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My subject for today’s discussion with you is a very brief review of signals and systems, 

because I believe there is some of you, who might have slightly lost touch with the 

subject, because there is a gap of about a semester or a year for them. So, I just want 

everybody to be, on equal terms here and this is important for all of you, that you have a 

very good solid background in signals and systems, as I mentioned earlier also in the 

discussions.   

Now, before I do that, let me complete, the discussion we were having last time, about 

communication channels. If you remember, I discussed a variety of communication 

channels with you, particularly channels, which are relevant to us. Then we electrical 

communication channels, by particularly one of these channels, is some kind of an 

electromagnetic wave channel. It can be a free space propagation channel like we have in 

their atmosphere or in free space, or it could be in guided electromagnetic wave channel.   

The examples of guided electromagnetic wave channels are the pair of wires, through 

which you may communicate, let us say as we do from a home to telephone exchange.  

Or it can be ((Refer Time: 02:30)) axial cable, which can carry much larger number of 

signals, than a pair of wires can and because of the larger bandwidth of it can support, or 

it could be an optical fiber, which can support an even larger bandwidth and here, there 

is a small comment. I would like to make and ask all of you to think about it.   

Typical, as you go up in the carrier frequency or center frequency of operation, at a 

communication channel, if you are able to do so, it increases your ability to take up 

larger bandwidth, it supports larger bandwidth, why is it so, think about it and we will 

discuss it sometime all. For example, why did we use optical communications, why did 

we use fiber optic communications, because it has a capacity to offer, you much larger 

bandwidth left.   



Let us say, microwave communications can do it or even larger than a coaxial cable, can 

support and so on and so forth, so it is an issue, I like you to think about, before I 

respond to this. Now, come back, let us come back to our subject of interest today, which 

is a very brief overview of signals and systems.   

(Refer Slide Time: 04:06) 

 

Now, to start with, let me start with the very beginning and if you remember, you must 

have dealt with a representation of signals, in terms of in a first starting with the most 

basic signals. Well to start with, if you remember we can classify signals into two kinds, 

namely deterministic and random signals, so you are talking about signals now. And in 

communications we deal with both kinds of signals, because deterministic signals are 

useful to us, as for example as careers.   

We use a sine wave as a career, of a certain frequency and deterministic signals are also 

useful in, generating synthetic signals of various kinds, but random signals are 

absolutely, characteristic of communications. Why, because most of the time, then 

information that is of interest to you, is typically unpredictable in it is form, and 

therefore, it is random. You want the speech wave form, that is coming out of a person’s 

speech voice is an unpredictable waveform to a large extent.   

To some extent it is predictable, but to a large extent it is quite unpredictable and 

therefore, it is quite random. Similarly, in the noise that you encounter in a 

communication system will only be modeled as a random signal, now right now, I will 



not give you the random signals part, I will only look at the deterministic signals. The 

most basic kind of deterministic signals, which you come across, are complex 

explanations and sinusoidal signals, through a sinusoidal sequence.   

So, if you take a real sinusoid, like a, very simple signals like this, we know some of it is 

features, but as you must have already learnt, that you can express a real sinusoidal 

sinusoid, in terms of complex exponentials. It is much easier to work with complex 

exponentials in many instances, than in the corresponding trigonometric function, so you 

take the complex exponential. As a ((Refer Time: 06:15)) phasor and the cosine signal 

can be thought of as a resultant of two ((Refer Time: 06:15)) phasors, which are moving 

in opposite directions, one in a clockwise direction and other in anti clockwise direction.   

So, you can think of this as real part of, let us say this complex exponential, this is a very 

basic step, but it is useful to review this, because sometimes, people forget the basic step 

and they have difficulties later. So, this is the ((Refer Time: 06:54)) that, a phasor that is 

rotating in the clockwise direction, if it is in the clockwise then, this is the sum of these 

two phasors. The other one is rotating in the anti clockwise direction as indicated by this 

negative sign in the exponent.   

Similarly, if you have, let us say a signal like this, this is just an example, you can 

express it, if you were to carry out some simple trigonometric manipulations, as e to the 

power j 10 pi t, minus 2pi by 3, plus e to the power minus j 10 pi t, minus 2 pi by 3. So, 

whether you are working in a cosine wave or sine wave, you can think of it, as sum of 

phasors and phasor is a complex exponential, rotating either clockwise or anti clockwise, 

and this term in the phasor indicates the phase, initial phase of the phasor.   

