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Hello. Welcome to the advance series of VLSI design course. I will take you through the VLSI

design verification process in this portion of the lecture series. Last lecture we discussed about

various  techniques  for  the  design  verification.  One  was  the  simulation  or  emulation  based

technique which is widely used in the industry other technique is the formal verification. And we

also discussed the difference between simulation based technique and formal verification based

techniques. 

As we discussed, in simulation based technique we apply some we applied some test factors to

the input of the design.

(Refer Slide Time: 01:09)

So, this design is in the form of VSDL or Verilog code. And we checked the output of the design

and we verify with respect to or check with respect to the given specification or golden reference

output. If there is a match in that case we say, that most likely design is correct, but because we

cannot apply test factors exhaustively and here. We can never say that this design has no bug. So,

we can say only the presence of bug, but we can never say the absence of bug. 



If we use a simulation or emulation based technique, simulation is pretty slow process. May be

the  speed  is  something  like  1  to  5  hertz,  whereas  the  emulation  of  the  design  some

reprogrammable logic like a PGA and that is much faster than the simulation. It is roughly 5 to 6

order of magnitude faster. But here the main challenge is how to find out the corner cases which

you can exercise and then test.

So, it is like corner cases can be missed and then here you may miss some of the design bugs.

Simulation based verification technique is very good for design based debug. If you apply the

random vectors, you are likely to capture some of the bugs. Whereas the formal verification

technique uses some mathematical techniques to verify the design. So now here what you need to

do is  you have  to  supply  the  model  or  behavior  of  the  design  to  the  verifier  and  a  set  of

properties.

And then it will tell you whether these set of  properties are always respected by this design or

they fail if they fail. Then it gives you a trace of inputs and proves that it fails and that is known

as counter  example.  So,  like here say in order to note the behavior of the design,  if  it  is  a

sequential circuit then it is a final discrete machine and what are the properties. Properties are

something like if we want to design a traffic light controller.

Then it is supposed to required not giving the green signal to both of the people crossing roads.

So that is one of the property that we have to check whether there exists any state where in this

can provide the green signal  to both of the crossing roads.  Other property could be like the

signaling should follow some pattern. Like this red, yellow, green something like that. So now

here, if the property passes in that case, we can say that design is correct. 

And so, this is equivalent to all case simulation. If it is equivalent to all case simulation, in that

case  there  is  no  concern  about  corner  case  which  can  be  missed.  say  in  simulation  based

verification, now there is no corner case with respect to the given property. Hence, we say that

this is always correct for a given property. Now here the challenge is to find out the complete

properties of a given design. 



If you can verify for all the properties in that case you can say that, this design is correct in all

respect and we can fairly rely on that. 

(Refer Slide Time: 05:02)

So now here what are the various challenges we have. So, this technique as I said the formal

technique is based on mathematical reasoning and for the mathematical reasoning here, we use

the Boolean functions or Boolean Algebra. That is propositional logic and in order to manipulate

this we either use satisfiability checker or binary decision diagrams or we also use first odder

logic or higher order logic for the theorem proving.

(Refer Slide Time: 05:36)



So, as I also mentioned in the last lecture that there are three kind of techniques we use in the

formal  verification  one  is  deductive  verification,  deductive  verification  uses  axioms  and

theorems to prove the correctness of the design, so it is like here, you prove this pythograms

theorem mathematically, you take a scale and measure both of the arms and verify that, so now

we need to use a set of axioms, like if you want to verify an adder.

In that case here specification can be defined more abstract way like algebraic form, now add 2

bit 1, now what is the output, and now if you have bit stream what would be the value of interior

value of the bit stream, adding 2-bit stream, what would be the outcome of that, so that is higher

level of abstraction, you have implementation of your design and you want to verify, it gives you

the same mathematical answer or not, so now deductive verification as it uses axioms.

