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Welcome  to  course  on  VLSI,  advanced  VLSI  design.  So,  continuing  with  my  earlier

discussion, I will take you through the model checking techniques for design verification in

today’s lecture. So, in last lecture, we discussed that here if you want to verify VLSI circuit,

then we need 2 things; one is the system model that we define as a transition system.

(Refer Slide Time: 00:54)

And we discussed that transition system is defined as a set of states, transition function and

label on every state, that we obtained by converting the finite state machine to the Kripke

structure.  In  Kripke  structure,  we  transform the  label  from the  edges  in  state  transition

diagram to the notes.

And the other thing that we need is; are the formula or the property that we want to verify and

property is encoded in terms of temporal language and that is referred as temporal logic. So

they, this is defined as formula in temporal language and we discussed that there can be; you

can express in linear temporal logic or you can represent in the computation tree temporal

logic. 

(Refer Slide Time: 01:52)



So, LTL or CTL, I will take you briefly through both of this and then we will discuss this. 

(Refer Slide Time: 02:06)

So, and now here, we want to say, we have model written as M, formula as F and then here

we say that in some state, a model satisfies the formula F, if it satisfies in that case here, that

property is all the time respected by your design. If it is not, in that case here it gives you

counter example and that help you debugging the system. So, as I referred that we can use the

linear temporal logic and then how formally, we define a formula in linear temporal logic. 

(Refer Slide Time: 02:52)



So, that formula can be defined as say, tautology, so that means your formula can be always

true, that can be defined as say, sorry this is negation of tautology.

(Refer Slide Time: 03:06)

So this formula can be tautology or this can be negation of tautology or we can write like this

or this can be any formula, which is labelled on some particular edge. So, when we convert

our finite state machine into Kripke structure, we transform our input, output from the edges

to the nodes and then nodes are labelled with the variables, which are true in that particular

state. 

(Refer Slide Time: 03:46)



So, then all these variables, which are labelled on that particular state, are formulas. So, now

here, the so a formula can be like here in some state transition diagram, if I say that this is my

p and q are true here, q and r; are true here, r is true in this particular state, say this is state is

s0, s1, s2 and now here I can say this is my state transition; state transition diagram. Say, this

is initially, state. 

So, now here in this particular state, p and q both of the variables are true, so these are the

true formula for the state s0. Here q and r both are true, that means these are true formula for

state s1 and r is true formula for state s2. Negation of any formula is also a, formula in LTL

logic. There can be conjunction or there can be a disjunction of 2 formulas. So, now here you

can say that in, there is one formula phi and another formula psi.
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So, in that case here there can be say, phi conjunction psi and there can be 5 disjunction psi.

There can be a 5 implication psi, so now here you can write in both of the; I mean all these

ways. So, these are the static formula that normally we use in Boolean logic and I guess you

understand the truth table of the static formulas. But now, in order to capture the dynamic

behaviour of the system, here we also define some temporal operators.

And these temporal operators are X, F, G, U, W and R. X tells us the formula holds good in

the next state, F tells you that formula hold good, sometimes in the future, the future may be

next state, next to next state, next to next, next state and like this. Global operator tells you

that  this  formula holds good in all  these states in F path.  There is a until  operator;  until

operator says that one formula hold good until an other formula holds good. 

In the same way, there is a weaker version of the until, that is called as weak until. So, that is

defined as phi weak until phi, that mean, so this is; I will discuss how why this is weak and

why we need that? And then here there is another operator that is called as release operator.

So, these are 6 temporal operators; X, F, G, U, W and R. So, let us say this is a computation;

this is your Kripke structure or a variant of finite state machine.

(Refer Slide Time: 06:57)

And now here, I unroll this in order to obtain a computation tree that how the computation

progresses? So say, pq this is the state s0, that is the initial state and now if I start from this

state, in that case here, this can either go to this state or it can go to this state, right. So, now

here first time here, this will be or this will unroll like this. Now, when you come to this state

in that case here, either you can go to this state or you can go back to the same previous state.



So, now here your computation tree can unroll like this. If you are in a state R in that case,

you can be only in the state R. Now, in this way, you can generate the computation tree,

which is infinitely long. So, this infinite long tree and it is half infinite width. So, this keeps

on growing.  Now, here  any parts,  is  starting  from the  initial  state  or  any progression  is

defined as a path. So, this is one of the paths. 

