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Lecture - 23 

The Phase Locked Loop (Contd.) 

 

We will now continue our discussion on the Phase Locked Loop that we have started last 

time to recap. We had looked at the steady state operation of the phase locked loop, that 

is assuming that the loop is in lock. We had argued that under certain condition the 

instantaneous phase of the VCO output of the loop would follow the incoming phase will 

track the incoming phase. 

In the process, the derivative of the input phase d phi by d t and the derivative of the 

VCO phase would be nearly the same. And therefore, the VCO input voltage could be 

considered to be the replica of the modulating signal that we want it to get from the 

demodulator. So, that was one part of the discussion that we had to demonstrate in the 

steady state if you tap the phase locked loop at the input to the VCO or after the loop 

filter, after the amplifier. 

Then, that output can be considered to be a demodulated output for the FM signal or the 

angle modulated signal, that particularly for the FM signal that is under consideration 

that was the first part. The second part was you try to figure out how the locking actually 

occurs; now in this case we have to go through a non-linear model of the loop. Because 

we found that the phase locked loop actually is a non-linear system, it is in fact, we 

obtain a differential equation description for the operation of the phase locked loop. 



(Refer Slide Time: 03:02) 

 

In particular we arrived at this non-linear differential equation, which specifies the 

instantaneous phase error between incoming phase and the VCO output phase. So, we 

found that this phase error, follows this non-linear differential equation and you try to 

look at the operation of the phase locked loop by considering what does this differential 

equation imply in terms of it is operation. And to do that, we took request to a graphical 

picture, graphical the picture has this differential equation through the, so called phase 

plane plot. 

In the phase plane plot, basically we plot d psi by d t versus psi of t, so this; obviously, 

becomes the sinusoidal function with the peak occurring when sin of psi of t is either 

plus 1 or minus 1. So, let it is plus 1 this gives the delta omega minus K t that is a 

negative peak, whether it is minus 1 this gives you the peak value as delta omega plus K 

of t which is the positive peak and at psi equal to 0, this point intersects the d psi by d t x 

is a delta omega. Because, at that point psi is 0, so d psi by d t is equal to delta omega, so 

this was a phase plane plot. 
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And then, we discussed that this phase plane plot essentially gives you the trajectory of 

the operating point of the phase locked loop. In the sense for example, if initially you are 

somewhere here on the trajectory, initially assuming that the steady state phase error was 

0. Somehow, initially when we considered a case when all this discussion we did in the 

context of the step input in the frequency of the incoming signal. 

As if your moderating signal was a unit step function of course, we cannot do it in a 

general, we cannot plot a phase plane plot for the general signal, you have to do it for a 

specific signal and the specific signal we considered was a unit sub function. So, for this 

case assuming that initially the loop was in locked at the carrier frequency, we found that 

the loop will eventually if you move the operating point will move on this trajectory to 

the right. 

And the second important point is the motion on this trajectory will be to the right, if you 

are in the upper half plane of the trajectory, the motion will be to the left if you are in the 

lower half plane of the trajectory. And based on this arguments we concluded that, this 

point A is a stable operating point of the loop, which means that after the frequency step 

has been applied, the loop will eventually try to come to this condition. 

Because, at this point d psi by d t becomes 0; that means, there is no further movement in 

the operating point. Because there is no derivative, there is no slope psi as the function 

time becomes the constant value and the constant value is this value, whatever is the 



value here this is psi axis. So, whatever is the value of psi at this point is the steady state 

value of the phase error. 

Student: ((Refer Time: 06:37)) 

They will be many such points, but they all periodically placed, connect such point will 

be at this value plus 2 pi. So, in as much as phase is anywhere specified modular 2 pi it 

does not matter, which point you lock on to it hardly matters, phase error. We cannot 

distinguish between the phase error which is of 1 degree or 361 degrees, it is a really the 

same thing, so that does not really matter. So, we now proceed further and just do a 

further little bit of discussion on the phase, on this of what we get from this phase plane 

plot. 
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Let us call the steady state phase error of let us denote it by psi sub s s and of course, we 

said the steady state frequency error would be 0, that is the frequency error. Can you tell 

me what is the value of psi sub s s is it possible to see from this equation or this plot. If 

you look at this equation once again ((Refer Time: 08:11)) at the stable point what is the 

value of d psi by d t that is equal to 0. So, put that equal to 0 you can solve for the 

corresponding value of psi that will be sin inverse of delta omega by K t. 