And  theorems,  and  then  you  have  to  use  that  in  a  certain  way,  so  that  you  need  manual

intervention in this. This technique is semi-automatic technique and it is bit difficult and more

time consuming. Another technique is called as model checking. In that you model your design

like here if it is sequential circuit or a finite state machine and then you identify some of the

properties and that you mathematically express and then you have verified those properties on

those given model checker.

It is worth to mention that the inventor of model checker got touring award very recently. You

can see the effectiveness of the technique. So now This technique is almost fully automatic. That

means You just need to supply the model, say a Verilog or VSNL code. Say now your verifier

will extract the finite state machine from Verilog or VSDL code and then you express properties

in terms of some mathematical logic.

And now here your verifier will check whether this property is respected all the time or not.  So

now here the challenge is that the number of states are exploding and in order to complete the

verification process in reasonable time here we use the symbolic algorithm like binary decision

diagram  to  manipulate  these  systems.  The  third  technique  is  equivalence  checking.  So,

equivalence checking is like checking the equivalence of two designs. 



So, if you have two designs, so Both of the designs are supposed to produce the same output if

you apply same primary input.  So now here like for example, if you design an adder, that may

be ripple carry adder it will be cost effective in terms of area. And it will be verified with respect

to the given specification, that is mathematical specification you have. Maybe you are using the

deductive verification technique. 

And after that so now you have optimized that for say timing. So now you have another design

say carry look ahead adder, which is more optimized for the timing. So, now you have one ripple

carry adder and another say carry look ahead adder. Ripple carry adder is already verified. Now

if you prove the equivalence of the carry look ahead adder and the ripple carry adder, in that case

you can say that both of the designs are respecting the specification. 

So,  this  equivalence  checking  again  another  technique  and  equivalence  checking  is  purely

automatic  technique.  So, model  checking,  and equivalence  checking are the fairly  automatic

techniques. The deductive verification is a semi-automatic technique. Industry always prefers to

have a technique that is fairly automatic technique, so that human error cannot be done using

that. So first let me start from the equivalence checking.

So then again There are two parts. One is the combinational equivalence checking and sequential

equivalence checking. So first I will start with the combinational equivalence checking and then

we will consider the theorem, model or property checker. So today in the ASIC design flow if

you  look  at  the  use  of  the  combinational  equivalence  checking,  then  you  will  find  almost

everywhere that everywhere combinational equivalence checker is being used.
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So, this design flow we discussed earlier. We start from the RTL design, your synthesis that you

obtain to get the net level, obtained get net level is equal to the RTL design or not. Then you do

the testability analysis inside the Design foot testability. So, after DFT insertion again you have

to check if you get net level list is functional equal to the synthesized get level net list or not. 

And after that you insert IO Then the placement routing. And then you introduce the clock tree.

At every stage you have to check whether your new transform alter the functionality or not. So

that  means  here  Before  transformation  and  after  transformation,  the  functionality  remains

equivalent or not. So now you can see the use of equivalence checker in todays design.
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As I said here this the combinational equivalence checker and pervasive technique we have. It

can it is almost fully automatic technique.  That means it is push button kind of job You say

submit design and say now here check for the equivalence, it will tell you whether both of the

designs are equivalent or not. If there are not equivalent in that case it will return you the trace or

input vector that you can give or produce the different output from two different designs.

Now the combinational equivalence checker can also handle the millions of gates. So that means

you can do almost the full chip verification, so that means here if you have millions of gates in

one design and millions of gate in another design. And If you want to check whether both of the

designs are equivalent or not, you can handle the full designs. Problems source Combinational

equivalence checker is still a small portion. 

Most of the circuits are sequential circuits and now when you go for the sequential equivalence

checker. In that case here, your design space explodes in order to handle that one of the ways

most of the people do use. You can formulate or convert  the sequential  equivalence checker

problem as a combinational equivalence checker and you can use the conventional combinational

equivalence checker to check the design. 