So, and now here we defined this is the path 1 and which is starting from say state 1. Now,

here there can be another path like here this one, so that is another path we define path 2 and

then here this superscript tells you that from; which is the initial state of this path. So, now is

path is starting from the state s1 and this is the second path. Now, here this I can say is third

path starting from state s1.

(Refer Slide Time: 08:26)

So, now we define multiple  paths in this  computation tree,  okay. So, as I am mentioned

earlier that here; we model system as a transition system and we defined a path in this model,

which is infinite sequence of the states s1, s2, s3 so and so forth and so a path is represented

by phi and then here phi subscript s1 tells you that all the paths are starting from the state s1. 

(Refer Slide Time: 08:56)



Now, let us look at the semantics of LTL, so now if there is a model M, that is a transition

system and path phi that is starting from s1, s1, s2 the infinitely long path in M, when phi

satisfies an LTL formula then this  formula is  defined as like here,  tautology;  that can be

inverse of tautology.  So, that means here it  is always false or it  can be a label  on some

particular state, so p and where p is the member of labels on state s1.

This can be inverse of any formula phi, so this holds good if phi does not hold good in that

particular state and in a path. Pi can be the conjunction of 2 formulas; phi1 and phi2, so this

holds good and if and only if formula phi1 holds good and formula phi2 holds good or Pi can

be disjunction, so that means here this pi holds good. When phi1 holds good or phi2 holds

good or there can be an implication.
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So, that means this says that phi1 implies phi2. This means that, if phi2 will hold good in that

path, whenever phi1 holds good. So, that means here we can reason about phi2 only when

phi1 holds good, otherwise, we cannot reason about phi2 whether it holds good or not. The

temporal formula, here is defined as Pi satisfies X of phi if and only if. In the very next state

formula phi holds good, G is a hold good if and only if in that path, everywhere phi holds

good for i greater than or equal to one.

Future,  somewhere there exist  at  least  one state where in the formula holds good in that

particular path, pi of defined as phi until phi, psi if and only if, for any value I greater than 1,

if phi i of holds good, it means psi holds good in phi, pi i and for all value of j.

(Refer Slide Time: 10:32)

So, that means here, after particular state, so means this tells us that in the state progression,

this phi holds good until psi hold good, so until this point here, whenever you will get psi

until that point, phi should hold good. After that, psi may hold good or may not hold good, so

this is phi until psi. This is a strong relationship, this says that phi should hold good until psi

holds good and psi should hold good at least once in that particular path. 

(Refer Slide Time: 12:16)



The W is a weaker version of that and that says that if strong until holds good, weak until also

holds good, so that means here if you have this phi phi phi psi, then here phi weak until psi

holds good or if so here, psi should hold good or if phi always hold good and psi never occur.

In that case also here phi hold good, this phi weak until psi hold good. So, that means here

phi phi phi infinitely long phi, this is also valid formula for phi weak until psi. 

So, now here you can say that phi weak until psi is superset of phi until psi and in the same

way here, you can say that there is another formula we say that phi releases psi, so that means

here until this psi hold good, so that means psi should hold good until phi appears. So, in the

weak until oh no sorry; in until and release, there is a relationship that in until, you need to

have phi phi phi and psi.

(Refer Slide Time: 13:33)



Whereas, in so and in the release operator you must have phi phi phi and at least in one state,

you must have phi and psi hold good together, whereas that is not requirement in the until

operator. So, these are the various operators we used to model, the system is to define the

property  of  the  system,  keep  in  mind  that  here  your  implementation  is  modelled  by  a

transition system and is specification is returned in LTL formula. 

(Refer Slide Time: 14:14)

Now, we will take a; so these are some of the depictions of these formula as like here; X of f.

So, like here F holds good in very next state, here it is false and here it become true, F you

see is that, F holds good until g appears, F of g is the future operator so that means here, g

holds good sometimes in the future. This may be after the 2 states, after 3 states or after 5

states. G of f is f holds good everywhere, f releases.