You have any questions, have I made any mistake? 

Student: ((Refer Time: 08:22))  

It should have a minus, yes correct.   

Student: ((Refer Time: 08:34))  

That is right 

Student: ((Refer Time: 08:37))  



So, 1 by j 

Student: ((Refer Time: 08:43))  

This is 2pi by 3 

Student: ((Refer Time: 08:50))  

Currently this is 

Student: ((Refer Time: 08:57))  

Actually, I am sorry this is correct, there is no mistake, you please, check it up, please 

check it up.   

Student: ((Refer Time: 09:06))  

What I have written is absolutely correct, do not confuse me, you have to first, the way I 

have done is already starts ((Refer Time: 09:15)) in terms of the sine and then ((Refer 

Time: 09:17)) in both steps, please check it up, this is just an example. I do make 

mistakes at times and I like you to correct me, when I make mistakes, if I do not make 

mistakes, do not make me make mistakes, it is all right.   

Now, having said, the sinusoids are some of the most basic kinds signals in terms of 

which you work, why they are, we consider them as basic. First, because they are very 

easy to generate for example, a typical oscillator that you might have used in your lab or 

you might have learnt about, in your analog electronic circuits or likely to learn soon, 

naturally generates a sine wave, oscillations are in the form of sinusoidal oscillations, 

that is one reason.   

The other reason is many other deterministic signals, can be represented in terms of sine 

waves, for example, Fourier series is all about, which I will reveal in a few minutes.  

Now, just like sine waves, there is another set of basic signals, which are quite different 

in nature, sine waves are have infinite duration signals, extending from minus infinity to 

plus infinity, they are periodic signals.   



(Refer Slide Time: 10:46) 

 

As against this, you can have a very different variety of basic signals, which are very 

useful in the concepts of signals and some communications signals and systems. And, 

one of those basic kinds of signals is the impulse function, I am sure all of you know, 

very well about it and let us quickly read, what is the definition. There are two ways of 

defining the impulse function, several ways, not just two ways, there are several ways, 

because this is a review. I will not go into a, very detailed description of all those various 

methods.   

All we say is, that in an impulse ((Refer Time: 11:12)) t is equal to 0 is denoted by delta t 

and is defined to be a function, which encloses a unit area under it, and it is 0 ((Refer 

Time: 11:23)) other than t equal to 0, so this is a definition of an impulse function. This 

is one definition of a number of possible definitions of an impulse function, so some 

people sometimes, write by mistake delta t equal to 1 equal to 0, that is wrong, delta t at t 

equal to 0 is undefined, it is actually infinity.   

But, the area under this is undefined and to indicate that effect, the usual notation for an 

impulse function is something like this. This is the time axis, suppose the impulse is 

located at t naught, then we will write this as. So this is your time ((Refer Time: 12:10)), 

this will be the impulse ((Refer Time: 12:12)) minus and this arrow here, indicates that 

the amplitude of the impulse is infinity or undefined, and the area under it is 1, so this is 

k time delta t minus t naught.   



Everything will be the same, except that the area of the impulse is now k, or the strength 

of the impulse is k, that is the usual language of this ((Refer Time: 12:38)). Now, some 

of the very important properties are in impulse function are, if you have a time function 

((Refer Time: 12:47)). I will just quickly review the basic concepts and discuss the basic 

properties. I will not discuss any proofs here, because the idea is to make you recollect 

these things, more than anything else.   

If you do not understand something of this, I would suggest that is ((Refer Time: 13:07)), 

what should look for when you are reviewing your signals, and systems where you 

quickly go through the proofs and things like that. So, if you look at, this integral of x t 

multiplied with delta t minus t naught, minus infinity to infinity d t, what is the value,  

Student: ((Refer Time: 09:15)) 

x t naught very important property also called the sifting property of a impulse function, 

all. Sometimes, this is also taken as a definition of impulse function, so it is a matter of 

starting from here and proving this or the other way round. So the other properties are, if 

you look at, if you scale the time axis by a, then delta a t would be, 1 by mod a of delta t 

and so on and so forth. One last property, that I would like to discuss is ((Refer Time: 

14:19)) I consider this, this is the product of x t into delta t minus t naught, you can also 

write, this as x t naught into delta t minus t naught, all.   