(Refer Slide Time: 13:24)

So, if you look at the current industry offering for the combinational equivalence checker, in that

case you will see wide variety of tools are available like formality synopsis, conformal suite and



cadence, formal pro from Mentor graphics and these tools have the enormous capability so that

means they can handle several million net lists. They have the comprehensive debug capability

that means you can localize the bug.

That means here why these two designs are different, where the bug is. Some of the tools have

the what if kind of capability as well. 

(Refer Slide Time: 14:11)

Now as we closely look at the combinational equivalence checker problem. What we want and

how this being done. So, in this combinational equivalence checker you have two designs, design

A and design B and when I apply some input to design A and design B here, these two designs

are supposed to produce the same output. If they are producing different output in that case here,

both of the designs are not equivalent.

Now the question is may be for some of the inputs two designs can be equivalent but for some

other inputs two designs are not equivalent. So Now here, one of the ways is that need to find

out, we need to check whether for all the possible inputs, both of the designs are producing the

same output or not. Like here As I discussed in the last lecture, If I have OR gate and XOR gate,

say if I want to implement an XOR gate and by mistake I have implemented OR gate.



Now here if I want to verify. In that case, 3 inputs out of 44 inputs for the 2 in out XOR gate or

OR gate, both of the designs are producing the same output or not. And if I am checking for the

three inputs, both the designs are equivalent. So, like 000110, OR and X-OR will produce the

same output. So now the complexity is we need to check for all the input and as I mentioned that

here we cannot exhaustively check that.

As this is the application of input and getting the output and checking whether the outputs are

same or not. That is called as stimulation based verification. So now here, what we want is, we

want to verify these two designs. That should give me the capability that both of the designs, it is

like here for all case stimulations. 

(Refer Slide Time: 16:25)

So now one of the good thing with equivalence checker is, that we have seen earlier as well that

this can be applied at one level of abstraction or across the level of abstraction. So that means

here you can check the gate level net list with respect to RTL. RTL with respect to gate level net

list or RTL with respect to RTL or gate level net list with the same gate level net list, gate level

net list with vc or transistor implement, so and so forth. 

So That we have seen in every stage in the design transformation we use in use equivalence

checker. 
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So, let us go a little bit more inside the theory of equivalence checker. So, if you have these two

designs, design A and design B and I want to check, because these two designs look different. If

you look at the structure, but now here the question is, if you want to check the correctness of

these two designs or equivalence of these two designs. In that case If you have to say, for all

possible inputs here output of these two designs, should be same in the same.

In that case we can say both the outputs have to be same. In that case, we can say both of the

designs are same. So now one of the ways is that you generate a truth table and check the entry

through the truth table. Say Assume I have 100 inputs to a design. 
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And then you need to have 2 raise to the power 100 entries in the truth table. So, first thing is

you have to store that. And 2 raised to the power of 100 is roughly, 10 raised to the power of 30.

That means here 10 raised to the power of 30 storage location at least you need, so that, you

cannot fit your total truth table in your storage space and hence that is impractical. So now here

you have to have some way that can represent, that can have unique representation of this circuit.

So that means, if both of the circuits are equivalent in that case, the unique representation must

be same. And now I can check the unique representation. So, the other thing like here the truth

table  is  unique  but  this  is  not  manageable,  but  this  is  not  compact.  So,  I  want  to  have

representation which is compact and easy to manipulate. So, these are the two requirements. And

we will see that.

(Refer Slide Time: 18:58)

So, binary representation diagram is one of them. So now here then there are two ways to verify

the equivalence of these two designs. So, say This is one design and this is another design.
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 One of the way is you have design A, you have design 2 and then you need to check both of the

designs. So now here If I say I XOR the output of these two output, all possible outputs should

always remain 0. So, for all possible outputs it should always remain 0 here, if I XOR these two

Now, if I find out some way, some set of input for which the output of XOR becomes 1, I can say

that both of the designs are not equivalent.