(Refer Slide Time: 14:55)



See is that here, this f should hold good until you, so now here you see in this state f and g

both hold good. So, here now let us say, in this unrolled or computation tree, let us argue

about these formula whether this formula hold good or not. So, now s0 is p and q, so now

here whether it holds good in the very first state that is s0, is holds good. Because p is true, so

p holds good.

Q is true, so that means q hold good and then there AND operations are also holds good. So,

now here this formula holds good. S0 is negation of r, so that means here, r does not hold

good, hence here negation of r holds good, so this formula is true, s0 satisfies X of r, that

means here in the very next state, r should hold good, so very next state from the s0 state is

either this qr state or rs state. 

In both of the cases, r holds good, hence here you can say that this formula holds good. Now,

if you look at X of q and r, so here in this state, q and r holds good, whereas in this state, q

and r does not hold good hence means if this does not hold good in both of the next states,

this formula does not hold good, so this formula does not hold. Like here, we can say, s0

satisfies G of negation p and r.

So, p and r, so means both should satisfy in the paths starting from s0. So, now here in this p

and r does not satisfy, here it does not satisfy, here it does not satisfy. So, in this path nowhere

this satisfies ends, this formula is satisfied. So, now this way, we are here, we can write some

of the formulas. So, now again here we have several operators in this. We have, means your

conjunction and disjunction, negation and implication as static operator and X, F, G, U, W

and R as temporal operators. 

(Refer Slide Time: 17:07)



So, now here, do we need all these operators like here if you want to define a system in that

case here? Do we need negation conjunction disjunction all 3 operators? No, we do not need,

do not need these operators and we know that there is a De Morgans theorem and then here

De Morgans theorem can be defined like this one. I guess all of you know that, so I do not

need to discuss this. 

(Refer Slide Time: 18:04)

So here, now if this can give you the equivalence between different operators, this says that

out of these 3 operators if we have 2 operators either negation and conjunction or negation

and disjunction in that case here, these are sufficient to specify any of the system. Now, there

is an equivalence relationship between temporal operators like here we can say, some of these

operators are defined as like here you say, G of phi is equivalent to negation of G of phi is

equivalent to F of negation of phi. 



What this says is that,  G of phi,  negation of that,  so that means here,  when G of phi is

satisfies when here whole along the path you have phi phi phi phi hold good. When this

formula fails, this formula fails, if any of this state has negation of phi. So, if I have negation

of phi here, in that case the negation of G of phi hold good, right. So, now this is the trace of

negation of phi. 

Now, in this what I can say is that, somewhere in the future at least in one of the states,

negation of phi holds good. So that means here, I can write this formula as F of negation of

phi. So, that gives you the logical equivalence of negation of G of phi is equivalent to F of

negation of phi. This way you mean, you can write this other way round as negation of F of

phi as G of negation of phi. 

(Refer Slide Time: 19:24)

In the same way, X of phi, so now in this state, is you have phi; next state, you have phi. So,

say the current state, you may have anything, but phi or negation of phi. But in the next state,

if  you have phi in that case your formula,  phi holds good. Whereas,  if  you say that this

formula is does not hold good or does not satisfy in that case, your trace must be here you

may have negation of phi and the next state must be negation of phi. 
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This is equivalent to X of negation of phi because here in the next state, negation of phi holds

good. So, this way we can write equivalence. In the same way, you can work out there is an

equivalence relationship  between you and operator,  so means negation of phi until  psi  is

equal to negation of phi until negation of psi. This relationship is like De Morgans theorem or

other way round you can also write it. 

(Refer Slide Time: 20:36)

In the same way here, you can write, F of phi is equivalent to tautology until phi. Tautology

means  here  no  restriction  always  holds  good,  right.  So,  that  means  here,  without  any

restriction in some state, here phi holds good, so that means here you have negation of phi,

negation of phi, negation of phi and in some state, phi hold good. So, this is equivalent to

what? This is equivalent to F of phi because somewhere in the future your phi holds good. 
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So, this way you can write like this. In the same way, her global operator, you can write G of

phi is equivalent to negation of tautology, releases phi, so the negation of tautology and as I

explained you earlier that your weaker until is super set of until, so that means here, if I had

something in; so now your phi until psi is defined as phi phi phi phi and somewhere psi, right.

Weak until can be either this one or phi phi phi phi phi phi everywhere phi, right. 

