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Welcome to the lecture series on advance VLSI design course. In last couple of lectures, we were

talking about VLSI design verification. So, now I will take you through remain portion of the

VLSI design verification. So, in the last class we discussed about equivalent checking. So, we

discussed combinational equivalence checking and we also discussed how we can formulate a

sequential equivalence checking problem as a combinational equivalence checking by unrolling

sequential circuit.

And we can verify the unrolled combinational circuit vis a vis the other design. So, one of the

problems that we discussed was the circuit size increases. The number of input variable increases

so, then that is the problem. And other solution that we discussed was we have two finite state

machines  and  then  if  we  can  reduce  these  two  finite  statement  machine  and  we  take  the

isomorphism of these two reduced finite statement machine.

We can say that  both  of  the  machines  are  equivalent.  So,  these  two techniques  we already

discussed now I will discuss the third technique which is more common and more popular. That

is based on the reachability analysis. So, what do we do is that we have two machines. 

(Refer Slide Time: 01:51) 



Machine M1 and machine M2 and then we generate a product machine out of these two and now

for this product machine if we start from a say initial state as 0 of this machine and initial state as

when off machine M2 then we check in the product machine whether we can reach some illegal

state by traversing this machine or not. If we reach to an illegal state in that case here both of the

machines are not equivalent otherwise machines are equivalent to each other. 

So, as I mention that here we are constructing a product machine so say if one machine has say n

number of stairs, another machine has m number of stairs. In that case, here product machine

will have total n into m numbers of states. So say one haS2 and another haS3, so that means here

we have all possible 6 combinations of these states and based on the state transition some of the

combinations are legal.
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Some of the combinations are illegal if we end up to an illegal combination in that case that those

two machines are illegal because otherwise these are not supposed to reach to that state. 

(Refer Slide Time: 03:12) 

So, as I said that we use the symbolic FSM traversal of the product machine and figure out

whether we are able to reach to the illegal state or not. So then here how we formulate that. So,

say  these  are  the  two  machines  one  is  machine  M1  that  has  some  combination  part  and

sequential, the free flops. And the another machine is M2 so now what do we do is we construct

a product machine and whose output of both of the machines are connected to a XNOR gate.

And this XNOR gate is supposed to produce output one if both of the machines are equivalent



otherwise it may produce 0. Now, you have two machines M1 and machine M2 so we create a

product machine M that is M1 cross M2 we traverse the states of M that is product machine and

check if the output of each of the machine. If the output of machine M iS1 output of machine M

iS1 only when the output of both of the machines are one otherwise it is 0. 

If all output of M are one in that case here M1 and M2 are equivalent otherwise these are not

equivalent and then here we can reach to an error state and then this error trace will produce the

counter example. So that means you are looking at the error trace we can find out what is the

source of the bunk. So now let us come to how to construct such kind of product machine. 

(Refer Slide Time: 04:48)

So there are two machines M1 and M2 and say S1 is the set of machine M1 and S2 is the set, set

of machine M2. Now here the product machine will have two state set S that is S1 cross S2. So,

if S1 is to S2 is three that means here that would be total 6 states in the product machine. And

next state function that delta of s into x would be S1 cross S1 into X and this will map to S1

cross S2 and out function lambda of s of x would be S1 cross S2 cross X to either 0 or one. 

So, when O1 and O2 are same in that case here output is 1 otherwise it is 0. Construct this and

then here this  construction of this output is known as (()) (05:47).  So, now here the lambda

function that is the output function would be, the output function of machine M1 and output X

XNOR  with  output  function  of  machine  M2.  Sorry,  I  mentioned  earlier  X,  this  is  X  nor



operation. 

So, now here we look at the error trace if we are getting output as 0 and that error trace is the

distinguishing sequence so that means here sequence that can produce two different output from

the two different machines. So, it is sequence of input which produce 1 at the output. Let us look

at the how we can distinguish 2 machines.

