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Hello. Welcome to the lecture series on Advanced VLSI Design course. I am Virendra Singh

from Electrical  Engineering  Department  of  IIT,  Bombay.  I  will  take  you through design

verification challenges and these couple of lectures. Today, it is the introductory lecture I will

discuss about the challenges of VLSI design verification and in due course of time, I will take

you through various challenges, their techniques to handle this and open research programs.
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So as mentioned by Professor Chandorkar very early in this course that VLSI circuits have

gone through various phases and if  you look at  one of the examples  like microprocessor

which was started early in 70s with 4004 and it has taken a long journey up to now current

say Intel i7 processor. So 4004 was fabricated with 2300 transistors whereas now we have

billons of transistors on the same chip.

So  you  can  see  the  growth  of  the  transistors  hence  complexity  of  design  is  increasing

dramatically. So the number of transistors are increasing, number of input output are also

increasing. Now here the big challenge is how to verify the correctness of the design. If you

look at the VLSI design realization flow it starts from the customer needs. Customer needs

may be in terms of like one customer may want to have, want to build a chip for microwave



oven controller.

So he can give his requirement like if you put milk in the microwave oven it should operate

for 10 minutes and run at 300 watt. If you want to cook rice, then it has to run for say 15

minutes at 350 watts and so on and so forth. So from this design engineer has to figure out

what are the various requirements because the need is big in nature. Based on the requirement

here the design engineer has to write some specifications which are more formal than the

English like language.

Once you write these formal specifications so your requirement may directly come from the

algorithm like you want to implement say image processing algorithm then algorithms are

non-known and then your specification may be C code. So from that you have to synthesize

your circuit so it has to go through various steps of synthesis which are clearly automatic

steps. Once you synthesize the circuit, so do the place and route and finally you have GDS2.

You sent that to fab and then fab facility will fabricate your chip and give you the fabricated

chip. Now you have to test each and every manufactured chip for that you need to develop

some test vector that can test your chip in reasonable time. So these are the various phases.

Now here when you are synthesizing  your  circuit  you have specification  as  your  golden

reference model and then from the specification you have to go to RT level transformation.

From  RT  you  have  to  go  to  gate  level  netlist  from  gate  level  netlist  transistor  level

implementation and then you do the place and route and then finally the layout. So all these

transformations have to respect the given specification. So now here what we want that here

at every level we have to validate with respect to the laid down specifications.

(Refer Slide Time: 04:42)



Now if you zoom in this process little bit in that case you can see that from specification you

generate  the RTL design that  you are writing VHDL or Verilog.  From there you have to

synthesize the gate level netlist to optimize for various parameters. Parameters can be area,

power, performance or testability. Then once you do that you have to insert the design for test

points and you have to augment your circuit in order to make it easier to test after that you

have to insert IO.

After doing that you have to do the place and route and then you do the clock tree synthesis.

Yeah you do the clock tree synthesis routing and then means after routing if you are not able

to still meet your requirement you have to do the ECO electronic change order. So now in this

process the bigger challenge is that you have to in all these transformations you have to make

sure that they respect specifications now how do we do that.
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So let  us go through first  couple of definitions  that  we do use.  The first  thing is  design

synthesis. So design synthesis is a process. Design synthesis process is defined as for a given

IO function development  of a procedure to manufacture a device using non material  and

processes. Verifications is defined as predictive analysis to ensure that the synthesized design

when it will be manufactured it will perform the given input output function.

The  test  is  defined  as  manufacturing  step  that  ensure  that  the  physical  device  which  is

manufactured from the synthesized design has no manufacturing defect. So design synthesis

essentially  tells  you that  how I  can  obtain  a  given IO functionality  because  customer  is

concerned about the IO functionality. 

He  is  not  concerned  about  how  you  are  implementing  that  whether  you  are  designing

sequential circuit or combinational circuit whether you are implementing that using CMOS or

you are implementing using NMOS or you are implementing using TTL. So the customer

wants given input output functionality. Then once you have done that you have to analyze

that whether your synthesized design respect the specification that those who are laid down

for the synthesis. 