So, if this is there in that case, this is equivalent to weak until. Otherwise, I have to have

somewhere psi should hold good. So, this I can also to write as in order to capture this one, I

can also write as this as F of psi, F of psi means here psi hold good somewhere in the future.

So, your strong until is equivalent to weak until and F of psi, that gives you exactly this thing.

So, this way you can have equivalence between the weak until and strong until.
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So, now here in this way you can define the equivalence between these operators. Now here,

if you want to see, which are the essential sets in that case here out of these 6 operators, you

can say, I need either U or X or R or X or W or and X. So, now either set is okay, so now here

you need 2 operators from the temporal logic and 2 operators from the static logic and so now

here either from the static if you need to have either this set or you need this set.

(Refer Slide Time: 23:18)

Both of this sets are okay and from the temporal, you need to have UX, this one or this one,

so now here you can pick any of these 2 and any of these 3, so and that can be defined you

the complete set. 

(Refer Slide Time: 23:43)

So, now here the question is what we can do with this? How we can write or how we can

specify property of the system? Let us take a simple example,  this example tells you the



mutual exclusion or arbiter that gives you access to the common resource. What we want

from that? There are couple of things that we need from this system and those are defined as

like here, if one; master one to get access to the common resource.

In that case you are; it should be allowed to get access. Two masters cannot get access to the

common resource, right. So, and now here it should not be blocking, so that means here like

whenever somebody wants to access, sometimes in the future, it should give access to the

common resource and it should not allow the strict sequencing that means here it should not,

means say give you the say, Round Robin policy or something like that.

So that first gives the access to the master one, then master2, master3, master4. 

(Refer Slide Time: 25:00)

So, here you have 2 masters, say M1 and M2 and say they want to get access to the common

resource and this common resource may be the boss. So, now here this master can be in any

of the state, one state may be here it may request. I say that is trying state, that is, it is trying

to get access and then here ones it gets the; your request is registered, you get access to the

common resource and you are allowed to transfer your data to the common boss.

And that state here; we say as critical state. So, now here you are in the critical state and you

have access to the system say that is state c and now here many times your master may not

want to have the access to the common resource, so then you can say that it is not trying for

anything it is in the idle state. Idle state, I say referred as M. Now, what are the important

properties we are interested in? 



One of the property is that is defined as safety property and safety property says that only one

process in the critical, only one process should be in the critical section. So that means, here

more  than  one  process  should  not  access  to  the  common  resource.  Another  property  is

defined as liveness and liveness says that whenever any process request to enter in the critical

section, it will eventually be permitted. 

So, that means it is not necessary that in very next state, it should be permitted but it should

be permitted somewhere in the future and third property is non-blocking property, we are

interested in and this says that a process can always request to enter in the critical section,

once it gets access to the critical section, it should not be disallowed for that, it can always

make any request at any point in time and fourth property that is very important is, no strict

sequencing. 

(Refer Slide Time: 27:45)

You may or means some of the protocol you may use Round Robin and then this property is

violated but ideally you may want that here. There should not be a strict sequencing, so that

means here, process need not to enter in a strict sequence that here first process p1, then p2,

p3, p4 something like that, it should not happen like that. Okay, so now here we design a

mutual exclusive system and that system will work like this. 

(Refer Slide Time: 28:01)



So, let us work out it  little bit.  So, say initially  both of the resources or masters are not

requesting for any resource, so they are in state, where in n1 and n2, n1 says that process p1

does not request process and to say process p2 does not request. Now, so say this state is s0,

now when you will get request from master M1 then it will go to the state M2 and now sorry

master 1 or process p1, then it should go to the another state and in that state say t1 is in

trying and n2 is not trying, right. 

So, this is in the trying state that means it rays the request after that what will happen? Now,

in this either your t1 or process p1 will get access, so if it gets access in that case here, it will

go to a state c1and t2 is means the process p2 is not trying or process p2 may also start to try.

So, now here it will start to try and then here, it will go to a state t1 and t2. So, let us say

come back to process p1, which gets the access so this was s1, this is s2.

Now, once it completes here, it goes back to the initial state, right. Now, here or from this

state, if t2 start to; t2 again reject the request, so far there was no request. So, in that case here

it will go to state c1 and t2. Come back to the previous state t1, t2 when it is in t1, t2, in that

case here, either it will give access to; I mean process p1 or it will access to the process p2.