(Refer Slide Time: 06:23)

Say machine M1 has 2 states 0 and 1 and machine M2 has 3 states 0, 1 and 2 and these are the

state transitions. Now here we would like to see whether both of the machines are equivalent or

not. Now what do we do? We need to construct a product machine and product machine will

have say here this machine has 2 states, this haS3 state. So, that means here product machine will

have 6 states. 

Out of 6 states some are illegal some are legal and what we want? We want that here all the legal

machines states should be reachable and all the illegal machines should not be reachable. So,

now we create a combine state that is S1 into S2 and so say here we have state 0 and 1 here we

have 0, 1, 2. So, now the combined state that we can create out of this, this is 0 and 1 and one has

0, 1 and 2. 
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Now here the combined state would be 0, 0, 0.1, 0.2, then 1.0, 1.1, and 1.2. So, these are the total

6 states a product machine will have. Some will be legal states; some states are illegal states.

Now here we have to look the state transition. So these are the 6 states available and now we

have to construct the state transition. So, the state transitions are labeled over these ages so that

means here this says that if I apply 0 in that case here this will stay in the same state and output

would be 1. 

So, let us say that initially this machine is in state 1 and this machine is also in state 1. So, now

when it is in the state 1 in that case here on the arrival of 0 it will stay in the state and produce

out aS1 and on arrival of 1 here it will go to state 0 and produce output as 0. This is the state

transition when it is in state 1. Now here what are the state transitions of this machine M2 when

it is in the state. 

So when it is in state 1 in that case here on arrival of 0 it will stay in the state 1 and produces

output aS1 and on the arrival of 1 here it will go to state 2 and produces output 0. So, now here

say in the product machine that may have a state 1, 1 and 0, 2 right. So, now here on arrival of 0,

this will stay in state 1, this will stay in state 1 so that means your product machine will have a

state 1.1 and on the arrival of 0, it will stay in the same state. 

And now here output of this machine iS1 output of this machine iS1 and XNOR of these two



outputs would be 1. So, output will 1 now here on arrival of 1 as input in that case here this

machine will go 0. This machine will gO2 in that case here the product machine will go to a state

that is leveled with 0.2. So, on arrival of 1 here it will go to state 0.2 and because out in machine

M1 is 0, output in machine M2 is 0 and XNOR of these two machines would be 1 so in that case

here output would be 1. 

This way here we construct the state transition in a product machine. So, if output iS1 in that

case here these are equivalent it is okay if output is 0 in that case here the product machine enters

into erroneous state. 

(Refer Slide Time: 10:19) 

So, let us take an example and see whether these two machines are equivalent or not. So, these

are the two machines and I say I start from some state say initial state is this machine in 0 and

initial state in this machine is 0. So, now here start to construct a product machine and see how

far we can go and how many stairs we can reach. So, now we maintain a repository of states

which are already reaches and then the output on arrival of 0 and one. 

So, initially both of these machines are in state 0 in that case initial state is 0, 0 that I can write as

0. 0 and now on the arrival of 0 this machine stays in state 0. This machine also stays in state 0.

So, that means your product machine will stay in 0.0 state and output of machine M1 is 0, output

of machine M2 is 0 and hence the output of the product machine would be 1 because this is



XNOR of outputs of these two machines. 

Now, on the arrival of 1 so now here on the arrival of 0 as input, output will be 1. Now, here look

at the output on the arrival of 1 so when the arrival of 1 is there in machine M1 it will go to state

1, on the arrival of 1 in this machine M2 it will also go to state 1 so that means here the product

machine will go to a state that iS1.1, right. And what would be the output here? This machine

produces output 1 this machine produces output 1.

And product of these, no sorry, XNOR of these two would be one hence here so XNOR iS1. So,

now here from this initial state I can reach to state 0, 0 or I can reach to state 1, 1. Now here let

us look at if I am in state 1, 1 how it progresses? So now if it is in state 1,1 on arrival of 0 it will

say in state 1. On arrival of 0 this also stays in state 1 so then here the product machine will also

stay in state 1.1.