And that input is known as counter example, for that input both of the designs are producing

different output. Now how I can do that. So One of the technique is these are the SAT based

technique or ATPG based technique in SAT based technique we search an input assignment that

can give different output for these two different designs.
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Now SAT source says 3 set problem, will be a complete problem, now you need to use juristic in

order to. You need to solve this in reasonable time. You can use branch and bound. In that you

can assign some input, you propagate those input and check whether you are able to get the

output or not. If there is a conflict in that case, you have to back track until you succeed. The

same way here you can use ATPG. 

(Refer Slide Time: 20:58)

And what ATPG will do is, like here this is design 1 and design 2 and now here what do you

want. For a given input, output is always 0. So, this corresponds to output is always struck to 0.

So now here I need to test and generate a vector that can produce output 1 here. If I can produce



output 1 here, in that case, I can distinguish the behavior of two designs. So now I can use the

automatic test pattern generation techniques. 

There are various techniques like D algorithm, podem algorithm, fine algorithm, in this series of

lecture, I cover ATPG algorithm in VLSI test lecture series . So, you can refer to that. I do not

want to repeat that. So now you want to find out a set of input that can produce, output 1 here. If

you can obtain that set of vector in that case here, you can say that the both of the designs that

means one set of vectors that can produce that can produce different output from two different

designs.

Hence these two designs are not equivalent, so whether you formulate this as an SAT problem or

whether as an ATPG problem. In both the cases, the challenge is finding out the assignment is

going to be completes problems. Hence here you need to exercise lot of inputs before saying.

See, generation of test vector is easier. But here we are saying that this test factor does not exist.

And this is the most difficult problem and now, here so in this case, when both of the designs.

Design A and design B are equivalent in that case here, there should not be any test vector, that

produces output 1 here. So now here in order to prove that here typically, you need to explore the

significant portion of input space. So that means here the timing complexity is exponential. So

now one of the way is as I mentioned earlier, we can use either SAT vector or ATPG based

technique. 

In that  you want to find out a set of input that can produce two different  outputs from two

different  designs.  If  there  exists  such  vector,  then  we  can  say  both  of  the  designs  are  not

equivalent otherwise we say that both of the designs are absolutely equivalent so that is the

challenge. Other approach is the functional approach. As I explained earlier as well, that if you

can represent the functionality of your design by unique representation.

So, as I said truth table is one of the unique representation but it is not economical in terms of

storage space. So now here, we need to have a unique representation that is compact. And now

here, if both of the designs are functionally equivalent I can have the unique representation of



both designs and then I can compare. So, if there is match in that case, we can say both of the

designs are equivalent or both of the designs are not equivalent.

So now here functional approach, I will discuss little bit more in detail. So now we say these are

the two designs design T1 and design T2. If these two designs are absolutely equivalent and in

that case, they are unique representation or canonical form of representation should be identical.

(Refer Slide Time: 25:04)

And  that  should  be  compact  and  binary  decision  diagram  is  one  of  the  compact  way  of

representing.  That  is  the graphical  representation  of a  truth table.  So now this  is  the binary

decision diagram, where in you have the inputs. And now here based on say, A is 1, B is 1, in that

case here output will be 0. And in case if A is 1 and B is 0, C is 0, then output would be 1. So,

now in this way I can read, from here I can generate the binary decision diagram for this circuit. 

I generate the binary decision diagram for this circuit than here, I can match these two graphs.

So, this is graphical representation, I have to match these two graphs, how I match these two

graphs, I have to match node by node and edge by edge. Now here it has five nodes and five

edges and here it  has five nodes and five edges. If I match these nodes and edges, they are

equivalent in that case I can say that both of the designs are equivalent.



So, if we can say functions equal if and only if representations are identical. In this we are never

enumerating the explicit function values. We are thus generating a compact representation and

then we are comparing that. We also explore the structure and regularity in the structure. 
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So here now let us come to this point, how we obtain the binary decision diagram. So, As I said

binary decision diagram is a graphical representation of a circuit or Boolean function. So Now

here say my Boolean function is function some input of my f of x1, x2, xi and xn, now this

function I can use Shannon composition theorem, I can this function is evaluated to 0 or 1 based

on the value on these variables x1 to xn.

