
Advanced VLSI Design
Prof. Virendra K. Singh

Department of Electrical Engineering
Indian Institute of Technology- Bombay

Lecture - 38
VLSI Testing: Built-In Self-Test (BIST)

Hello, welcome to the lecture series on advanced VLSI design course. I was talking about VLSI

testing in last couple of lectures. So today we will discuss little bit more in detail about Built-In

Self-Test. A background of Built-In Self-Test was already discussed in the last lecture. So, we

have seen that if we use Built-In Self-Test, in that case one of the very important aspect that it

brings in is field testing.

(Refer Slide Time: 00:52)

So that means here now your manufactured device, you can test as and when you want to test

without using very expensive tester and the other advantage is, it can bring in R like reduce

testing and maintenance cost, it will have very low test generation cost because we are not using

automatic test pattern generator that takes months to generate the test. We do not need to restore

the large signature and large test vector as well as the test response for the test of the device.

We need very simple automatic test equipment that can facilitate us to apply test. As I discussed

in the last class that here we need only one thing that can initiate the operation and can say that

yes now just start the Built-In Self-Test and tell me whether the device is good or bad. And now

because we need very simple tester that is inexpensive, so we can test large number of devices in

parallel and then here because we can apply the test at a speed, the test time would be shorter.

And then here another very important feature is that we can test at functional system speed. So

that means here we operate circuit at the functional speed, hence it may discover many more

defects. These are couple of advantages we have.

(Refer Slide Time: 02:44)

If you look at the architecture, in that case here what we need, we need three different additional

entities to help us testing the device. So you have circuit under test, you need a test generator so

that means here there would be a hardware test pattern generator you need to have, you need to

have a test response collector that can color the response compared with the golden response and

then here it will tell you whether chip is good or chip is faulty.

And in order to control all these activities, here we need to have a test controller. So these are the

three essential parts of Built-In Self-Test we must have. So now here we have to apply the test

pattern at the primary input and collect response from the primary output, so that means here the

pattern generated by the Built-In Self-Test must be multiplexed with the primary inputs using a

multiplexer that would be controlled by the test controller.

And then we have to color the response directly from the output of the circuit. So now here what

it can test and what it cannot test. So it contests all the faults in the circuit under test, it can test

all the faults in the Built-In Self-Test hardware, but because here we are not accessing directly

the primary input. So, if there is a fault in this, so now here primary input line itself maybe faulty

that means it is connected to ground line or open or connected to VDD.

And in that case here we may not be able to test that and then here in the same way, where the

output line we are not exercising, hence we may not be able to test. So these are the parts, which

cannot be tested if you use Built-In Self-Test. Okay, so now let us look at these components one

by one. Let us first start with the hardware pattern generator, then we will go to the output

response analyzer.

So let us see how hardware pattern generator can work. So what are the various ways. There are

many ways, means sometimes it looks bit weird that we say that we want to build complete

pattern generator on the circuit, that can generate deterministic test.

(Refer Slide Time: 05:12)

One of the simplest way that one can think of is we generate the test by using automatic test

pattern generator ATPG and then store those patterns in ROM. If we do that, say we have

millions of pattern, we are storing those millions of patterns on ROM, it may take huge area on

the chip and that may be too expensive. Other way is, we can generate test pattern exhaustively

with simple hardware.

(Refer Slide Time: 05:34)

Like for example, this is one of the hardware that can generate exhaustive set of eight patterns

and in the same way, we can build a hardware that can generate for 16 inputs, for 50 inputs, and

more than that exhaustively. Again here if we generate patterns exhaustively, the problem is test

application. As we have seen in very beginning that if you apply the exhaustive test pattern, in

that case here it may take several centuries to apply.

Same thing holds good here, so hence we cannot apply these patterns in reasonable time or

practically on the circuit, though we can generate these using some cheap hardware. Right, so

this is not practical if n grows beyond 20. So then this is not very attractive scheme. So far we

discussed two schemes, one is we can store pattern on the ROPM and then make use of those

patterns. That is impractical, the other scheme is exhaustive test that is also impractical.