So now it will stay in state 1.1 when arrival of 0 and in both of the cases both of the machines are

producing output 1. Hence XNOE of these two output would be 1 so it will produce out 1. What

happens when you get input aS1? On the arrival of input aS1 this machine will go to state 0, right

and produces output 0. This machine will go to state 2 and produces output 1 so that means the

combine machine or product machine will produce output 1. 

So, it will produce out 1 and will go to state 10.2 because this goes to 0. This goes tO2, all right.

Now, here you will reach to the new state that is 0.2. So, these are reachable states. Now in 0.2

on the arrival –so you are in 0 here and 2 here. On, arrival of 0 it will stay in 0, on arrival of 0

this will also stay in 0 so that means you are on the arrival of 0. It will stay back in 0.2 state and

produces output aS1 because 0 here and 0 here. 

So, this is the case when you receive 0 as input. If you receive 1 as input in that case here from 0

it will go to state 1 froM2 it will go to state 2. So, now here it will go to state 1.0, right this goes

here. This goes here. So, now here this will go tO2 state and state 1.0 and then here it  will

produce output 1. Now, when you are in state 0.2 on arrival of 1, sorry on arrival of 0 it is 0.2.

On arrival of 0 it stays back in 0. On arrival of 0 here it stays back in 0. 



Sorry, it iS1.0. So, in 1.0 here on the arrival of 0 it will stay back in 1 on arrival of 0 this also

stays back in 0. So, now here the product machine will stay back in 1.0 state but this produces

output 0. This produces output 1 so these are producing out as 0 and 0 output is erroneous. So,

now here you are able to reach an erroneous state hence these two designs are not equivalent. So,

now here you can further travers like if it is 0 1 in that case here. 

It can go to another state and produces again the erroneous output. So, now here if you want to

find out the error trace in that case here your error trace that can result into erroneous state would

be 1 1 1 and 0 right. Or 1 1 1 and 1 so these are the error trace so this error trace will tell you that

under this condition if these two machines are not equivalent. So, that means under this condition

these two machines are producing two different outputs. 

Hence these are not equivalent. So, if this process stops either it results into erroneous output or

so that means your output is 0 or it is not able to include anymore new states. In that case here

you can say that now here all the reachable states are producing output as one and other states

which may produce output 0 are not reachable hence your machine is safe under the conditions

both of the machines will behave exactly in the same way. 

Hence you can verify these two machines. So, this way here we can use the state traversal and

we can verify the equivalence of two machines by converting a machine into a product machine.

So, far we discussed about the equivalence checking. Three methods of the equivalence checking

first method by converting the sequential equivalence checking into a combinational equivalence

checking by having the timeframe expansion or by checking the isomorphism between the two

state machines or by using the finite statement machine. 

So, we have to convert both of the machines into a product machine and we have to traverse that

product machine and check whether any of the illegal state is reachable or not. If illegal state is

reachable in that case here both of the machines are not equivalent otherwise the machines are

equivalent. So, this completes the sequential equivalence checking portion. Now, I switch to the

next topic that is model checking or property checking. 
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Where it is more convenient? Where it is more needed like here in the VLSI design flow I have

shown you that at various locations we used the equivalence checking so that means here you

transform one design from one level of abstraction to another level of abstraction and then you

check the equivalence between those two so like here RTL and gate-level net list you apply the

equivalence checking and check whether both of the designs are equivalent or not. 

Now a day now we are going at higher level of abstraction and that is system level design. 

(Refer Slide Time: 18:51)

And at system level design we are try to explore the architecture of the system and most of the



time the effort from system level design to RTL is manual and if it is manual in that case here we

are more error prone. So, this is your specification and now this is the transformation so from

this to this if you are going manually in that case here we are likely to introduce some more error.

So, this is the barrier to adopt the system level design methodology because this take is manual

somehow if I can do this automatic in that case here I am likely to move myself to a higher level

of abstraction where in the complexity is smaller and I can handle the larger design. That is the

place where the moral checker or if this is property checkers are more meaningful though these

are meaningful at the other level of abstraction as well. 