So say I decomposed this function with respect to some variable. So, let us say xi. So Now here I

can write this using the Shannon expansion theorem. xi into f of all the variable, with xi equal to

1 and xn. So, this is the evaluation of function when xi is equal to 1 + xi bar, because xi can also

take the value 0, f of x1 xi = 0, xn. So now I can represent, this is the value of function when xi is

equal to 1.

So, I can represent this function as xi f of xi + xi bar f of xi bar +. So, f of xi is the value of

function when xi is equal to 1 and f of xi bar is the value of function when xi is equal to 0.
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So this way if I can represent my function here I can generate a graph, where xi is in one node

and so xi is my node and now here this is my function f of xi. This will evaluate to this one, this

is my function f of xi bar. When I get 1 it will go to evaluate this one. And 1 it will go to evaluate

this function f of xi bar, now here again this function will have whole variable x1, x2, xn except

xi. In the same way, it will have all variable x1 to xn except xi.

Now again, I can decompose that with respect to another variable say xj. So now here again I can

say this is xj, and I will find out a function that is xi xj, and then here would be a function of xi

and xj bar. And this way if I keep on expanding this and I will get the binary decision tree. So,

this would be binary decision tree, from every node there can be two branches. So how this

binary decision tree is generated.

Let us say this is my function, that is represented by this truth table. Now it has three variable x1

x2 x3 xn, so I start from a variable xi and I assume that I evaluate my function in given order of

variable and that order of variable say I decided x1 x2 x3. So now here if I have x1 in that case

here, either x1 can be 1 or 0. If x1 is 1 in that case here, this would be the function and if x1 is 0

this would be the function.

Now here, if you evaluate with respect to x2, then here you will have x2 is equal to 1, this would

be the function when x1 x2 is equal to 0 then this would be the function. Now here again you



have only one variable and evaluate with respect to x3. So now when you have x1 equal to 1, x2

is equal to 1, x3 is equal to 1, then the output is zero it is corresponding to this entry. So now

here, every path in this binary decision tree represents one entry in the truth table.

Now you can say that what we achieve out of this, here we have number of paths equal to the

same number of entry in the truth table. And for the large number of inputs, it is not possible to

store these things. Yes, that is true. But there are some ways to minimize this, Now I will discuss

those how we can minimize. So, in this truth table, you have only 8 entries. Whereas if you see

here you have 8 + 4 + 2 +1, total 15 nodes.

Right, and 15 nodes and 15 edges. So now here your binary decision tree is much more bigger

than your truth table. Now here the question is how you can minimize that. 

(Refer Slide Time: 31:14)

So, there are a couple of properties for binary decision tree, but here in every path, the variable

should be followed in some particular order. There cannot be, somewhere you have x1 x2 x3,

somewhere you have x1 x3 x2. So, they should follow some order. So, this order x1, x2, x3 is

okay, x1, x3 is okay, but these cannot be x1 x3 x2. So, this order is not correct. No conflicting

variable  assignment  can  be  there.  And  now  here  Binary  decision  diagrams  are  easy  to

manipulate. 
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So now the question is how to minimize that. You know that there is a lot of redundancy in this

binary decision tree. There are a couple of nodes, which are restoring the same value. Like if you

look at the leaves node, they are storing either 0 or 1, but there are totally 8 number of nodes and

they are storing only 2 values. So, if there are two nodes, in that case, there are no point to store

these 2 values again and again in redundant fashion. So, you can reduce that.

So now one of the way is that you merge the equivalent leaves nodes. Leaves nodes are nodes

which are always restoring 0 or 1 value. Right So now if you merge these two in that case, there

is a significant reduction in the binary decision tree. Now this becomes a binary decision diagram

or binary decision graph. So here it has 15 nodes and you reduce that you 9 nodes.
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Again, there are a couple of nodes, which have the same binary decision tree below that node.