So, say it gives access to the process p1. 

So, this will work like this or it gives the access to the process p2 so in that case here, this

will give you t1 c2, right. Now, if it goes to c1t2 in that or it goes to t1 c2, in that case here,

once it completes, t2 completes here, it comes back to the state t1 and to because now here



process second is not requesting for anything. So, now here like this, you will also get the

similar kind of state graph this side.

So, now here if you look at this, you will get a state transition diagram like this which gives

you the implementation of an arbiter or mutual exclusion. I hope this is clear to you by this

time. Now let us see how I can encode these properties and for this one and check whether

this implementation is correct or not. So this is implementation and this is Kripke structure.

So, Kripke case structure tells you that here these variables t1 and n2 are true in this state.

Here, n1 and n2 are true in this state and in this we have 6 different variables t1 t2 n1 n2 c1

c2, right. Now, here let us look at the properties. So, first property was the safety property and

safety property says that only one process should be in the critical section, how I write that?

So that means in every state in this diagram, I have to say that only one process should be in

the critical section.

(Refer Slide Time: 32:05)

So, that means here either c1 should hold good in any of the state or c2 should hold good,

both should not hold good, right. So, means that how I can define? I can define that globally

c1 and c2 both should not hold good.

(Refer Slide Time: 32:13)



So, that means here c1 c2 should not hold good that means here the negation of this should

hold good all the time globally. So, I can write this property like this. Second property is

liveness property, which says that whenever any process request to enter in to the critical

section,  it  will eventually be permitted,  so that means here,  whenever a process wants to

enter, so that means whenever it is trying in that case here, somewhere in the future, it should

get access.

So, that means here now whenever some process say, if t1 is trying, so in that case, after

several cycles I do not know how many cycle? But after several cycle, it should get access so

that means here it should go in the critical  X section or it can get access to the common

resource. So, now here this should hold good and this should hold good globally. This is for

process p1, this should also hold good for process p2, so that means here t2 implies F of c2.

So, now here this encodes liveness property. Third property is non-blocking property. 

So, non-blocking property say that for every state satisfying n1, there is a successor state t1,

so that means here it should not be at least in some of the parts, the next state should be after

n1,  it  should be  t1,  right.  But  now here  in  this  we cannot  select  or  define  property  for

selective parts. Here this property says that here this need not to hold good all the time, this

should holds good selectively.

So, in that case here, we have to; we cannot express that and I will come back to this point

and  will  tell  you  that  this  can  be  express  in  computation  tree  logics;  computation  tree

temporal logics, CTL and this is not expressible in LTL. The another property is, no strict



sequencing, no strict sequencing says that you cannot restrict sequence; restrict sequence tells

you that you have to go in this way. 
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Firsts c1 goes in the critical section then c2, then again c1, then c2, then c1, c2 it has to

follow the strict sequence and what we want is that? it should not have this strict sequence.

So, that means here this may follow the sequence as well but at least there must be one path

in which it should go like c1, c1, c1, c2, c1, c1 something like that. So, that means we have

to; now here, how I can write this property? 

We can write this property as a negation of the property because here again, we cannot write

property for the selective formula, but in this particular case, negation can help us that if we

say that there is at least one path in which this strict sequencing that is, c1 c2 c1 c2 does not

hold good that means here it does not follow a strict sequencing in all the time. So, in this

case, we are; we can write this property as a negation of the property.

And that says that here your c1 either should hold good all the time and so that means here c1

implies c1, weak until, so that means here either c1 continues or it should go to the negation

of c1 and then here from negation of c1, it goes to c2 and then come back to c1. So, now here

this says that here is strict sequencing is not needed and if this property fails that means here

a strict sequencing passed, no strict sequencing passes. 
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So, this way we can write. Now, in this state transition diagram, if we look at this property, so

if you go back to the state transition diagram here, you can say that nowhere in this c1 and c1

both are true, so if this false, so that means here negation of this is true. So, that means here

the first property holds good. Second property tells you that what it says? 