(Refer Slide Time: 14:52) 

 



Now, I need a basic signal, which is very closely related to the impulse function signal is 

the unit step function. Pictorially, the unit step function is a function like this it is value is 

1, for t greater than 0, so that is the definition, and 0 for t less than 0, or it can also be 

defined in terms of, an integral with respect to the impulse function, integration will be 

from minus infinity to t. As you can see, this would be equal to this, so that is as far as 

basic signals go.   

One set of basic signals are your complex exponentials, trigonometric sinusoids of 

various frequencies, then we had the impulse function and the unit step function, and 

there are several functions, which one can derive from these basic functions. We quickly 

now look at Fourier series, because I am trying to, collect practically all important 

concepts of interest to us in this course, into this lecture, so we will quickly review all of 

these things.   

Before, we talk about Fourier series you remember that Fourier series will be fine for 

periodic signals, so we are going to talk about periodic signals. You say that, a signal is 

periodic, with period t naught if x of t plus t naught is equal to x of t, for all values of t 

and for all values of t, and for given t naught. Now, if it is periodic, then we can 

represent the signal x of t, in terms of exponentials of period p pi by omega naught and it 

is, it is multiples, actually frequencies of omega naught and hence multiples.   

So, we can represent it in terms of, some coefficients x of n e power j 2 pi omega 0 t, 

where omega 0 is 2 pi by, is there a mistake here, it should be 2 pi n omega 0 t, n going 

from,  

Student: ((Refer Time: 17:58)) 

I am sorry, it should be either f 2 pi f naught t or ((Refer Time: 18:06)).   

So, that will contain up to 2 pi n f naught t, where f naught is 1 by 2 pi of omega naught.  

And this representation is valid over a period of, so if you take any period, between t 0 to 

t 0 plus capital t sub 0, t sub 0 to t sub 0 to plus capital T sub 0, this representation is 

valid, it is valid for any period of function x of t.   



(Refer Slide Time: 18:48) 

 

The coefficients x n in this Fourier series are given by, integral of x t e to the power 

minus j n omega naught t, n this is what you wanted to tell me to write. So, this should 

be, ((Refer Time: 19:08))t 0 to t 0 plus capital T 0, and these coefficients, we call the 

Fourier coefficients of the signal x of t. So, here we have a representation of periodic 

signal x of t, in terms of the set of, infinite an infinite set of coefficients, and going from 

minus infinity to plus infinity, this is what we call complex form of the Fourier series, we 

also have, real forms which use, trigonometric functions cosine n omega naught t and 

sine n omega naught t.   

So, these Fourier coefficients represent the signal, in what we call the frequency domain, 

you can say x of n is a coefficient, which has an amplitude, which you can call mod of x 

of n, and which has some phase, which you can call has, an angle of x of n or call it theta 

n if you like. These amplitudes and this phase information, represents the amplitude and 

phase of the n the component in the Fourier series, the nth component being, e to the 

power jn omega naught t  

Now, and therefore, we call this as the amplitude spectrum of the signal, when we plot x 

of n against n; n is an integer here, going from minus infinity to plus infinity. So, plot x 

of n against n, it will be discrete plot, the plot will be in the form of lines, it will be line 

spectrum in this case. So, if you plot mod of x of m against n that gives me the amplitude 



spectrum of the signal, if I plot theta of n against n that gives me the phase spectrum of 

the signal.   

Now, for a real signal x of t, we are looking at some properties of the Fourier series now, 

for real x t, what can you say about x of n. In particular, if I ask you, the relationship 

between x of n mod, and x of minus n of mod, what will be the relationship, they are 

equal. Similarly we look at the angle of x of n, and the angle of x of minus n, what is 

their relationship.   

Student: ((Refer Time: 29:09)) 

They are negative of each other, we see that the amplitude spectrum is an ((Refer Time: 

22:16)) symmetric function and the phase spectrum is a non symmetric function, not for 

all kinds of signals, but for only for real signals real value signals.   