So that is why it is predictive analysis that can ensure the correctness of the behavior.
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So now if you look at the complexity of the design. Now because design as I mentioned

earlier that now current design do have billions of transistors. And that kind of design we

cannot design as a flat circuit. We have to have hierarchy and so that means here the various

steps. We have to go through this from this system level design to the algorithm like here you

have a system that can implement various algorithm.

Like if you are processing image there are various algorithms like segmentation, tracking and

so on and so forth. So now for a given algorithm you have to write the RTL from RTL you

have  to  generate  the  gate  level  netlist  from  there  you  have  to  have  transistor  level

implementation and then place and route and finally you have layout. So if you look at the

complexity this is a pyramidal structure. 

So at system level the complexity maybe few lines of C code. And then if you go to RTL you

will have few hundreds or thousands lines of very lower VHDL code then if you go gate level

netlist.  You  may  have  several  millions  of  gates  then  if  you  go  to  transistor  level

implementation you may have hundreds of millions of transistors and so on and so forth. So

now if you go down your complexity increases at the same time accuracy increases. 

What this accuracy mean? Like when we design a circuit we design for given specifications

and then here as an engineer we want to optimize our circuit for a few parameters. And those

parameters are like area, performance, power and testability. So at every level of abstraction

when you do the RTL level design or gate level design you have to estimate how much area it

will consume, how much power it will dissipate, what kind of performance I will get.



And how easy it is to test. So now at higher level of abstraction the estimation is very crude.

If you go down and if you do the layout and if you abstract the parasitic then you may have

more exact  values  of the  power dissipation,  area  consumption and performance all  these

things. Now here if you go down your accuracy increases, but at higher level of abstraction

the complexity is smaller you can handle it in better fashion.

(Refer Slide Time: 10:42)

So  now  conventionally  here  we  start  from  the  specification  and  we  go  down  to  the

implementation.  So you have specification those are few lines of C code we have.  From

specification you have to architect your system that may have like how many you need to

have say processors, a DSP or GPU then you need some memory, then you need some blue

logic or custom logic.

Now if you go down in each of these block you can write the RTL code for that and the RTL

code will tell you that what kind of data path you will have, what kind of controller you will

have and how data flow will take place. So this gives you the design flow. Now this is your

specification when you are transforming from these specifications to the system architecture

to the RTL you have to make sure that always here it has to respect the specification.
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If you look at the time consumed by various activities in the design flow these activities are

listed here. These are based on the time survey this is bit old which was done in 2000. If you

look at it here you will see that most of the time is consumed by design verification. Then

design creation then place and route and then here design rule checking, static timing analysis

and so on and so forth.

Though here if you add these numbers it may go beyond 100 because couple of activities are

being done in parallel. These are from the old generation designs now in current design the

design verification time increase little bit from 50% to 60+%. And then here design creation

shrink little bit from 32% to say 25% or like that because now here most of the time we are

not designing system from the scratch we use IPs.

So the key observation  from this  slide  is  that  most  of  the time we spent  for  the  design

verification so that means if this is the critical part in the design flow. Hence we have to have

very efficient methodology to verify the design if we want to reduce the design time. And it is

reported by couple of industries that if your design cycle escalates by 6 months the total

revenue decreases by 30% that is huge.

So that  means  here  the  time  to  market  is  very,  very  important  and you have  to  design,

manufacture and ship the chip as fast as possible.
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If you look at the revenue in that case here revenue model goes like this. Initially company

gets very high profit margin and then slowly it goes down. If there is the escalation in that

case here that will go like this. So now you will have this much revenue that can be earned

from the product and that is understandable.

Because  here  initially  your  new products  have  an  edge  in  the  market  then  slowly  your

competitor will also launch the similar kind of functionality in the market and then you have

to reduce the cost. So then profit margin decreases. As I said that key thing is we are spending

too much time in design verification you have to reduce that time. So how I can reduce that

time.

(Refer Slide Time: 14:50)

Now if you look at in the pyramidal structure as we discuss that the complexity at higher



level of abstraction is lower whereas the accuracy is poor as well. So now if you design a

system at system level if you get a bug in that case because the complexity is low you need

less time to find that bug or locate that bug and the fixing of that bug. So say here at the

system level fixing of a bug takes 3 minutes.