But here your equivalence checking may not help so you have to go for that. 

(Refer Slide Time: 20:05)

So now here what we want that whatever properties we have we have to do check the modal for

that. So, if you can verify the properties of the system level design and make sure that this design

is equivalent after that here you can have equivalence checking between these two and we can

upgrade our self to higher level of abstraction. So, that means here we can eliminate after that we

can eliminate the manual effort. 

So, here what we want because here you have behavioral information about the system and we

can have some specification about the system in terms of the properties like if it is an arbiter then



we look for the property like deadlock. Like fair chance to each of the master or something like

that. If it is traffic light controller in that case, we are interested whether it is giving –it is not

proving green signal to cross roads. 

(Refer Slide Time: 21:16) 

So,  this  is  the  place  where  modal  checker  can  play  an  important  role.  Model  checker  was

proposed in 1981 by Emerson and Clarke. So, what it does is it models the implementation in the

form of  finite  state  machine  or  state  transition  diagram.  So,  here  you  have  state  transition

diagram you convert that in little bit different form then state transition diagram that is known as

Kripke structure. 

I will tell you what that Kripke structure is then because here if it is a sequential circuit in that

case it has some temporal behavior. So, that means here we have to specify, the specification in

terms  of  the  temporal  logic.  So,  temporal  logic  is  or  specification  is  specified  in  terms  of

temporal formula and then we have to check whether in all these states of modal M it satisfies

your modal that your finite state machine or Kripke Structure satisfies this formula. 

If it satisfies in that case here this is equivalent to all case stimulation for that kind of property or

formula. So, the structure is as follows you have a Kripke structure that is nothing but a variant

of finite state machine or state transition diagram. You pass it through a preprocessor and then

you write your specification in terms of formula F. You supply this to the modal checker, modal



checker will tell you whether this formula is respected by this modal or design all the time or not.

If it is not in that case it produces counter example. I will show you one example how this can

verify one particular design. 

(Refer Slide Time: 23:12)

So the advantages of modal checker are as follows. Like in theorem proving, we need to prove a

couple of theorems and then the proven theorem we can use as (()) (23:27) then through the

remaining theorem. So, in this case and that is as I mentioned earlier that theorem proving is a

semiautomatic process. Hence here you need to have manual intervention and industry generally

does not like that and again here the theorem provers have scalability problem. 

So, here you do not need any proof. This is faster as compared to the other methodologies. It has

diagnostic capability based on the counter example. So, counter example can tell you what could

have gone wrong that is why your design is not respecting the specification and so other very

important  thing  is  that  you  need  to  worry  about  full  specification  even  if  you  have  partial

specification you can check for those specifications. 

And you can say that these partial specifications or properties are always respected by the design.

So, it is not necessary that you need to supply all the specifications. One of the example I can tell

you  that  for  a  traffic  light  controller  you  need  not  to  define  all  the  properties  or  all  the



specifications may be you are mostly interested in checking your property something like that it

should not give green signal to cross roads. 

That is most important, that is defined as safety property. So, other things may still be okay but

that is never admissible so now if you say that please check for this property in that case here it

will check for that property and tell you that whether that property violated at any point in time

or not. So, now here for partial specifications are okay. Many times we do not have access to the

complete specifications, as these specifications are evolving. 

(Refer Slide Time: 25:36)

So now here as I said that here you say this is my said space and then here these are the state

points. So, I start from some initial state and then here if I hit here some illegal state in that case

here I can identify that here the property in not respected. So now here in this case if you start

from here if you hit to some stop state or bad state in that case here it should stop and then you

can traverse back and come back to the initial state. 

And that back traversal will  tell you the counter example and that tells  you that if you pass

through this particular rout or states you will encounter a bad state and hence your design is not

respecting this property. These things the hardware verification was first exercised by Mishra and

Clark from CMU in 1985. 
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So,  this  was  the  modal  checker  exercise  for  hardware  verification.  Though  here  the  modal

checker was developed before that in 1981 but then here modal checker was explored for the

software verification not for the hardware verification and what Mishra found out was that they

were verifying the FIFO implementation from Mead and Conway book, I guess all of you must

have gone through this book. 