(Refer Slide Time: 22:33) 

 

This can be neatly summarized in the form of a single equation saying that x of n 

conjugate is equal to x of minus n, for a real sequence. Well, the second most important 

there are many properties of Fourier series, but since they are very similar to the 

properties of Fourier transform, which I am coming to shortly, I will not discuss all of 

them, they are very they are parallel to each other. So, if you know, some of the 

properties of Fourier transform, you also know the corresponding properties of the 

Fourier series.   



But, one property, which I like to discuss here, very briefly is the Parseval’s theorem, 

you remember that, it is a very important result, because it relates the energy calculation 

of the signal in the time domain, energy at power. In this case, should you talk about 

power or energy it will depend on, what kind of signal we are dealing with, power signal 

or energy signal, a power signal is one, in which it makes more sense, to calculate power, 

because it has a finite power.   

For example, a sinusoid has infinite duration, what is it is energy infinity, so it does not 

have a finite power, it does not make sense, it does not have finite energy, we do not call 

it an energy signal, we call it a power signal. On the other hand, a signal which is a, 

which has a finite energy, typically will have 0 power, because power is defined in terms 

of, energy divided by time, as time tends to infinity, time interval tends to infinity. So if 

the energy is finite, when time interval tends to infinity, the average power would be 0.   

So, it makes more sense there, to talk about energy rather than power, so for sinusoids 

for periodic signals in general, there have to be necessarily of infinite duration. It is 

strictly periodic signal, has to be of infinite duration and therefore, it is better described 

in terms of power, and in terms of energy. So, here we talk about power therefore, which 

is the power calculation here would be, look at the integral of x t mod square d t ((Refer 

Time: 24:53)) t 0, that is the average for and the, for t 0.   

This, the Pareval’s theorem, can be obtained by simply summing the magnitude squares, 

of all the Fourier coefficients, very interesting result. The sum of the magnitude square 

of all the coefficients that, gives you the average power of the signal.   



(Refer Slide Time: 25:27) 

 

So, now we quickly come to Fourier transforms, all of the Fourier series, which is 

defined only for periodic signals, Fourier transforms are defined for any signal. Strictly 

speaking a periodic signals, but through some clever mechanism, it can also be made to 

represent periodic signals, particularly by the use of impulse functions in a frequency 

domain, you must you will be remembering that. So, if you have a signal x of t, which is 

no longer necessarily periodic, then I can define, it is Fourier transform x of f, as integral 

of x t, e power minus j 2 pi f t d t.   

If you look at this, this will be it is very closely related to the expression we have for x of 

n. In fact, you can derive this expression, through a limiting procedure on the Fourier 

coefficients, where what is the limiting procedure like. You remember, you make the 

period, first start with the finite period in the periodic signal and when you meet the 

period infinity, and we have to look for a transfer, and the important thing is the line 

spectrum, of the original periodic signal, now becomes a continuous spectrum, 

continuous in the ((Refer Time: 27:01)).   

So, x of f is a frequency domain description of x of t, and one can reconstruct x of t, from 

x of f, by taking what is called inverse Fourier transform, which will be x of t, x of f e to 

the power plus j 2 pi f td f. If you write it in terms of omega and d omega, then you have 

to put a 1 by 2 pi not otherwise, so once again, x of f is called the amplitude spectrum 

and the angle of x of f, as a function of frequency is the phase spectrum of the signal.  



So, you could write x of f, if I call this theta of f, then x of f, can be thought of as mod of 

x of f, in e power j theta f.   

Now, there are certain conditions, which the signal x of t must satisfy, in order that the 

Fourier transform exists, I simply name the conditions, these are called the ((Refer Time: 

28:38)) conditions. There are three of them in number and most important that these 

three conditions is a requirement that the signal be of finite energy, that is the ((Refer 

Time: 28:50)) integrable, there should be a magnitude square integrable function of time, 

so please review these conditions yourself.   

(Refer Slide Time: 29:04) 

 

Now, a quick review of the properties, the most important properties of the Fourier 

transform. Some of the properties are the same that we already discussed, in the context 

of Fourier series, so for a real signal x of t, x conjugate f, would be equal to x of minus f, 

which is again equivalent to saying, that the magnitude spectrum is even symmetric and 

the phase spectrum is an odd symmetric, function of the frequency for real valued signals 

x of t. So, we need not spend too much more time on that.   