So, like here if you look at this node x and this node x, here both have the similar kind of binary

decision trees in both of the branches. So now here there is no point to store these two nodes

differently. So, what if we can merge these two nodes. So, what you need to do is, you need to

bring in, this branch here.

So, when you merge these two here, so this node has no role to do and hence I can remove this

node. So, in this diagram if you look at these are the two nodes, say x1 and this is x2. This x3.

This x3 and this x3 These three nodes are evaluating in the same phase. These nodes are called as

isomorphic nodes. And you merge isomorphic nodes, so here once you merge isomorphic nodes

you can again reduce that.
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Now again look at whether there is a possibility to reduce it further or not. So now if you look at

there is a still possibility to reduce this further, now if you look at these two nodes, when both of

the edges are going to the same node, what does that mean? That mean that irrespective of what

is the value of x, your function will evaluate in the same way. So that means x does not have any

role in decision making process.

Hence why I need to x in the diagram itself. I can remove that x. So now you remove that x and

bring in these in edges to x to y. So now here in this diagram if you look at that now this x3 to 0,

both the edges going to that and from here x2 to 0, here you have both of the edges going

through that. So now here, you can see that, you can minimize, this binary decision diagram

Binary decision tree which initially had 15 nodes and 15 edges to like here 5 nodes and 5 edges.
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So, there is a significant reduction from this binary decision diagram to this binary decision tree.

So, this is known as reduced because here we applied all the three reduction techniques. So, this

is reduced diagram. And we also decided the order of variables. This is known as reduced order

binary  decision  diagram.  And  Reduced  order  binary  reduced  diagram  always  represents  a

canonical form of a Boolean one. That is the simplest form. 

So, another thing is, because here if you change the order of variable, in that case here the shape

and size of the binary decision diagram will change, but still this will give you the same unique

representation for a given function or given circuit that will have the same shape and size for a

given order of variable.
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If you look at some function, like here it has constant and only one node. If it is variable in that

case, you will have this kind of node. If it is typical function, then you will have this kind say

some generate  circuit.  If  it  something like  a  symmetrical  function,  in  that  case  your  binary

decision diagram will also be a symmetrical one. So, these are couple of examples.

(Refer Slide Time: 36:45)

If you have say a circuit like here, 4 input adder, then in that case, 4 and4, 8 input and output will

be 4 bits and some output, and 1 bit carry 4 or five outputs. So, if you generate a binary decision

diagram in that case, your binary decision diagram will look like this one. Say 4 input, it has 31

nodes. And If you go for 64 inputs, the number of nodes you will have is 571. 

 So now with respect to the input the graph is a linear one. 
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As I said that here shape and size depends on the order of variables. So now here say for this

function, here if I take the order of variable as a1b1 a2b2 a3b3, it that case here this will be the

reduced order binary decision diagram. If you use the a1 a2 a3 b1 b2 b3 as the order in that case

you can see, the reduced order binary decision diagram would be much fatter, and it will have

more number of nodes and edges. 

Now  here  if  you  see,  what  you  want,  when  you  want  to  generate  OBDD,  that  represents

canonical form and after that If you need to generate for one design and another design and you

want to compare node by node age by ages, so now what you want, is that the number of nodes

and number of ages should be as small as possible 0 nodes e by one will take ages. So that it will

take less time in comparison and it will take less space in order to store these nodes. 

So now it is very important to find out a good order of variable and finding out the good order of

variable is an interactive problem. And hence here we need to use couple of heuristics to find out

the  good  order  of  variable.  There  are  various  good  heuristics.  Those  are  like  here,  static

heuristics that you can apply using the fan in of the gate hysterically or can apply the dynamic

ordering.
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 So, I will discuss here Dynamic ordering which is being often used in the practical circuit. So,

one of the way here is that dynamically when you are generating the ROBDD, what you need to

do is, you have to check the swap the adjacent  variables and check whether the ROBDD is

getting reduced or not. So that it can come out from the localized effect. So, you add , delete or

alter, only the nodes which are labeled to swapping. 