So, this will be sin inverse of delta omega by K sub t these point, now what does it show, 

it shows some very important facts. That, if you want the steady state phase error to be 



small, what should happen K t’s will be large for a given frequency step at the input, if 

you want the steady state phase error to be small, this argument should be small which 

will happen. So, for a small value of psi s s K t should be large and what is K sub t if you 

remember, it is the loop gain is not it. So, basically we are saying that we require a large 

value for the loop gain. 

Now, we require a large value for the loop gain not only for this purpose, but for another 

very important reason. Let us see, all this discussion was nicely concluded and we could 

demonstrate the phase plane plot, that indeed the loop will lock in as much as the phase 

error. Thus comes to a small value, it does not become 0 of course, if you want it to 

make it 0, if you want to make this steady state phase error equal to 0, you should have a 

loop gain of infinity, you must have a very, very large value of loop gain. 

So, the larger the value of the loop gain, the smaller you can make this steady state phase 

error. But, nevertheless whether large or small loop gain, the important point was that for 

it to be come to the stable point. It should have a stable point is not it, now if there is 

situation where a stable point may not be there at all. 

Student: ((Refer Time: 10:38)) 

Then, delta minus K t is a positive number, so as it in that case this phase plane plot this 

curve will not intersect this I axis at all and you will always be in the positive half plane. 

The loop will the trajectory of a operating point will always keep on moving, the 

operating point will not be able to find a point at which it can stabilize. You keep on 

attempting to lock, but we will never really be able to lock, there is very interesting way 

of looking at it. 

So, the second important thing to note is that for the lock to occur, so this was let us say 

the first point, the value of the steady state phase error. For the lock to occur, the phase 

plane trajectory or phase plane curve should intersect this psi axis. 
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And in order for that to happen what do you need; you need to make sure that delta 

omega minus K sub t is less than 0. The negative peak of this curve should be negative; I 

mean the lower peak of this key should be negative, which implies that the delta omega 

should be less than the loop gain. So, the loop gain plays a very important role in the 

operation of this system, number one the large value of the loop gain will imply the small 

value of the steady state phase error. 

The large value of the loop gain will also imply a large value of what is called locked 

range of the loop. So, loop gain in a way besides what is called the locked range or 

locking range of the PLL, because locking range of the PLL is the maximum frequency 

step that you can employ, that you can have at the input. And still the loop is able to 

produce a steady state situation that a frequency error is 0, that is the VCO exactly locks 

to the input signal frequency. 

So, locking range of PLL is equal to K sub t and large lock range requires that we choose 

a large value of K t. Let me summarize this discussion by showing you a plotting a set of 

phase plane curves, but different values of K sub t for different values of delta omega or 

delta f . Let us for this discussion assume that your loop gain is has some fixed value let 

us arbitrarily chosen the fixed value to be 2 pi into 50, so let us consider the phase locked 

loop, in which the loop gain has this value. 



So, let me now plot the phase plane plots for a different sets of delta omega, so when I 

choose let us say delta f equal to 55 hertz, that you will say apply a frequency step of that 

frequency step of 55 hertz of the input. Initially the loop is in lock and you apply a 

frequency step of 55 hertz, it means delta omega is 2 pi into 55. So, this condition is not 

satisfied, which means the loop will not the directive will not intersect the psi axis, you 

will get something like that, it will not intersect the psi axis at all, suppose you make it 

48 hertz it will almost just intersect now, but intersect it here. 

So, we will now be in the situation like that etcetera, so a stable operating point will 

exist, but the corresponding steady state error would be quite large, if you make it half of 

this. So, this is 55 hertz, this is 48, if I make it half of this as you can see the steady state 

phase error will come down accordingly, if I have it further it will come down further. 