If you go down at RT level where the design complexity increases by order of magnitudes

then the location of bug or detection of bug and fixing of bugs takes longer time because the

design is more complex and so now here fixing of bug may take 3 days. If you go down

further to the transistor level design here, you have millions of transistors. And if you happen

to detect a bug the fix localization of that bug and fixing of that bug may take 3 days.

So you can see the kind of time taken at different level of abstraction what it says. It says that

we should detect and fix as many bugs as possible at higher level of abstraction possibly at

system level or at RT level. And then when we go from higher level of abstraction to the

lower level of abstraction we should not introduce new bugs or errors. And this is the key

thing in the verification.

So we have to remove as many design bugs as possible at earlier stages and we should not

introduce new design errors when we are refining the design. If you are going from the higher

level of abstraction to the lower level of abstraction you are introducing or adding more and

more information  that  process  is  known as refinement.  Ideally  we should not add or  we

should add zero error while we are refining though it is very difficult to make sure that there

is no error introduced while you are refining the system.

So your formal verification can help you in this and we will discuss what are the formal

techniques that can help you in detecting maximum bugs at higher level of abstraction and

that make sure that newer error will not be introduced. Now look at how severe this problem

is. Let us take a very simple example all of you might have gone through this at some point in

time.

(Refer Slide Time: 18:05)



Let us take an example of DVD player which all of you have used say if you have DVD

player that can have 6 inputs maybe play, pause, stop, fast forward, rewind and then if you

are not pressing any button then it does nothing. Then in order to implement this here we

implement a small finite state machine that can have say 5 states. Stop, pause, play at normal

speed,  fast  forward  at  too  excess  speed,  rewind  at  too  excess  speed  and the  finite  state

machine can be designed like this.

So wherein you have these 5 states stop, play, pause, fast forward, rewind. If you do not press

anything in that case here it will stay in the same state otherwise it will migrate to the new

states. So if it is in the stop state and getting play input here it goes to the play state. If you

press a pause button it has to go to pause state and again here if you press the play button it

can come back to the play state. So this is very small finite state machine.

Now let see how difficult it is to verify this small machine.
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Let say you have a display that has 1024 x 786 pixels. Every pixel is represented by true

colors so that means here you can encode that in 32 bits. So now if you want to find out the

number of discrete states that you can have would be equal to 2 raise to the power 32, raise to

the power 1024 x 786 how we get this because here every pixel can be encoded in 32 bits. So

there can be 2 raise to the power 32 states and then here there are 1024 x 786 pixels.

So now here these are the total number of states we can have. In this here we assume that

pixels are dependent on each other so that means one pixel can impact others. So now if I

look at the state transition in that case. A state transition can be this many number of states to

this many number of states. Now the combination of the current state to the next state would

be square off this number.

As I said that here we are assuming that these pixels may have dependence. We can fairly

assume that pixels are independent to each other that means one pixel do not affect another

pixels. So if you assume the independence of the pixel in that case here the total number of

states would be equal to the number of pixels into the number of possible color for a pixel

and then here the number of internal states.

So 1024 x786 the total number of pixels one pixel is encoded in terms of 2 raise to the power

of 32 states and then here there are 5 internal states. So these are the total number of states

you can have.
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Now if you press one button it can go to another state so now here the total number of state

transitions would be equal to the number of pixels into the number of possible colors into

number of possible inputs that you may get. So now 1024 x786 x 2 raise to the power 32 x 6.

So these are the total next state. So now here what would be the total number of transitions I

can have.

So total number of transitions would be because you can go from any current state to any

next state these are the next states and these are the number of current states. So current states

multiplied by the next state would be the total number of state transitions we can have and we

have to verify this  system for all  the state transitions that the number of state transitions

would be 3.4 x 10 raise to the power 32 this is huge number.

I assume that we can verify one million transitions per second using very fast simulation tool.