Similarly, this so called Parseval’s theorem, which incidentally sometimes is called a 

Rayleigh’s energy theorem, is also valid here. So, the equivalent of the Parseval’s 

theorem, here would be that if you look at, it makes more sense to talk about energy 

here. Because in fact, the Fourier transform, that exists in the free transform, is only for 

finite energy signals, although we can extend the definition to periodic signals, as a 



special case, but generally Fourier’s transforms are defined only for energy signals, 

because that is the condition we discussed, they should be square integrable.   

So, it makes sense to talk about energy here, so energy means, I simply integrate mod x t 

square between minus infinity and plus infinity, this is the same as, integral of, if you 

look at, the quasi function. That is a spectrum, sometimes x of f is simply called the 

spectrum of the signal, and spectrum has an amplitude path, and a phase path. So, if you 

take the amplitude part of that and square that, integrate that over an entire frequency 

range, these two appear the same, that is you can calculate the energy, either by a time 

domain operation like this or the frequency domain operation like this, whichever is 

convenient.   

Now, let us look at a few other important results ((Refer Time: 31:23)), these are the 

same Fourier transforms, these are the same, as we discussed for the Fourier series, 

please stop me or if you have any questions, please point it out, if you find there is a 

mistake. The next important result, that I like to mention without ((Refer Time: 31:40)) 

like all other results, is so called convolution theorem. Now, I am not here to discuss the 

concept of convolution, which I will discuss separately, when I discuss linear time 

invariant system shortly.   

But, basically assuming that all of you know what is convolution then, the result is like 

this. If you have, let me briefly, review what is convolution, if you have, two signals x 1 t 

and x 2 t, then I say that x 1 t star x 2 t, is a convolution of x t, where this operation is 

defined in terms of this integral, this integral represents the convolution of operation.   



(Refer Slide Time: 32:40) 

 

And then, convolution theorem says, that the convolution of x 1 t and x 2 t, if x 1 t has a 

Fourier transform of x 1 f, x 2 t has a Fourier transform of x 2 f, then x 1 t convolved 

with x 2 t has a Fourier transform, which is the product of these two ((Refer Time: 

33:01)) Fourier transforms. This notation will be used to indicate that these, quantities on 

the left hand and the hand side are Fourier transform pairs, this is a very, very important 

result, as we will discuss shortly in the context of, linear time invariant systems.   

Then in the standard linearity properties and the time delay properties, which are 

skipped, linearity means, the Fourier transform is a linear operation, that means, if I take 

the linear combination of two signals, the Fourier transform would be, linear 

combination of the corresponding Fourier transforms of the two cycles. And, the time 

delay property of course, ((Refer Time: 33:50))mention that, if x of t and x of f are 

Fourier transforms, then x of t minus t naught, will have Fourier transform which is, x of 

f into e power minus j two pi f t naught, that is the time delay property.   

Scale change is another important property, which says that, if I modify the time scale 

time axis, by a scaling factor of a, it will modify the frequency axis in opposite direction.  

For example, if a is greater than one, then the frequency axis will be ((Refer Time: 

34:39))by, one by a, which will be less than one, and so on and so forth. So ((Refer 

Time: 34:44))precise to the result is, this is an intuitively very interesting result, basically 

what it says is, that if you have actually it implies, that if you have a signal which is, 



small duration of the time, in the time domain, that you have, a large span in the 

frequency domain.   

If you compress this time axis it expands the, frequency axis and vice versa, so it has a.   

It is a very interesting result and also leads to a very interesting concept, which I if time 

permits will discuss later, and that is the so called uncertainty relation, in communication 

theory. Have you heard of that, like you have, I am sure you heard of the ((Refer Time: 

35:31))to the relation in quantum mechanics, there is a corresponding uncertainty to the 

measure of communication theory, which says that you cannot locate a signal, precisely 

in time, as well as in frequency together arbitrarily, there is a limit.   