So, this is the sequence of curves that I have plotted for delta f equal to 55 hertz, 48 

hertz, then 24 hertz and 12 hertz. So, this picture says it all it demonstrates very clearly 

that as we increase the loop gain we get better and better performance from the phase 

locked loop, any questions here. 

Student: ((Refer Time: 16:19)) 

No. 

Student: ((Refer Time: 16:30)) 

The same thing will apply you thing about it, the frequency step in either direction would 

imply the same thing, in a way you are saying if I agree with you. What you are saying is 

precisely the same thing what happened thank you, you can make it delta omega model, 

because positive of frequency negative only the roles will get into exchange. 

So, that also means something else; that means, even in the steady state I cannot always 

use a linear approximation that I discussed earlier, do you agree. That, because a linear 

approximation to be valid what is an assumption that you made, that psi of t is very 

small. But, suppose your loop gain is not very large and delta omega is quite large, you 

could have a very large value of the steady state phase error and therefore, for that value 

of the steady state phase error, I cannot assume sin of psi of t is equal to psi of t. 



So, the linear approximation that we considered would not be available for use even in 

the steady state, if your steady state phase error is not very small. So, it is therefore, 

imperative that if you want to use linear approximation in the steady state at this ((Refer 

Time: 17:57)). And it is useful to look at that small phase error approximation or linear 

approximation to the steady state behavior of the loop at least approximate behavior, if 

not exact. 
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So, when psi s s is small we can use the linear approximation can be used for analysis, 

what does it mean, if remember your final equation from which we derived the 

differential equation first. That theta of t was equal to K sub t integral of theta of t is an 

instantaneous phase of the VCO output, this all this was equal to K sub t times there it 

was sin of phi alpha minus theta alpha t alpha. If you are going to use a linear 

approximation, that sin can be removed and we can simply write it as phi of alpha minus 

theta of alpha d alpha. 

And if you want to convert this into the corresponding differential equation, this will 

becomes d theta by d t plus K t theta t. So, instead of sin theta t you have K t theta t is 

equal to instead of K t sin psi t, you can write this K t phi of t this is a linear differential 

equation. So, when the linear approximation is valid the loop is now describe at or near 

the steady state by a linear differential equation and when that is, so it is possible to 

study it much more conveniently. 



Because, we know how to study this linear differential equation, let us say by Laplace 

transforms, in fact we can obtain a transfer function model of the loop. For example, I 

could define a loop transfer function, sometimes also called the close loop transfer 

function with as a ratio of the Laplace transform, the output and the input. And what is 

the output here, output is theta of t, the final phase of the VCO and the input is phi of t, 

the incoming phase function. 

So, I define the loop transfer function H of s as theta of s upon phi of s, definition of any 

transfer function is Laplace transform of the output variable Laplace transform of the 

input that is what we are doing. We are considering the VCO output phase as the output 

here, may be the Laplace transform of that is the input incoming phase function, which is 

phi of t Laplace transform of that is phi of s. 

So, what will be the value of the transfer function here, you can derive it from here by 

just taking the Laplace transform of both the sides, can you tell me what will be the value 

of theta s upon phi s from this differential equation, it will be simply K sub t upon s plus 

K sub t. And the corresponding h t, the corresponding impulse response we can write as 

K sub t e to the power minus K sub t into t u t, that shows that is unit step at the input 

there is not produce, the unit step at the output in which you create goes through the 

exponential function, impulse function of the input not the unit step, this is the impulse 

response. 

An impulse function at the input does not produce an impulse function in terms of the 

output, but some other impulse some response which is an exponential ((Refer Time: 

23:09)) response. This will ideally if you do not want the system to do any distortion of 

any kind, then this h of t should be equal to delta t itself, under what condition will this 

converts to delta t when K t it becomes very large. 
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So, h t will converge to delta t or will tend towards delta t as K t tends to infinity and 

when that happens your theta of t would be the same thing as phi of t, there will be no 

phase error for large loop gain. So, no much of how you look at it needs the same result, 

before we proceed further suppose I ask you the question, that I want to use the PLL for 

demodulating phase modulated signals, what will I do, how should I do that, 

demodulation of PM signals, what is the answer you should integrate the output of the 

demodulator of FM demodulator. 