(Refer Slide Time: 36:55)

That  you have to have t1 Fc1 and this  holds good globally.  So that means here after t1,

somewhere in the future you should get c1, right. Now, here if in this transition diagram, if

you look at a path s0 s1 s3 s7, you are what you are getting? Here n1 n2 here you will get t1,

so now here t1 is true. Now, you can reason about Fc1, once t1 hold s good. So, t1 holds good

here. Now, after that what we want? That somewhere in the future, it should; c1 should hold

good. 



So, that means from t1, if I look at this one, t1 here you will get c1, so in this path, this holds

good, but if you look at this path s0 s1 s3 s7 s1 s2 s3 s7 s1 s3 s7, so the path that is s0 s1 s3

s7 s1 s3 s7 and so on and so forth. In this path, here you have t1 t1 t1, again t1 t1 t1 t1 and so

you will never get c1. So, that means this path, while it is this property. So, what it says that

your second property, which is liveness property fails. 

So, that means, and what liveness property says? That whenever any process request to enter

into the critical section, it will eventually be permitted and here it means this counter example

that we have discovered s0 s1 s3 s7 s1 s3 s7, so if it follows this computation path, it would

not permit t1 or the process one to enter into the critical section. Hence there is a design bug

and it captures the design bug. 

I will come back and tell you how we can look at, means how we can debug that design bug?

Non-blocking, so the counter example tells you that here, which path violates this property.

Now, third property is not anyway not encoded in LTL, then go back to the fourth property

and then here you will find out; find in the computation path you can do this on your own that

this is always; this property is always is respected.

So, that means your negation of this property holds good. So, now here how I can say this

process right. If you look at this, where is the source of error? Source of error lies here at s3

when you come to state s3, where in t1 and t2 both are true, now you lose track through

which path you came from s0 s1 s3 or you came from s0 s5 s3 and now here this can go to

this state or this can go to this state.

So, now here, you do not have memory, otherwise if you remember that if you come through

this path then here you would not allow it to go here you can allow it go here. So, now means

in order to debug it or in order to fix this bug say, I mean say for debug, we get to know that

this is the source of bug and in order to fix this bug here now what is the solution, what is the

remedy? 

Remedy is that here you split this state in 2 states, so that you can remember that whether you

came through this path or you came through this path and so now here that will fix your

problem. So, now here by splitting this state in state s3 and s9, both have t1 and t2 variable



high or a true, so in that; but here now, I remember if it came through this path in that case

here, this would go here. 
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If it came through this path, it should go over here and now here there is no confusion and

now if you look at it you would not find such a path and hence here both all these 3 properties

will pass and so now here this way you can specify property and then you can verify those

properties  on  a  given  model  and  so  now  here  that  model  is  generated  from  the

implementation.

So this transition; implementation is describe the transition system or finite state machine or

Kripke case structure and your specifications are returned in terms of LTL formulas.
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And, as we know that here LTL formulas are evaluated on paths, so that means here and that

is why this is linear because on a path always with a clock tick here, you were linearly move

to the next state, next to next state, next to next state always. State of the system satisfy LTL

formula, if all the paths on a given states satisfies the formula. So, that means from one state

if n number of paths are originating in this case here that state satisfies formula only when all

paths originating from that states satisfies that formula.

Now, here LTL implicitly quantifies over the universally over the paths, so that means here,

all the paths originating from the semi state and now here, but some of the properties, which

asserts the existence of path, so that means those are defined for a selected set of path cannot

be expressed in LTL, that is; this coming out of LTL. Sometime like here as we have seen that

no strict sequencing, we can use negation and we can defined the property.

So, negation can partly help us but not all the time. So, for that here we need to go to the

branching type temporal logic. So, if you look at the computation tree, in that case from every

state here now these branches out either it goes to this state or it goes to this state. So, now if

you start to define formula based on the computation tree and or you can say the; with respect

to a state, in that case here, we can select some of the paths.

So, now here from either it goes here or it goes here, so now here we can select the path and

so now that formula that is defined as computation tree temporal logic CTL. So, now here a

big difference between the LTL and CTL is that with every formula, or temporal operator, we

need to specify one path modality, whether this holds good on all the parts originating from a

state or it holds good on selected path. 
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So, one path modality is defined as A, that is for the representing the universal quantification,

so that means it depend it define for all the paths originating from one of the state or we

define E that refer the existential quantifier that means here, it says that this exist or this holds

good  at  least  for  one  of  the  paths  and  so  now means,  we have  to  associate  these  path

modalities with each and every temporal logic.