In  that  case  here  it  may  take  several  trillion  years  to  verify  this  design.  So  that  means

whatever design we created today that would be ready to manufacture after several trillion

centuries which is impractical. So now means if you want to exhaustively verify your design

you need this many years that is impractical.

What we want is this should be verified in reasonable time and reasonable time cannot be

centuries. So what could be the reasonable time? If you look at the design cycle time it is

upon somewhere from 6 months to 2 years or 3 years and assume that 60% time goes to the

verification. So in that case here it can be we say few months to year. So now here your

reasonable time is few months to year.



Now an exhaustive verification time is trillions of centuries. So you have to reduce this time

from trillions of centuries to few months. It is a huge reduction. Keep in mind that we want

similar kind of confidence in our design. So that means the kind of confidence we can have

by  applying  exhaustive  simulation  vectors  we  should  get  from  a  limited  number  of

simulations vectors this makes it very complex.

Now here I guess this gives you a flavor how complex the design verification process is, how

many order of magnitude verification time we have to cut down. If I recall the statement by

Intel India at VLSI design 2011. He said that today it is the design verification or validation

engineer who is most important person in the entire design flow. He said that it would be the

design verification engineer who would be able to buy some real estate in metropolitan cities.

That means here he is the person who would be earning the most money and because now as

I said that our current design process is IP based. So now here we are integrating more and

more IPs which is making your design more complex and then here it is very, very important

to visualize the corner cases and now here I will come to a point what are the corner cases

how important it is to visualize the corner cases.

Now here let us start how your design verification flow goes. So you have specification those

are created  from the  customer’s  requirement  and you want  to implement  your  system or

circuit and this implementation should respect the specification so that means there should be

equivalence between your specification and implementation how I can do that. I mentioned

that there are couple of synthesis steps.

It has to go from specification to implementation. So like RT level synthesis then gate level

synthesis, transition level synthesis then place and route and finally you get GDS2. Now here

industry want this automatic process. So they want that this should be push button so that

means you feed specification and then here it should produce the design. 

Now  one  of  the  ways  that  whatever  transformation  you  are  doing  to  gate  level

implementation, RT level implementation, from specification and then from RT to gate level,

gate  level  to  transistor  level.  In  all  these  transitions  if  you  can  make  sure  that  these

transformations are correct you do not need to verify this.



(Refer Slide Time: 28:02)

So if you believe that your automatic implementation or synthesis process is correct you do

not need to verify every design. You need to verify only once implementation of synthesis

tools and so this process is correct by construction. So now here I can completely eliminate

the cost of design verification which consume lot of time that is in terms of man hours, it

contributes to 60%, 70%.

This  is  anyway  beautiful  way.  Now  what  are  problems?  Problems  are  as  follows.  The

verification  process  of  a  software  piece  of  code  is  even  harder  problem  than  hardware

verification.  Why because the design space in software is much bigger and complex then

hardware. In hardware you write the bit vector from 0 to 4, 0 to 5 means you need to use as

many bits as you need.

But in software piece of code you instance it one variable say int i, this explores a design

space  of  2  raise  to  the  power  32  because  this  I  can  take  any  value  and  now  here  the

verification of the entire software is extremely difficult or rather I can say that it is next to

impossible. Hence you cannot rely on the tools that you are using for the synthesis. Hence

you need to verify each and every created design.

If you can make sure that this synthesis process is correct you can completely eliminate the

design verification cost. So now what are the options if this option is not available. One of the

options is you have to simulate your design and what the simulation mean? 
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Simulation I can simply say that you can say you implement one XOR gate what you can do

is say there are several possible inputs so if it is two input XOR gate input can be 00,01, 10,

11. So you can apply this couple of inputs and then see whether you are getting the correct

behavior or not. So say from 00, 00 you should get 0 for 01 it should be 1, for 1 it should be 1

and for 11 it should be 0.

So now here one way is that you can exhaustively simulate this and as I said that exhaustive

simulation is not possible. So now here what you do is you have to take a subset of this

exhaustive input pattern and stimulate for that and based on that here you make a decision

whether your design is correct or not.