Now if I want to swap the variable b1 and b2, in that case here all the nodes which are labeled by

b1 and b2, here there can be some new nodes can be introduced or some nodes can be deleted.

And now, if there is a reduction in the size, here we keep that order otherwise here we keep the

previous order.  So now by swapping here These two here you can see the difference in the

ROBDD. If there is reduction we keep the newer order, otherwise we go back to the previous

order.
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 Other techniques were like here shifting.  Which was Proposed by Richard Rudell  from the

Synopsys. So, what it does is that, it periodically attempts to improve ordering of the variables,

so now here this move each variable from BDD the given location to all other locations and find

out the best place of that variable. Best place is the place where it results to the reduced ROBDD.

Though this is very time consuming, but it is a very effective technique.

So how it works, say now this is my ROBDD. Now I want to find out the best place for variable

B1, so what I will do is I will start shifting this from b1 to b3 to this side, b1 and a1 to this side

and I will find out the place where it results into the smallest BDD and I will fix it there. So, this

is greedy approach. So, I will fix it there and then I will work with the other variables and I

would not change the order of these variables.

So, if you move to the next location, shift to the next location, in that case here, this would be the

BDD. Then if you shift to the third position B3, in that case here this would be the BDD, then

you go up you move to a3, then a2, then a1. So now here when you go to A2 in that case here,

mean this would be the BDD. And then if you go to A1 then this would be the BDD, so now this

two BDD s are the smallest ones.

So now you will fix the location or order of A2 at second look position or at the first position and

once it is fixed, it is frozen, you are not allowed to change that. So now here this way you can



find out the order of variable.  So now you are finding out optimal  order of variable is very

difficult that can be complete problem. 
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But now here, most of the function, you can find out ROBDD in reasonable time. And algorithm

remains practical up to say 1 million nodes in ordered binary decision diagram.
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If you look at how the functions are changing or sensitive to order of variable. Like here ALU it

has very high sensitivity in the best case you will have with respect increase in the variable, there

can be linear increase or there can be an exponential increase in the shape and size of ROBDD.



Whereas symmetrical functions are not sensitive at all means it is a matter of what variable you

are choosing.

For multiplication though here, the sensitivity is low, but the growth is always exponential, so

with respect to increase in the number of inputs.

(Refer Slide Time: 43:15)

This is the story I told you how to construct ROBDD.so from a given truth table no from the

truth table I told you that how you can construct the binary decision tree and minimize that and

get the ROBDD, but the size of binary decision tree must be bigger than the truth table. That is

impractical. So, this was just to illustrate you how to do that. In practical you do not do like that. 

In practice say this is circuit, this is NAN implementation of XOR gate, in practice here we apply

function on ROBDD sand we generate  the BDD by graphical  manipulation  or mathematical

manipulation on these BDD s. So now we say here the BDD of X1 is one variable, we know the

variable of x2, we know the BDD of this. Another variable we know the BDD of this, now if you

want to have BDD at the output.

In that case you apply NAND function on that and generate the BDD. So now here just by

graphical manipulation we obtain this one. And then again you apply the graphical manipulation



and finally you will get this BDD, and now here dynamically we here keep on applying the

dynamic variable ordering restrict the explosion of BDD to certain extent. 
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So Now if you have BDD, mean say, if you have function or design to generate BDD, then you

can compare these two BDD s. If they are equivalent in that case, you can say that both of the

circuits are. We cannot handle BDD s more than a million nodes or so. So now here if this circuit

is much bigger, what to do with that. We cannot even store the BDD. So now what You need to

do is you need to partition BDD.