So, just take the integral at integral of e sub t, so integrate e sub v t that will produce a 

required demodulator, let us do for any you know you have the FM demodulator output, 

and if you want the demodulator phase modulated signal, you just have to integrate the 

output of the FM demodulator standard result. Some final remarks before we go on to 

some other discussion of the PLL; yes, is there any question? 

So, what we notice from this discussion is, that the large loop gain is crucial, large loop 

gain incidentally ((Refer Time: 25:43)) if you look at this transfer function, suppose you 

think of this transfer function purely as a filter, what is a bandwidth of this filter let us 

say the 3 dB bandwidth. Now, looking at the loop transfer function as the filter, you have 

transfer function K t upon s plus K t, what is a 3 dB point of this transfer function. It is a 

low pass function you can see that is not it as omega increases, the value will come down 

it will attenuate the signal more and more, what is that 3 dB point s is equal to K t. 



So, you can think of K t as the 3 dB bandwidth of the loop or K sub t also, so K sub t has 

a lot of significance, K sub t is the lock range, K sub t besides the steady state value of 

the phase error, K sub t can also be considered to be what is called the loop bandwidth. 

So, K sub t can also be construct with in this particular case, the loop bandwidth, so what 

we are saying is, that if you want a good performance from the phase locked loop, in 

terms of steady state phase error, in terms of lock range and consequently in terms of 

demodulation of FM signal, you would require either a large loop gain or equivalently a 

large loop bandwidth. 

Now, that is usually, so if you want to the PLL to work properly as a FM demodulator, 

again you want large value of K sub t, these are the conclusions we are instinct. Now, 

large loop gain is not always possible, it is very difficult it also has some problems 

associated with it ((Refer Time: 28:07)) which will not go into right now, but it is usually 

not easy to realize a very large loop gain. So, you need to think of improving the 

performance, when we do not have sufficiently loop gain. 

And one way of improving the performance is you know remember this loop that this 

analysis that we have done is for a very specific situation, when we have removed the 

loop filter. So, one of the advantages of using the including the loop filters is that we can 

relax on this condition that we have on the loop gain. So, presence of loop filters helps, 

only thing is the moment we have loop filters our analysis becomes much more complex 

is it not? Because I can no longer write that differential equation, so easily have to also 

consider the how the filter effects the differential equation. 

So, far the phase detector output except for the multiplication by the loop gain was 

directly going into the VCO input. So, it is very easy to relate the VCO phase output to 

each input, it was very easy through that integral or through the differential equation. 

The moment you have an addition of filter coming between these two, you have to also 

see how that affects the entire description, in terms of either differential equation or 

integral equation. It is not, cannot be done; it just becomes little more complicated. At 

the moment we will not going to that, but we will have a very deep discussion of the at 

least one more loop where the loop filter. 
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Now, the second remark is look at the value of K sub t, that is given by I do not 

remember the exact value it is half A c, A b, K sub d anything else mu there are, so many 

factors which determine the value of the loop gain, what is it mean if you first of all input 

signal amplitude itself has a effect on the loop gain. Now, other thing of course, more or 

less constant of the PLL itself, A v is associated with the VCO, K sub d is associated 

with the phase detector, mu is the gain that you have incorporated in the phase locked 

loop. 

So, these three are constants of the loop, but A sub c is a constant associated with an 

input signal, that is not a very nice thing to have you do not want a loop design to be 

dependent on the amplitude of the input signal. Because, if that is, so the input signal has 

the weak amplitude, the loop gain goes down input signal has a stronger amplitude, the 

loop gain goes up let us not very desire about.  