(Refer Slide Time: 31:33)

So for this you have to built some checkers and drivers this is called as simulation based



verification  because  here  we  are  not  exhaustively  simulating  we  cannot  have  the  100%

confidence in our design and it is very time consuming. So now here again this is not the

complete method because we cannot simulate exhaustively. So then here what are the other

alternative. Other alternative is we can use mathematics because ultimately you are going to

built a circuit which follows the Boolean Algebra.

So this is you have mathematical expression for the function that you want to implement. So

now here if you can specify or you can write the specifications in terms of mathematical

formula so let say we call formal specifications how you can write that I will come to that

point. And then you can reason about that whether your implementation always respect the

specification or not and this is known as formal verification technique.

So in hardware verification here the simulation based verification is referred as simulation

based verification and this  formal  technique is  referred as formal  verification whereas  in

software verification domain the simulation based verification is referred as software testing.

And formal verification is referred as software verification.  So sometimes these terms are

confusing when you talk with the software people.

Okay let us look at little bit more about what are the challenges we have with the simulations

based verifications and what are the challenges we have in front of formal techniques.

(Refer Slide Time: 33:48)

So simulation based verification as I said that we cannot exhaustively test so now here this is

your total design space and then there are couple of bugs in your design. So you start from



say some initial state and then you start to traverse your design in some way and you hit a

bug. Once you hit a bug then you localize that bug, fix that bug and then again you start your

simulation based verification and then you may hit another bug and this way you keep on

doing.

So this way here if you happen to hit a bug you can say that there is a bug otherwise you

believe just that there is no bug, but it does not give a guarantee because you did not explore

the entire space.

(Refer Slide Time: 34:38)

So now here the simulation based verification so there are couple of good things about the

simulation based verification. One thing is this can be applied across the design level so that

means at system level, at RT level, at gate level, at transistor level, at any level of abstraction

you can apply this technique, but as I said that simulation based verification cannot simulate

exhaustively the entire design.

If you cannot then what are the problems? As I said that you have to pick up the subset of the

exhaustive set.
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Now  here  say  we  were  talking  about  this  XOR  gate.  So  say  here  these  are  the  four

possibilities 00, 01, 01, 10, 11. Now if I pick say the 75% of cases that is still a big numbers.

Say as I said in DVD player it takes several centuries. If you take 75% cases still it will take

several centuries. So even 75% is very big number you cannot pick that. Assume that we pick

75% cases. These are the 75% cases I am picking.

Now assume that by mistake in place of writing XOR I have written only OR and then here it

implemented OR Gate. Now when it implements OR gate I look at that and I take these three

cases 00, 01, 10. This will give me 0, this will give me 1, this will give me 1 and there is a

exact match with XOR gate. Hence, though I have implemented OR gate I will say that XOR

gate is implemented correctly.

So this 75% cases are not sufficient. When I pick these cases, I have to pick in such a way

that here we can distinguish these. So now here what can distinguish the OR gate and XOR

gate this input. So that means here when you are picking a fewer cases you have to at least

pick this case. This is the case when you have OR gate. This may have different kind of

matching with the different kind of gates.

So these we are saying corner cases. So it is very, very important to visualize the corner cases

and that is why the people say that now we in the industry we need the most intelligent

people in the verification so that they can visualize the corner cases.
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And other examples of corner cases I tell you say you want to implement FIFO. Say you have

8 entries in the FIFO. So now you are storing some value in the first entry and then you store

some value in the second entry so now here how I verify that. I will write and I will read that

and if I get the same value in that case it is verified. Now when you are writing to the first

location or second location or third location here it will behave in the same way.

So once you check for the first location means it will behave for the third, fourth, fifth. When

it come to the eighth location what will happen. Once you have written in eighth location it

should generate one specific signal that is buffer full. So that means here after writing eighth

location you have to check additionally whether buffer full signal is generated or not that is

one of the corner cases because that is different from other cases.

Now even if generate the buffer full signal when you want to write one more value so the

ninth value it may possible that here this ninth value what it should say when you are trying

to write the ninth value. It should say that buffer is full you cannot write. So that means here

it should generate overflow signal. So that means here when you are trying to write ninth

value it should generate the overflow signal this is another corner case.