So, now here your static formula remains same, but the temporal formula has association with

the path modalities either universal or existential. So, now if you say X operator I have that

says that some formula holds good in the next state. So, now there can be several next states

from one particular state. So, now here based on whether it should hold good in all the next

states or it should hold good in one of the next; at least one of the next states. 
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We defined the path modality, so it should hold good in hold the next state in that case we

defined this; we associate A or if it should hold good on selected or at least one of the next

state in that case here, we defined this as E of X. So, in the same way here, we can write; we

can define if some formula holds good, some times in the future in any of the path in that case

here, we define that as E of F or if it holds good in all the paths in that case we are defined as

A of F. 

So, now here means, we can define these as tautology or sorry there must be negation here.

So, this is negation of tautology or this can be a formula which is label on particular state, the

CTL formula can be negation of a formula, it can be conjunction, disjunction, implication, it

can  be  temporal  operator  X  and  that  is  associated  with  path  modality  as  A,  it  can  be

associated with path modality as E.
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Then here, there can be F, so F or G; G is global and U. Generally, we do not define weak

until or release operator for CTL, but you can define that as well. There is no such restriction.

As we discussed earlier that here we can convert from one formula to another, so that means

here, U2W or U2R or W2U or R2U. So, now here these formulas are defined in this way, so

these are restricted formula, though restricted formulas are same.
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Whereas, the temporal formulas change a little bit. So, now here A of f, AX of f, so it says

that here in all the next states, f should hold good. EX that means here it should hold good at

least in one of these state. 
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AG should say that here in all the paths starting from states as should, I mean, f should hold

good or if it is easy then here in one of the paths, this would hold good. If it is f, so that

means here somewhere in the future the formula f should hold good in all the states in all the

paths starting from S. 
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Now if it is E, in that case here f should hold good at least in one of the paths in the future.

AU is say that here; f should hold good in all the paths until g holds good. So, now here this

is g hold good here; g holds good here; g holds good here. EU is defined that here f should

hold good at least in one of the paths until g holds good. 
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So, now here some of the things that we; can examples are like this, we can say if there is a

request  there  must  be  acknowledgement.  So,  now  here  when  there  is  a  request  here,

sometimes in the future may not be in the next cycle but sometimes in the future there must

be acknowledgement  and this  should hold good globally in arbiter  or a message passing

system in some protocol.

So, or here now, we can define a process is enabled infinitely often on every computations

paths. So, that means here it can be enable to again and again and again, so that we can

defined that here globally sometimes in the future enable signal should hold good or should

become true.  Now we can also, so model deadlock, deadlock says that  sometimes in the

future, it will instruct to or always it would be in same state.

So, that means you are deadlock, so this can model the deadlock. Then, say if you want to

define that like in a processor, you can or any of the sequence cell circuit, you can always

press reset and then it should come back to reset irrespective of in which state it was. So, now

here that you can define that globally from every state there exists one path that can take you

to the restart state. 
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So, that  is  the restart  or reset  state.  Like you can also define some formula like here,  if

elevator is travelling upward, in that case you should keep and some; an elevator is in at floor

2 and button floor 5 is pressed, it is going upward. In that case, you should keep on going

upward until floor 5th before changing their direction of the elevator or here if you want to;

so now here universally globally, this would happen.

That, if it is in the floor 2 and direction is up and button floor 5 is press, in that case here, it

should always keep direction up until it reaches to floor 5. The elevator can remain in idle

state on the third floor with its door closed. So, now that you can say that if it is on the floor

3, and it is idle and door is close in that case here, this implies that it should continue to in

this state. 

So, now here one of the property that we were not able to encode in LTL now how we can

encode that, so other properties you can also define in CTL, like here as I said that LTL

properties are implicitly using universal quantification. So, now for the first safety property

you can have universal quantification for the liveness, again here you can use the universal

quantification because this should happen all the time.
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Non-blocking property, we were not able to define, so that means here this was related to one

path what it says is that; for every states satisfying n1, there should be at least one successor

that can satisfy c1. So, that means here we were supposed to do write like this that if it is in

state n1, there exist at least one path, where in next state is t1 and this would hold good

globally in all the states.