(Refer Slide Time: 06:55)

So now here the other alternate is Pseudo-Exhaustive, that means here we do not generate really

exhaustive pattern, but it looks like we are generating exhaustive test pattern. For example, so

what do we do we partition circuit based on the Fanin cones of the outputs and see that which are

the inputs affecting that particular output. Based on the inputs which are affecting that particular

output, we generate exhaustive test for that.

(Refer Slide Time: 07:28)

Like for example, this is a circuit with two outputs, so output h and output f. So this is the fan in

cone of output h and this is the fan in cone of output f. So now here it has total eight inputs but

here only these five inputs are affecting this output h and only these five inputs are affecting

output f. So now here these three inputs and these three inputs are affecting only, the X1 to X3

are affecting only h and X6 to X7 are affecting only f.

So, if I generate exhaustive pattern for these five and exhaustive pattern for these five, in that

case here I can get the similar kind of confidence that I am getting through exhaustive test. So

now here, if you look at how many patterns we need, for eight input, we need 2 raise to the

power 8 that means 256 patterns but here now I am dividing that in two sets each of five inputs

that means here from each of the set.

I am generating 2 raise to the power 5 inputs and then there are two sets, so that means here total

64 inputs. So there is a good amount of reduction in the number of patterns we can have, but still

if you go beyond say 50 inputs or 100 inputs, in that case here again this post turns out to be

impractical. Hence we cannot use this approach as well. So now here what are the way I had if

we want to implement Built-In Self-Test.

We have to generate test patterns which can be applied in reasonable time. So now here one of

the approach that can be explored is random pattern test.

(Refer Slide Time: 09:21)

As we discussed in very beginning that there can be multiple pattern for a single fault or in other

word one fault may have multiple test patterns. If I generate some patterns randomly, let us see

for example here for this gate.

(Refer Slide Time: 09:50)

Say this is four input gate and if I want to generate a pattern for Stuck-At 1, there are various

combinations because here for Stuck-At 1. I want 0 here in order to excite that. So now here

there are various combinations, 0 1 1 1, there can be 1 0 1 1, there can be like here 1 1 0 1, there

can be 1 1 1 0, there can be like here 1 1 0 0 and so and so for that there are so many

combinations. All are able to detect this Stuck-At 1 fault.

So that means here if I generate pattern randomly, in that case here, I am likely to detect this

particular fault. So that means here random generation could be one of the approaches. If you

look at the fault coverage, in that case here, you may get a curve like this. So that means here

very quickly you may get good coverage but after that this coverage started to become saturate.

So for many of the circuits, the curve goes like this which is admissible.

So that means here a couple of, like here for this particular circuit, hundred patterns can give you

about 99% fault coverage, whereas if you want to achieve 100, in that case here, you may need

to apply 1000 patterns. Look at here, the 10 pattern itself may give you 80% fault coverage. So

that means here if you apply random pattern, in that case initially you may get very high

coverage.

And then slowly it will start to saturate but for some of the circuits, the curve may go like this.

So this grows very fast but then here it will quickly saturate and that happens due to the circuits

which have random pattern resistance. So one of the random pattern resistance that comes from

like here for example, again the same I discussed, like here if I want to generate test pattern for

Stuck-At 0 fault here, that means here I want 1.

And then there can be only one pattern that can excite this. So that means here I have to generate

this pattern and so for the four inputs. There can be 2 raise to the power 4 that means there can be

16 patterns and the probability of generating this pattern is 1/16. And say if I generate only say

five pattern, in that case here probability of getting this pattern is very low and hence here we

may not be able to detect this particular fault and these kind of circuits are called as Random

Pattern Resistant Fault Circuits.

(Refer Slide Time: 13:01)

So if you have large number of such kind of patterns which are needed to be generated, here you

may not be able to achieve very high coverage, but by and large for most of the circuits, you are

likely to get this kind of curve. But here the key issue is the pattern must be random, if they are

not random, in that case here you may not because it may be biased and you may not be able to

get this curve.