It may so happen that even if it generates the overflow signals, but this can also rewrite that

location. So that means here the eighth value is rewritten by the ninth value and you have

spoiled your earlier written value. So you have to check that. So that means here whether it

has overwritten that value or it still continue to store the eighth value these are the corner

cases. So when you use the simulation based verification you have to visualize these kinds of



corner cases. So that is very, very critical.

Now here as I said that here most of the time we pick up some of the random values and then

we simulate for those values and then we top of this with some of the corner cases. So again

here these random values are random and this does not cover all the corner cases and we

cannot visualize all the corner cases. Other problem with the simulation based verification is

the simulation speed. Can you think of how fast or how slow the simulation process is.

If you look at the simulation process flow whether it uses the compiled code simulation or

event driven simulation. The simulation speed is something 1 to 2 hertz. That is very, very

slow. If you compare with the actual device speed. Device can run at fairly high speed say

gigahertz. Now your simulation runs 8 to 9 order of magnitude slower than the actual device

and now you can compute that even if I run my simulation for 6 months how many vectors I

can apply to this design.

In order to expedite that the other method which is being exercised in the industry that is

emulation.
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In emulation we try to implement our design on reconfigurable fabric and FPGA is one of the

reconfigurable fabric. So now we implement our design on FPGA. Now FPGA can run at

much higher speed like 100 megahertz or so which is significantly faster than your simulation

on general purpose processor. This looks very interesting and very fast may be say 2 order of

magnitude slower than your real chip still  it  is 5 to 6 order of magnitude faster than the



simulation.

Again your exhaustive simulation needs several centuries. So 5 to 6 order of magnitude speed

up is not sufficient to go for exhaustive simulation so still it is based on the corner cases how

good you are in visualizing those corner cases, but I comfortably said that you implement

entire design on FPGA and this can work say 200 megahertz to 200 megahertz. Now what are

the challenges can I do that.

If  you have  small  design  you  can  do that,  but  now say  you  want  to  verify  the  current

processor you design new processor that you want to verify. So entire design you cannot

implement on the single FPGA. So you need to divide.
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If you need to divide the design so now here say I divide design in two blocks say 100

million transistors or gates I am implementing on this, 100 million gates I am implementing

on this. Earlier when I was fitting everything in one here I need the IO pins is equal to the IO

pins of your design. Now when I split  this there are couple of internal signals which are

crossing from one partition to another partition.

And as you know that there are large number of internal signals and now here these signals

may across to millions or several 100 thousands. You do not have 100, 1000 IO pins. So in

order to do that what you need to do. You need to again further divide this you need to again

further divide this and now here you are limited. So even though you have large numbers of

reconfigurable devices available on your FPGA you cannot make use of that because of IO



pins.

And now your simulation or emulation speed is determined by the IO speed that is much

slower in some kilohertz 100s of kilohertz that makes it 2, 3 order of magnitude slower than a

single FPGA. So now here the real emulation speed that you can achieve could be 100s of

kilohertz. That is still 4, 5 order of magnitude faster than the simulation, but 4, 5 order of

magnitude slower than the real chip.

Again I said that here this emulation you cannot apply exhaustive simulation vectors so you

have to rely on the corner cases which are visualized and you know famous Pentium bug

which was reported by Intel  when they were dividing 2 numbers there was a  change or

inaccuracy in 8th or 9th decimal point and it did cost about 500 million dollars to Intel. So

when I mention the emulation Intel heavily uses emulation for their design verification.

And now they use several hundreds of boards. So FPGA boards to verify one design. So now

here  this  is  your  simulation  or  emulation  is  not  enough  so  you  have  to  go  for  formal

techniques, how formal techniques behave.
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So  now  here  what  is  the  difference  in  the  formal  techniques  and  simulations  based

verification. Simulation based verification here you know this is you have to apply some test

stimuli or vectors you see the response whether if it is correct then you say design is correct

otherwise not. So now here you heavily rely on the corner cases, but this is essentially and

very good for the initial design debug.