So, now here, why we were not able to specify this in the LTL? Because,  here, we need

existential quantifier and global quantifier. If you are need in only existential in that case your

negation can help you but now here, you want to select A path from a set of paths. So, now

here that is why you cannot specify. In the same way here, the no strict sequencing property,

you can also define by converting this into their existential quantifier.
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Because earlier, this was defined as negation of the property, okay. So now, if you look at all

these  properties  will  pass.  Again  here,  there  are  various  operators  you  can  define  the

equivalence between these 2, these operators.
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And finally here you need a set of 3 operators in among the temporal operators and negation

and conjunction or negation and disjunction as temporal operators. So, now here you need 5

operators to express any property.
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And now here, so this theorem says that a set of temporal connectives in CTL is adequate if,

and only, if it contains at least one of AX and or AX and EX, means from AX or EX or at

least one from EG, AF, EU, so now here you need to have 3 operators AX or EX, EG or AF

or AU and EU. 
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So, now if you want to check the CTL formula CTL, checking CTL formula is more straight

forward because it is related to state not related to path, means checking for temporal formula

is more difficult and what we do is; we use the labelling concept, so that means here, we start

in the reverse way, we start from a point where in the formula holds good and then here we

go back and try to reach to the initial state. 
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So, now we label those state, which are were in the current formula is satisfied and then we

go back if  the previous state  of that  state  satisfies  that  formula  and this  way we do the

backward reachability and if we happen to reach to the initial state in that case, we can say

that property is all the time respected. So, now here for AND and NOT, what we need to do is

here if both of the formulas are true at a node, then here resulting AND formula is true.
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And so, now here say in this state, say you have these state, so here a formula phi holds good

and that is phi say phi and psi. Now, if this holds good in that case here, i level this formula

say capital phi and now here because this holds good in that case here this would good in the

previous state, so everywhere. But here only we need to consider, so AND and NOT are

pretty straight forward.

(Refer Slide Time: 56:07)

But, here now; we need to consider EX of and EU and EG formula. So, now here EX, again

here for EX, it is straight forward. Now if Xf holds good in some state in that case here, EX

holds good in the previous state, so now here input is your Kripke structure, output is labelled

a state transition diagram or labelled Kripke structure, where in you label EX of f. So, now

here for each state, s of K, add label EX f, if f is labelled as the successor of s.
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So, now here that is what I told you. EU of g; EU of g, it can be referred as now here we look

at some state if these are the; these state if g is labelled here, in that case here I labelled here

f; f until g in this state. Now, this is universal, so now here you look at the previous state, in

this state, if the previous state is labelled as f, here f then here i can also label this as f until g

and because here this is existential.
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This means, we need to check only in one path, so in one of the successor, so now here if you

look at the previous one the next state is labelled as E, f, u, g and then here earlier state also

has f in that case here, you can be also labelled these as f until g, this way you keep on going.

So, now here you need not to unroll your finite state machine or in other word you do not

need to create complete computation tree, which is infinite long.
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And now, here this way you keep on going back; the moment you reach to the initial state and

initial state is labelled with that particular formula, you can say that formula holds good all

the time. So, now here they we can dynamically reduced the complexity of verification of

these formulas. Now, so this algorithm does the same thing; it says that assume the formula f

and g have been verified.

So now here, Ef of g is true at the node. If there is a path from the node to g levelled node and

every node along with the partial path f is labelled but g is not. So, now here the formula

holds good, where in g holds good and now you have to check whether g holds good and f is

there exit before that. So, node satisfies E f U g, if g is labelled at that node or f is labelled but

node g is labelled at the node and its successor is either labelled as either g or f until g.
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So, this way here you can verify this, so now, we are at the end. I can summarise this that you

model your implementation as a transition system, you write down the properties using either

CTL formula or LTL formula, say that formula is f and then here you need to check whether

your formula satisfies in all the paths or in the state in which way it is referred, if it satisfies

in that case here in all the cases that properties respected.

If it fails, then it will give you the counter example and counter example will help you in

fixing the bug. So with this, I summarise the verification portion of these set of lectures on

advanced VLSI design, good day. 