So, dependence of because, otherwise what we have to do is, we have to design the loop 

for operating to a certain signal amplitude and the signal amplitude changes, if you have 

value of K sub t changes and then you all your design is gone. So, dependence of design 

on input amplitude not desirable, can you suggest a way of removing this dependence. 

Student: ((Refer Time: 31:51)) 



And show that the input signal always has a constant amplitude, input FM signal always 

has a constant amplitude and we know one method of doing that the bank pass limiter. 

So we can precede the PLL by a bank pass limiter, good that is a very good answer. 

Student: ((Refer Time: 32:25)) 

Good question, I think I forgot to mention that, the question let me repeat the question. 

For this complete discussion I have taken the input signal to be a cosine function, and the 

VCO output to be a sin function, why did I do that when you see the... 

Student: ((Refer Time: 32:50)) 

That is right, because I am how am I real it depends on how you realize your phase 

detector, I am realizing the phase detector by multiplying the two signals and low pass 

filter in the output. When, I multiply cosine with sin I will get a difference component 

will be sin, if on the other hand multiply cosine with cosine, the difference frequency 

will be a cosine function. The cosine function will not be sensitive to the sin of the phase 

error, it only decide the magnitude of phase error and you cannot track the phase locked 

loop will not be able to work properly. 

Because, it must not only know what is the phase error, so that the phase error can be 

driven to 0, it must also know whether the phase error is positive or negative you want to 

be sensitive to the phase error. So, it is important that this it is also automatically works 

like that, so in a locked condition it is implied that if the input signal is cosine, the output 

signal will be sine that is there will be pi by 2 phase shift between the input signal and 

the demodulated signal. 

So, the input sign carrier is cosine to phi of c t, the VCO output will be sine to phi of c t, 

this will automatically happen. Because, you have close loop and the close loop will 

work like that, that was the good question I forgot to mention about that earlier. Now, 

what can we do about the removal of these disadvantages of the first order loop, this loop 

that we discuss is called a first order loop. 
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So, loop the PLL without the loop filter, now can you also see why it is called a first 

order loop. 

Student: ((Refer Time: 34:48)) 

That is one way of looking at it and another consequence of that is through the transfer 

function that we had, the loop transfer function K t upon s plus K t is the first order 

transfer function. So, that is why we call it a first order loop, it has the disadvantages that 

we already seen, there are two basic disadvantages which lead to non-optimum 

performance. One is a limited lock range and the second is a non zero steady state phase 

error, these are the two disadvantages that we are discussed, can we do something about 

it. 

As I mentioned we can try to remove both these disadvantages by using a loop filter of 

an appropriate kind. To illustrate that can be done, that in deed happens let us consider a 

loop in which we choose a loop filter to the transfer function like this. This is the transfer 

function not of the loop, but of the filter in the loop that we are going to put, which we 

are omitted in this discussion. This is as you can see, essentially an integrator the second 

part a by s is an integrator, the first part is one which allows your input signal to just go 

out, such an integrator is called a leaky integrator. 



Because, it allows an input signal to leak through to the output, as well as the component 

will come after integration. So, this essentially what is called a leaky integrator, so 

basically your linear model let us consider the linear model for the simplicity of 

discussion, because the non-linear model will become very complex now. The phase 

plane plot the differential equation will be second order differential equation now. 

Because, if one order differential equation is contributed by the loop filter and one order 

the differential equation contributed by the relationship between the VCO output and the 

VCO input, because there is an integral relationship there. So, this will become a second 

order differential equation and the phase plane plot will be much more complex now, we 

will not go in to all that discussion. We will consider the steady state operation, I will at 

least prove through steady state argument, that you need it is now possible to get both 

these things are you looking for, so we look at that. 

Student: ((Refer Time: 37:56)) 

No, I think it need not like to have any phase error, after the locking has occurred as long 

as the phase error is there we should know whether it is positive or negative. So, that 

loop can operate itself to drive the phase error to zero, the ultimate goal of the phase lock 

loop and that is why it is, so called is to drive the phase error to zero, in whichever 

direction is the current phase error may be. 