This is one of the standard texts in VLSI design. Now, they find out a bug that was the first bug

in  standard  FIFO implementation  was  explored.  So,  this  was  the  first  instance  of  hardware

verification using modal checker. 
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So now here how modal checker process flow goes and what are the various steps. How we can

do that? So, as I mentioned that we need to supply two information to modal checker one is your

design. Like here for example your design may be at traffic light controller. So, now your design

can be supplied as a finite state machine of traffic light controller. Then you have to specify some

interesting properties that you would like to verify. 

And those properties could be like here you can say that it is never possible to have a green light

for both north, south and east, west roads. It is safety violation because otherwise there could be

an accident. So you have to avoid that so now here it will either say that your properties always

respected or it is true. Or if property fails in that case here it gives you the counter example that

under this condition this property violates. 

So, in general in our hardware design we have this king of sequential circuit where in you have

couple of flip flops and input output that I can form this design I can extract finite state machine

so this finite statement machine and that is referred as finite state model for the given design. So,

this process is extraction of finite statement machine or modal from the design itself. 

(Refer Slide Time: 29:10)

So,  finite  statement  machine  all  of  you  know that  finite  statement  machine  may  be  Moore

machine or Mealy machine and that can be represented by (()) (29:24) that is I is input, or set of

states, set transition function, initial states out outputs and then the output functions. So, this can



be defined formally like this. 

(Refer Slide Time: 29:40)

As I mentioned earlier your modal checker process iS3 step process in that you need to formally

specify or I can say mathematically specify the behavior or the specification of the system. So,

this is the precise statement and properties and generally because here sequential  circuits are

temporal in nature in that case here we have to specify this in temporal logic. And the behavior

of design or implementation is referred as models. 

And that is defined as flexible modal for a given specified design. So, if it is model in that case

here  it  will  have  transition  systems.  So transition  system will  have  (())  (30:37)  So,  a  state

transition and label so now here state is set of states. 
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This is transition function and these are the labels. So, the labels are the variables which hold

good or which are true in that particular state. So this way you define the model. Here you define

modal in terms of finite statement machine here you define formal specification in temporal logic

that can be computational trilogy or that can be linear temporal logic. Then here you have to

submit this to the formal verification. 

Formal verification tool will check whether your model satisfies the property all the time or not. 

(Refer Slide Time: 31:29)

So, now if you have say finite state machine say this is your fine state machine. And in this finite

state machine I just do little bit changes in that. Finite statement machine if you look at then



machine is something like this. 
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This may be the machine and now here if it is in the state this say S0, S1, S2. This can go from

this state to this state or this can go from S1 to S2 on arrival of some input. Now, here when it

goes from this state to this state may be some variable may become valid or high. So, say here

whatever variable which are true in that particular state we label in that state. And this kind of

convergence. 

So, see in this what we are interested in? We are interested in whether all the states are respecting

the properties specified in the specification and or in terms of temporal logic. So, now we are

interested  that  whether  these  properties  are  respected  in  all  the  states  so  now  we  are  not

interested what output it is producing or what input it is getting to go from state S0 to S1. We

know that this can go from state S1 to S0. 

So, now here we want to eliminate I o from the edges just here we want to move this input,

output  information from edges  to the states.  And this  conversion is  known as conversion to

Kripka structure. So, now here say in this if say variable P and Q are true, variable Q and R, are

true here and variable R is true in this. So, now here we have to argue or reason about this design

based on these two variables. 



So, now here how the computation behavior progresses so if say this is the initial state where in P

and Q are true in that case here always it will start from this state. Now here based on the value

of input either it can go to state where in the q and r, are true or it can go to a state where r is

true. So, now it can go here or here. In the next time, from this Q or state, it can either go to PQ

state or it can go to a state where r is true. 