To either you can locate it very accurately in time or very accurately in frequency, but 

not both think about it and we will discuss it sometime. And, this is the consequence of 

this property of the Fourier transform appears another interesting property is that of 

duality. We will do a very quick review, because you have gone through course in 

signals and systems and this meant to brush you up on this matter. So duality is 

interesting, if you can take a time signal, which is, which has a shape of the Fourier 

transform in the signal, of course this will imply, that x of x value is really a complex 

valued signal.   

If you consider a time signal, which has a shape of the Fourier transform of small x of t, 

then the Fourier transform of this, would be small x ((Refer Time: 36:45))signal, with I 

have to replace the, with t replaced by minus f, so this is the duality result.   

(Refer Slide Time: 37:04) 



 

The next, we come to a very important term, result property of the Fourier transforms 

called the frequency translation theorem, and this theorem is particularly useful in our 

course, particularly when we discuss the modulation techniques. This theorem states, that 

if I multiply a ((Refer Time: 37:31)) signal x of t, with a complex exponential e to the 

power j 2 pi f naught t, then it is Fourier transform, get translated to the frequency f 

naught. That means, multiplication of x of t, with a complex exponential of frequency f 

naught, shifts the spectrum x of t or the Fourier transform of x of t, to this ((Refer Time: 

38:00)), to f naught as a centre frequency.   

So, it is suppose also a signal is centered the spectrum is centered to 0 frequency, after 

this multiplication it is spectrum gets centered to the frequency ((Refer Time: 38:15)) 

here. This is also similar to what is also called the modulation theorem, which we 

multiply x of t with, real cosine side like cosine 2 pi f naught t, and now since, this is 

equal to the sum of e power j 2 pi f naught t and e to the power minus j 2 pi f naught t.  

This gets shifted a spectrum of x, t gets shifted to both, f naught as well as to the 

frequency minus f naught.   

In other words, pictorially speaking, if this denotes the spectrum of x t to the centre at 0, 

multiplication of x of t with this leads to a spectrum like this, whereas, multiplication of 

x of t, with sine wave or cosine wave, leads to a spectrum like this, that is, this gets 

shifted to both f naught as well as to minus f naught. This, these theorems play a very 

crucial role in modulation techniques, that we need to discuss in this course, in fact, it 

forms a basis for, the most important one of the most important functions of the 



transmitter, namely to modify the center frequency of a signal. This is also very useful in 

receivers, of them we want to bring a signal from a, RF frequency down to a base band 

frequency.   

(Refer Slide Time: 40:35) 

 

The next result which is important to some extent is the differentiation theorem and 

correspondingly the integration theorem. I will just state the result without proofs, if you 

take the nth derivative of this signal x of t, with respect to time and the corresponding 

Fourier transform is a product of the Fourier transform of x of t with a factor, which is 

equal to j two pi f to the power n, similarly, the reverse result holds, when we integrate a 

signal x of t from minus infinity to t.   

The Fourier transform, now is given by this plus there is a component, which is 

proportional to the DC value of the signal or there is a scaling factor here, which you 

may check up from the book. This in a nutshell is the Fourier transform. We have 

omitted some of the most important properties of the Fourier transform, these, this 

treatment is not exhaustive, and it will very much appreciative, if you were to, review the 

entire ((Refer Time: 42:07)) properties of the Fourier transform ((Refer Time: 42:09)).   



(Refer Slide Time: 42:14) 

 

Our next we move on to systems, a system is a model, for some physical system or some 

process. So, when we do system modeling, the system for example, could be a circuit, 

could be an electrical circuit, it could be a mechanical device, it could be a ((Refer Time: 

42:45)) system, it could be anything. Today, we will look at a system in this treatment is, 

that it has an input and it has an output, and when we talk about system modeling, 

primarily we are looking at, trying to understand, the relationship between the output and 

the input of the system.   

So, when you study the input output relationship of a system, we can this system 

modeling. From the system modeling point of view, it is this relationship, which is 

important more than anything else, we look at the system. In fact, as a black box, it does 

not matter, what it is internally comprised of, it will be comprised of, electrical device, 

electrical components like resistors, inductors and capacitors. It could be, mechanical 

components like, springs and dampeners and whatever, things you may have in ((Refer 

Time: 43:45)) system etcetera.   