Student: ((Refer Time: 38:34)) 

I thought I already answer that question, if you still have the doubt we will discuss it 

separately ((Refer Time: 38:49)). Let me return to this, so let me consider the small error 

model or the linear model for this case. 
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So, what is the linear model for this case, we have this I have removed the sinusoidal 

non-linearity here, because I am considering a linear model. The input is phi of s, the 

VCO output is theta of s, this is the loop gain I am denoting it by a block and what we 

are now introduced additionally is a loop filter with transfer function f of s as given. The 

output of this is fed to the VCO and the VCO here will be represented by a transfer 

function of 1 by s it is an integrated, so it is transfer function is 1 by s and you are taking 

the demodulated output over here. 

So, what is the close loop transfer function here H of s equal to theta of s upon phi of s 

we need to find that out, if you do that, so we need to find this to be let us proceed step 

by step, let us write an expression for theta of s which is equal to can I write it in terms 

of this point here. Suppose, I go through the loop like this, it is K t times f s times into 1 

by s of the fully transform of the signal here and what is that phi of s minus theta of s. 

So, basically it is K sub t into f s upon s of phi of s minus theta of s just let in the transfer 

function it is a cascade of three functions. Now, you can solve for theta of s, take this 

theta of s to the left hand side let us solve for that, so if you do that and compute theta s 

upon phi of s it is very easy to do that. So, I leave that as an exercise you can check this 

out and this becomes equal to K t times f s upon s plus K t times f s and substitute for f of 

s as equal to s plus a upon s this becomes K t times s plus a upon s square plus K sub t s 

plus K sub t a, so that is what you have here. 



So, it becomes a second order loop because, your transfer function is a second order 

transfer function. So, when you use a first order filter as a loop filter which is a first 

order filter, the loop becomes the second order loop, the loop transfer function has 

denominator degree which is two. 
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We are interested to look at the phase error, so it will be interesting to look at psi of s, the 

phase error. The phase error is phi of s minus theta of s, if about to consider the transfer 

function let us say between psi of s and in the input phi of s that will become 1 minus H 

of s if I divide both sides with phi of s. And if I do that, you can see that if I substitute for 

H of s from the expression that we just derived, this expression here this will become s 

square upon the same denominator as before s square plus K t s K t a s plus K t. 

Student: ((Refer Time: 43:51)) 

K t. 

Student: ((Refer Time: 43:55)) 

It will be K t s, so I rewrite it s square by s square plus K sub t s plus K sub t. 

Student: ((Refer Time: 44:09)) 

Now, from this can I say something about the steady state phase error from this transfer 

function is it possible to say something about the steady state phase error, even without 



going through that non-linear analysis. There is a final value theorem that you know the 

Laplace transforms, what is the final value theorem. Suppose I want to find limit of psi 

of t, s t tends to infinity, this is limit of s tends to 0 of s time psi of s of course, to do that 

I must first consider some kind of input, I have to say something about phi of s. 

Let us present the same kind of input that we are talking about earlier, let us say that 

input is a frequency step. So, if the input is a frequency step what can you say about phi 

of t, the input frequency is a frequency step what happens to the phase will be integral of 

that, the phase will be integral of the d phi by d t, d phi by d t has a frequency step. 

(Refer Slide Time: 45:43) 

 

So, phi of t rather phi of s what can you say about phi of s, so for a frequency step input, 

the frequency step of delta omega, you can say that the phi of s is nothing but, see 

frequency step itself means that the Laplace transform of this would be delta omega by s, 

Laplace transform of the integral of that will be delta omega by h square. So, phi of s 

will become delta omega by h square are you with me on this, all of you, the frequency 

step that is your d phi by d t is delta omega u t, that is what a frequency step of the input 

means. 

So, therefore, phi of t would be integral of this the Laplace transform of this is delta 

omega by s, because Laplace transform of u t is 1 by s. Laplace transform of phi of t will 

be another multiplication of 1 by s, so that becomes by delta omega by h square. So, now 



substituting that in the expression for psi s upon phi s I am taking phi s on the right hand 

side, what do you get psi of s would be equal to 1 upon s square plus K t s plus K t a. 