So, that means here it can go to p, q or r and from r it can stay with r only. So, now here this way

the computation progresses, computation of this state machine and so now here it is constructing

a tree and that is known as computation tree. So, now here we have to specify the specification

based on this computation tree which is specified here so that logic is known as computation tree

logic. 

Now, here the behavior or the timing behavior here would be either you can believe that time in

every cycle it is going from this state to, this state, to this state, to this state. And then this here

keep on going. Now, here if we look at one path in this computation tree in that case here in very

clock ticket advances to the next state to the next state,  to the next so in that case here the

behavior is linear. 

Or if I look at the sum in the computation tree in that case if I look at some state in that case here

it can branch out to either this way or this way when it goes here in that case again it can branch

out this way or this way. So that means here behavior depends on the branching node. So, that is

known as computation tree logic or branching tree logic. 
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Now the question is so this way we can construct a computation tree. Now the question is what

kind of means how we can specify property or what kind of property we need to specify. So,

there are couples are types of the properties we can specify say one is the safety property and

safety property says that desirable things should always happen and undesirable things should

never happen. 

So, that means like here for example if I have a bus arbiter in that case here bus arbiter should

never grant request to two masters otherwise both will start to use the common shared resource

that is illegal. Or if I send a message from sender in that case here the same message must be

received at  receiver.  So message received must be send by some body. These are the safety

property. 

There are other properties like here liveness property that tells you about the progress of the

system. So, what it says is that desirable state should eventually be reached. So that means like

here if I desire to get to some state in that case here add some point in time that state must be

reached. So for example a bus arbitrator request is eventually granted. A car which arrives at a

traffic light that should eventually be allowed to pass through. 

So, these are the kind of liveness properties we use. There are say fairness properties.  What

fairness properties say? That desirable state should repeatedly reach. So, that means here if I



desire some state in that case here at some point in time that should be reached and then here

again and again there should be at least one of the pass that can take you to the that state again

and again. So, a request state and a grant state for each client must be visited infinite stimuli

often. 
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So, like here for example in this traffic light controller I am sensing these vehicles by some of the

detectors and now here what we can do is we have to make sure that here there should not be any

collision and when there can be a collision if you provide green signal to both of the cross roads

in that case there may be a collision. And we have to guarantee the service eventually. So that

means here if say some car arrives here it should be eventually be passed from this line. Okay.
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So now here some of the properties we can specify like this. Some properties may be very static

in nature. Let us say this is a finite statement machine for traffic light controller wherein I have

these three states red, green, yellow and then here if there is an error in that case here it may go

to the erroneous state.  It  is  shown here.  So,  now here if  I say there are four states and if  I

represent 2 bits per state. 

In that case here I can say statically that in any of the state these 2 bits which are representing

these states should never be same. So, that means that can make sure that here at the same time I

cannot green and green signals. 
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This is the repetition of the same slide that here you can represent a specification using formula F

and that is in terms of temper logic and you can represent your design using state machine so in

this your M is the transition system. As I said that transition system will have a set of states,

transition function, and label of each and every state. So, now here M is defined as computation

tree. 

So, it is a tree and specifies the formula this verification checks whether these conditions hold for

all the tree defined by this machine M. So, it computes the set of state of M satisfying formula F

and M satisfies F if and only if initial state of M are in the same state. 

(Refer Slide Time: 40:24)

So now in  order  to  formally  specify  as  a  language here  temporal  logic  that  uses  the  linear

semantics is defined as linear time temporal logic LTL 

(Refer Slide Time: 40:39) 



An LTL is formally defined using Backus–Naur form that is being used in computer science. So

a phi is a formula that phi can be given as universal truth that is tautology. Then it can be given

as negation of the universal truth that is inverse of tautology and then this can be a formula P.

This can be negation of formula, negation of phi. This can be an formula intersection formula

conjunction with another formula disjunction with another formula. 

This formula implies another  formula and then some temporal  operators those are X so this

operator this conjunction, disjunction, and implications are the static formula and then there are

temporal formula that is X F G until weak until and R. So, now here I will explain you in detail

what are these formulas. 
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So, now here we specify a system as a transition system S is the set of states. This is transition

function and then here L are the label. So this is a set of states as endowed with a transition

relation and in such way that every state S has some state S dash. This function is specified as a

transition system M that is S transition function and L and this is specified as a set of states S

endowed with a transition relationship.