Whereas  formal  method  here  you  need  to  supply  the  specification  in  terms  of  some

mathematical formula or logical formula and you have to specify some of the properties. Like

here for example if you are arbiter you want to design a arbiter you may have a property that

your arbiter should not give access to multiple masters at the same time to use the common

resource or if you have designed a traffic light controller, traffic light controller should not

give green signal to cross roads these are the properties.

So now you supply this to your formal verifier will tell you whether this property is valid for

that design or implementation or not. If it fails, then here it gives you a counter example. The

counter example means here it will give you a trace of input under which you get the wrong

result  that  helps in debugging or localizing the bug. So now here the formal verification

technique is equivalent to all case simulation with respect to a given property.

So that means here there are no corner cases this is always correct with respect to a given

property.

(Refer Slide Time: 48:52)

There is a famous quote by E.W. Dijkstra and what he says is that here program testing that is

equivalent to your simulation based verification can be used to show the presence of bug, but

it can never show the absence of bug. It is only the formal verification which can say the

absence of bug with response to given property.

(Refer Slide Time: 49:15)



Now here if you look at the formal technique like say this is simple circuit. All of you know

this NAND realization of XOR gate. If it is XOR gate in that case formally mathematically I

can specify the output Z is equal to X bar Y + X Y bar right. Now here one of the ways is I

can  use  the  simulation  based  verification.  So  now  for  XY there  can  be  four  possible

combinations and then from that I can simulate that here what would be the Z and from this

one this mathematical expression I can also simulate what would be the Z.

And if there is matching in that case I say that this design is correct otherwise it is incorrect.

So this  is  mathematical.  This  is  simulation  based verification.  On the  other  hand,  I  can

mathematically verify that.

(Refer Slide Time: 50:06)

So now here the output Z I can specify in terms of B and C. I can say that Z is equal to B bar



+ C bar. Now here what is B. B is A bar + X bar and C is A bar + Y bar and then here what is

A? A is your X bar + Y bar. If I put this Z this B bar and C bar and then here I put the

expression for A in that case, I will get this as XY bar and X bar Y. I can rewrite this as X bar

Y + XY bar that is same as your mathematical expression.

So that means here this tells you that this implementation always respects the specification

that is given as X bar Y + XY bar right. So now here this is so what this says so this is based

on  the  transformation  that  we  use  at  various  level  which  are  based  on  the  axioms  and

theorems so that means here we can use the mathematical proof for correctness. 

(Refer Slide Time: 51:20)

So if you look at the formal verification there are three different ways to formally verified

which are being practiced in the industry. One is deductive verification that means we have to

prove  the  mathematical  theorems.  Deductive  verification  is  semi  automatic  verification

techniques because here this is based on the mathematical axioms and theorems in order to

prove some theorem you have to use the axioms in some particular order.

And so here the tools are not very intelligent so you have to intervene the execution of those

tools and guide them how it should progress to quickly verify that property. So this is semi

automatic tool. So it is based on the axioms rules to prove the correctness. It is difficult and

time consuming. There are other techniques here like your equivalence checking and model

checking.

Equivalence checking is the check of equivalence of two designs. Like here for example if



you verify the design of an adder vis-à-vis the specification now that may be your ripple carry

adder. Now you optimize that and for timing you design carry-look ahead adder and you want

to make sure that both of the adders are equivalent. Now here the equivalence checking can

be used and this equivalence checking is fairly automatic technique.

And it can handle very large design and equivalence checking can be used at various level of

abstraction. The other technique that we use is the model checking. In model checking here

we specify the design behavior using some mathematical formula and we have to model the

implementation  using  finite  state  machine  or  finite  automata  and  then  we  prove  the

correctness of some of the property which are specified in using mathematical formula.

Again here this is based on the symbolic algorithm like BDD based technique or set based

technique  and  this  is  fairly  automatic  technique.  So  model  checking  and  equivalence

checking are fairly automatic technique whereas the deductive verification is semi formal

technique. In next couple of lectures, I will briefly discuss about these equivalence checking,

model checking and deductive verification techniques. 

Thank you very much for your patience for listening. We will continue with this in the next

lecture.