Now, take the limit of s psi of s as s tends to 0 what do you get it becomes 0, so it is 

implies that the steady state phase error is because this is nothing but, what you want 

limit t tends to infinity of psi of t, so the steady state phase error is equal to 0. Similarly, 

you can argue I leave that as an exercise for you to complete, that the steady state 

frequency error would be zero. In fact, that is trivially obvious from this, because 

frequency error is going to be derivative of the phase error, so if this is 0 that will also be 

0. 

So, a second order loop removes both the disadvantages of first order loop; however, the 

only difficulty is the complexity of analysis, this analysis that we have done is a very 

approximate linear analysis, which is valid around the locking situation whether loop is 

nearly in the lock. So, that the linear approximation can be assumed to be valid, 

otherwise the proper non-linear analysis which will of course, lead you to the same 

conclusion, would actually show much more clearly how the locking actually occurs. 

Because, you will have to be able to again see that how the track operating point varies 

as a function of let us say psi. In this case you will find, that the phase plane plot is not a 

very simple sinusoidal curve, it is a very complex curve and it does not it is typically 

sinusoidal curve which gradually keeps on approaching the psi axis. And eventually 

needs or cuts the psi axis at a fair equal amount of distance, after going to many, many 

cycles rather than every cycle, in the first order loop the sinusoidal curve was 

intersecting the psi axis every cycle every two pi radians, that will not happen there. 

So, the actual non-linear analysis will show all that, that there is a lot of what is called 

cycles slipping taking, taking place before the lock actually occurs. But, I am skipping all 

that analysis, we do not have time for all that it is a very detailed treatment of the phase 

lock loop, which you can if you are interested learn by yourself, it is a very complex 

system to study, because it is a non-linear system. So, I think that is sufficient discussion 

for the phase locked loop, but this is not the only kind of feedback demodulator we can 

have for frequency modulation. 
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There is another very interesting variant of phase locked loop, which is often used in for 

demodulating FM signals more or less for the same purpose that the PLL is used, which 

is called system with frequency compressive feedback, which is very similar to a phase 

locked loop, but there are some major differences. Let us look at the block diagram, you 

have an input signal x sub r t I have a multiplier I do not call it a phase detector any 

more, I call it a multiplier I had the phase detector also as a multiplier, but that was 

followed by a low pass filter. 

So, that to make the phase detector I will not follow it up with a low pass filter, I will 

follow it up with the bank pass filter, that may be very surprising. And because, this will 

not make sense if the carrier frequency here and here are same is it not? Because if the 

carrier frequency here and here are same, then the difference component will always be 

proportional will always be center around 0, so I do not bank pass filter serve will serve 

no purpose. 

So, it obviously, implies that the VCO output is not at the same carrier frequency as the 

input or in the lock condition also, it is at a different carrier frequency. Here, as in the 

phase locked loop the carrier frequency at the VCO or the lock conditions will be the 

same as that of the input signal. So, therefore, it is implied here that the VCO works 

differently here, now what will happen then that you will have a signal here which is at 



some finite carrier frequency, which will depend on the centre frequency of this bank 

pass filter and will depend on the frequency of the VCO here. 

This I will follow it up with discriminator again, it is a very intriguing kind of structure 

and all kinds of questions should come to your mind, when I am plotting this. And here 

is a demodulated output and here is a feedback loop, which contains the VCO again, 

where the center frequency of the VCO is omega c minus omega 0 at the bank pass filter 

as the center frequency of omega 0. 

So, we will once again call it e sub v t, e sub o t and now there must be lot of question in 

your mind, I have a discriminator in this loop. And natural question that will arise is if I 

am going to use the discriminator anyway inside the loop, why should I have this device 

at all I could as well straightaway use the frequency discriminator and demodulator of 

FM signal. So, why all this complicate, so how this works and what are the advantages of 

this structure over the simple straight forward discriminator are issues that will discuss in 

the next class.  

Thank you very much. 


