude variations are
dependent on the magnitude of m t.You can think of this. For example, this waveform
has a very important attribute of this product wave form and this waveform, which
basically, is a trace of the amplitude of the signal of this sin wave. As a function of time,
you can think of this trace of the amplitude of this waveform as a function of time; that

we call the envelop function of such a signal.

So, you know, actually band pass signal here, and those ((Refer Time: 44:29)), which
you can define here, which you can call the envelope of the signal. The envelope of the
signal is a trace of the peak of the sin wave that we are working with; the sin wave that
you are working with this. If you trace out the peaks of this that forms the envelope of
the signal, and it is easy to visualize this kind of an envelope when you have product of a
low pass signal and high pass signal.

When you have a sinusoid like this multiplied by a low frequency function like m of t,
this slope fluctuation, these envelope fluctuations are slope fluctuations. But the sign of
the fluctuations are depicted or dictated by the value of omega naught, which is much
larger. So, the point that | am basically making is that for band pass signals of this kind,
this is a band pass signal hopefully obvious, because the Fourier transform of this signal
will be translated version of the Fourier transform of m t; frequency translated version,

and therefore, it becomes a signal which is a band pass signal.

So, in general a band pass signal of this kind, you can identify an important attribute of
that waveform, which you can call the envelope of the waveform, and that contains some
useful information about m t itself. In this case, these are exactly equal to empty. It is a

modulus of empty as you can see, empty goes like this; the envelope goes like this; the



envelope is this which is mod of m t. The actual signal is this, but the envelope is a trace
of only the peaks of these fluctuations, is mod of m t.

We will discuss this waveform in much more detail later, when we discuss the amplitude
modulation. For the moment, my only simple point that I want you to ((Refer Time:
46:36)) was, that such a signal is associated with the concept of an envelope. And |
wanted to introduce this, because actually in general, for any kind of signal, whether or
not it is band pass nature, mathematically one can define the concept of an envelope in
exactly the same way, that I have defined here.

(Refer Slide Time: 46:59)

And the next concept therefore, that | will take up in the next class is the concept that x p
t is sometimes also called the pre envelope of x t, or simply, the complex envelope, but
before introducing this concept, | wanted you to understand what envelope means and
that is why | ((Refer Time: 47:28)) a little bit, so complex envelope of x of t. So, this
analytic representation x sub p t, which is defined as x t plus j times x hat t, we also call
the pre envelope of x t or the complex envelope of x t. Precisely, what is the relationship
of this x sub p t to the envelope; that we had just discussed that is something we will take
up in the next class.

Thank you very much.