What we like to understand is, how we understand, the response of a system, in relation 

to some excitations, that may be given to it. Now, from this point of view, it is 

convenient to think of the system as an operator, the operator h here, operates on x of t 

the input, signal x of t to produce an output y of t. Under certain conditions, the operator 



h is set to correspond to a linear time invariant system and these are the, kinds of 

systems, which will be of greatest interest to us.   

It does not imply of course, that communication engineers do not deal with, systems 

which are not linear or which are not time invariant. However, a large part of our 

treatment will be devoted to handling systems, which are LTI systems, so to say, and 

therefore, it is useful to review, what LTI systems is all about. You say that, the system is 

linear, if superposition principle holds.   

(Refer Slide Time: 45:15) 

 

In other words, so linearity implies, that if the system responds to a signal x one t to 

produce an output y one t, responds to the signal x two t to produce an output y two t.  

Then if xi the system with a linear combination of these two signals, these two inputs in 

the alpha one x one t plus alpha 2 x 2 t. The system will respond, by producing an output, 

which is a corresponding linear combination of y 1 and y 2, and the time invariants. In 

addition the system should satisfy the homogeneity property that means, if I, 0, input to 

the system the output is 0.   

And, the time invariance we mean, that the system response, is independent of the time 

of excitation of the input signal. So, if I, if x t produces an output, from the system which 

is y of t, and if I delay the input by t naught seconds, the response does not change in 

nature. All that happens is, that the response is correspondingly delayed, in other words, 

until the input comes, the system does not respond or the system responds, only by 



corresponding delay in the input or in the output. Now, from the point of view of 

describing input output relationships, it is important to understand or important to 

develop, some kind of a characterization of LTI system.   

(Refer Slide Time: 47:16) 

 

It so happens, it is very easy to check out, that for a LTI system, this characterization is 

very easy and can be done, by the response of the system, to an impulse. This response, 

usually denoted by h of tis called the impulse response of the system, the significance of 

the impulse response in the system is, that in view of the linearity of the LTI system.   

And in view of the fact, that any signal x of t, can be expressed as a superimposition of 

((Refer Time: 48:12)) scale, and ((Refer Time: 48:14)) time displaced impulse functions.   

It is possible to express the output y t of a signal, in terms of a linear combination of the, 

response to these impulses and this is best expressed in terms of the convolution relation, 

that exists between the input and the output, which is given by this. That is, given the 

input x of t, and the impulse response h t of a system, output can be expressed, thorough 

this superposition formula, which is also called the convolution integral, which is a 

manifestation of the superposition property, arising from the linearity of a system. And 

usually, expressed in terms of shorter notation, like x t convolved with h t, so this is a 

notation for convolution or let us say the convolution operator.   



(Refer Slide Time: 49:27) 

 

Finally, we just note two important, two other important attributes of ((Refer Time: 

49:26)) system. One relates to causality, we say that the system is causal, if the impulse 

((Refer Time: 49:40)) this is of course, not the definition of causality. This is a test for 

causality. If the system impulse response h t is equal to 0, for t less than 0, this is atest for 

causality, definition of causality is, the system responds toan input x of t, you can put it 

like this, until there is an input, there is no output.   

So, since the impulse is response corresponds to an impulse ((Refer Time: 50:18)) of t is 

equal to 0, there can be no output from the system, no non-linear output of the system, 

before time t equal to 0, and hence the impulse response has to be 0 for, t less than 0.  

Another attribute of a system, which we shall assume throughout our course, to be valid 

for a section that we study is stability, and stability refers to, the bounded input bounded 

output property of the system.   

That is, if your input x t, is always guaranteed to be less than certain finite value, then the 

output y of t, will also be guaranteed to be less than some positive value k and if this is 

so we say the system is, if every such input, the output satisfies this property, you say 

that the system is stable. And, a test for stability is, that the integral of the modulus of the 

impulse response should be bounded, should be less than infinity. So I think, with this I, 

will finish the review for signals and systems, and next time we will consider a very 

important, ((Refer Time: 51:38)) result for you.   



And, introduce the concept of the ((Refer Time: 51:44)) transform, which we will find is 

extremely useful, for studying signals of certain types, which we have encountered in 

communication engineering.   

Thank you.   