On such that every state small s is set of member of s has some state, s dash this which belongs

also to the set s where in you have transition from s to s dash and that is labelled by label S. In

that here we define a path that is in a modal M which is an infinite sequence of state S1, S2, S3, s

n. And this path is represented as a pi and pi starting from a path S1 is defined as S1 to S2, S3,

and S4 and Sn. 
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So this formula as we discussed earlier this formula those are called as LTL formula those are

defined here. That this pi is can be a temporal formula T that can be a temporal formula of

inverse of tautology that can be a formula that is valid LTL formula this can be negation, this can

be conjunction, disjunction and implication. So, then there are temporal operators X, G, F until

week until so. 
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So, now in this if we define this formula say this phi, phi 1 is one formula and phi 2 is another

formula. 
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So, now here phi 1 and say phi 2. So, this formula holds good if phi 1 holds good and phi 2 holds

good. So, phi 1 and distance phi 2 holds good if phi 1 holds good or phi 2 holds good and the

implication holds good if phi 1 satisfies so that means phi 2 holds good if and only if phi 1 holds

good.
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Now here say in a computation tree, if I go from state S1 to state S2 to state S3 from S1 I can go

to say state S3 to state again S1 and so on and so forth.
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So, now if some formula holds good in exactly in the next state then I define that as X of Phi this

is next of Phi that means here like here for example if I get a request for a common resource and

I acknowledge that in very next state in that case here acknowledgment holds good in very next

state hence here I can then specify that X of acknowledgment. 

So, that means here acknowledgment holds good in very next state. Sometime if some master

raises a request and that request may be entertained after a while or granted after a while so in

that case you have to wait until it is granted so that means here we are not very sure whether it

would granted in the next cycle or next to next cycle or next to next cycle. So in that case here

those properties can be specified as using a future operator. 

So that means here the formula will hold good sometimes in the future not necessarily exactly in

the next state or next to next state or next to next to next state but somewhere in the future. Then

we have operator as until operator. Until operator says that say phi formula holds good until psi

hold good. 
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So what it says that if this is the state transition in that case here my formula phi should remain

hold good until I reach to a formula psi. So psi should hold good. So that means here in this

always here there must be some at least in one of the states psi should hold good. This is little bit

strong and there is weaker version of that. That is weak version phi weak until psi what it says is

that phi should hold good until psi arrives. 

So, that means here this phi should hold good. Phi should hold good so one of the example could

be your acknowledge sorry the request should remain active until it is granted. So, that means

here at least at some point in time you will have grant that we can represent using the until. So

that means here request hold good until it is granted. I can write that. But in some of the cases it

need weaker version. 

So that means here like either this phi should hold good until psi arrives or phi continue to hold

good. Phi, phi, phi, phi infinite so that means here phi, psi never arrives in that case also this

formula holds good this  is weaker version of until  and then there is another  formula that  is

known as phi releases psi. So phi releases psi, this says that here when phi arrives, in that case

here psi would be released. 

So that means here you have psi psi psi and there would be at least one state in which here this

phi releases psi This is the difference between psi and the release and until operator that here at



least there should be one state in which both of the formula should hold good. After that we

cannot argue about that. So now if now here if you look at the progression of this. This shows

you that in computation path your x operator will say that here x of f means here in the very next

state f should hold good. 
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And in this state f should not hold good f until g that means here f should keep hold true until g

arrives. F of g will tell you that at some time in the future g will hold good. G is another operator

that is global operator that means it says that in every state in this path your app should hold

good and release operator will say you that here g releases path f. So with the definition of the

syntax of LTL formula I complete my lecture here. 

And I  will  continue  with this  in  the  next  class  wherein  we will  see how we can specify a

transition system using this formula and then here how we can verify that using model checker.

Thank you very much. Good day.