And so that means for that you need to decompose your function into smaller pieces and generate

the BDD for that and compare these BDD at some internal points. 
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So now if this is your design f and this is another design f dash, you find these internal equivalent

points and then you have to generate BDD for all these internal points and compare that. 
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Like these are the two functions one is f and g. Now you are decomposing the sub functions f1f2

and g1g2. and now here you have to compare the intermediate Z and then you compare g and g,

now you have to define the cut points, these are the structurally equivalent cut points and then

you have to verify that this z and z are equal. So that means here this F1 and c1 are equal. And

then here in terms of you generate BDD of two in terms of z and y.

And here you also generate the BDD for g2 in terms of z and y and then compare that.
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So, this way you can verify the combinational logic. Now generally in reality we do not have

combinational circuit we have sequential circuits. And now how to verify the sequential circuit

That  is  the  biggest  challenge.  And one of  the  way is  you have to  formulate  that  sequential

equivalent checking problem into combinational equivalent checking.
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 How I can do that, say this is my sequential circuit that has some combinational part and some

flip flop to store the state variable and there are some input and some primary output. This is

primary output, and this is primary input,  How I can convert this circuit  into equivalent and



combinational  logic.  This  circuit  will  behave differently  in different  cycles.  So now if  I  can

convert the entire circuit its behavior as a combinational logic.

So initially say the flip flop may have some value. Then This is I am getting some value from the

flip flop, primary input and this will behave, and this will produce some output which will go to

the  flip  flop.  Now next  time  this  output  generated  by  this  one  here  it  will  go  to  the  same

combinational logic as it is. This would be the output and you will get new output. And then

again, the output produced by this, again it goes to the combinational logic. 

Right, and it will produce some output and will get some input from the primary input. Now if I

expand this more couple of time, you can say that this is equivalent to the combinational circuit

that  is  represented  here  for  given  number  of  time  frames.  So  Now  here  this  is  equivalent

functional equivalent of sequential circuit for given number of time frames. Now If you expand

this using the time frame expansion into combinational logic. 

Then your combinational logic is replicated n times if you have expanded this n times. And now

the complexity of this combinational logic will be n times and number of inputs will also be

increased by n times. So now your combinational logic would be much bigger, but still you can

use the combinational equivalence checking for that. The only problem is that the circuit is too

large.

And now this can give you guarantee up to certain number of time frames, it cannot give you

guarantee infinitely long sequences. Other way to check the sequential logic is you have say;
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Generally, we express sequential circuit or we can model sequential circuit using state diagrams.

So, say this might be the state diagram of a combinational or a sequential circuit. So, if you have

state diagrams of two machines, now you want to these two Machines are equivalent in that case,

they must have isomorphic state transition graph. state transition graph is just simply finite state

machine.

So now what you need to do is, you have to check whether the two machines are isomorphic or

not. 
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Say you have one machine as this one, another machine as this one. Say M1 and M2. These are

not isomorphic. So, means by looking at these you can say that these are not isomorphic and

been you can say that these machines are not equivalent: so that is not the case. So, what you can

do is, there are state minimization technique. You must have studied that. So now you can apply

the state minimization technique.

You can reduce this state diagram into this machine and now if you look at the reduced machine

M1,  minimized  machine  M1  and  machine  M2,  in  that  case  now  these  two  machines  are

isomorphic. You can compare node by node. Edge by edge. So now the machines are isomorphic

if you can generate another machine by simply relabeling the states. So, if I can relabel these

state 1.2, because this is obtained by merger of these two states.

As one in the case both of them are absolutely equivalent and hence you can say these two

machines are equivalent. This is another way to prove that. So, what you need to do is, you have

to reduce both of the state machines and then you check the isomorphism of the reduced state

machines of two designs. So today we discussed about combinational equivalence checking and

how we can use combinational equivalence checking for sequential circuits as well.

And a couple of techniques we discussed like here time frame expansion model as well as the

isomorphism of two state machines. And we have also seen that how we can use binary decision

diagrams to check the equivalence. So, with this I complete todays lecture here and will discuss

the remaining portion of equivalence checking and property checking or model checking in the

next lecture. Thank you very much. Good day.