So now there are two questions. First is how we generate random pattern and second thing is, if I

can generate the random pattern, is it sufficient. So the answer of first is, it is very difficult to

generate purely random patterns because here always you are generating these pattern with some

algorithms. And hence here they may have repeatability and hence you may not be able to get

this kind of curve. That is one of the issue.

Second, assume I can have very good random pattern generator that can generate but if it is

random than the problem is how would I be able to compare the response of the circuit, whether

my circuit is good or bad, because I do not know the response of the circuit when it is fault free

because I do not know what pattern it will generate on the fly. So that means even if I have very

good random pattern generator, it may not help us.

So then what is the way out. We need, by and large, the random nature of the patterns and second

thing is, these pattern must be generated algorithmically so that here they have repeatability, that

means we can simulate these patterns and generate the golden response of the circuit and then

eventually we can compare with the golden response. So that means we have to generate these

patterns algorithmically and the approach is the Pseudo-Random Pattern Generation.

(Refer Slide Time: 15:26)

So now here, let us look at how we can generate these pseudo-random. So that means here, by

large, the nature of pattern that we are generating that means here the mixture of zeros and ones

that should be random, so that means it preserves the randomness and this should be

deterministic. One of the very simple circuit could be the Linear Feedback Shift Register.

So if you have a shift register, say you have three flip-flops and there is a feedback from the last

flip-flop with some, more or less, by intermediate value here and I feedback here and now here

in this, say I initialize this to 1 1 1, then how it will progress. So initially it will have 1 1 1 value.

Now after that in the second cycle, what will be the output, this is just synchronous circuit.

(Refer Slide Time: 16:29)

So now this one and one will give you zero. So next time here output would be 0 1 1, then the

very next cycle, the output would be 0 0 1 because this 1 will shift here, this 1 will shift here and

now in the third cycle, this 0 1 will give you 1, so this will be 1 0 0, then this 0 0 will give you 0,

so you will get 0 1 0, then this 0 1 will give you 1, so this will be 1 0 1 and then here again this 0

1 will give you 1, so this will be 1 1 0 and now here this 0 1 will give you 1 and then here 1 1 1.

So now again we get back to the same venue. So now here, how many inputs it is generating, 1 2

3 4 5 6 and 7 inputs it is generating. So that means here this can with a very small circuit, we can

generate a sequence of seven vectors. Exhaustively, if you want to generate from this circuit of

three input, in that case here it may be eight. So that means here we are generating nearly

exhaustive pattern sequence.

And now here, if you look at the placement of 0’s and 1’s, it is fairly random. It is much different

from your counter that you may use to generate. So now here, a Linear Feedback Shift Register

can be one of the Pseudo-Random Pattern Generator. So to generate the patterns algorithmically

that means these are repeatable, that is very important because we can simulate that and it has

most desirable random number generation property. So these are the properties we have.

Though here we want to generate as long sequence as possible because here that is good for the

fault coverage. Long sequence means here it should repeat after large number of sequences but

here really we do not need the exhaustive 2 raise to the power n sequence, though we want long

sequence. So now here what you need to have is, you have a feedback from the first flip-flop to

the last flip-flop.

And if there are a n number of flip-flops we have and then here you can tack input from some

intermediate points. So now here you can represent this by a matrix or by a polynomial. If you

say polynomial, in that case here that can be represented by 1 + h1X + h2X + h3X square + so

and so forth, hn-1 and Xn-1 + x raise to the power n.

(Refer Slide Time: 19:31)

So if you if you write down that as a matrix, in that case these are the output values, time t + 1

and these are the current value in the flip-flop, X0 to Xn-1 and that can be given by this matrix

that is called as companion matrix. This has some properties like in the first column, the last bit

is 1 that comes from the feedback from the first flip-flop to the last flip-flop. This h1 to hn-1,

these values can be zero or one based on whether you are tapping that value or not.

And then the rest of this matrix is identity matrix. So this is the property of this. So X t + 1 is Ts

into X of t. The Ts is the companion matrix.

(Refer Slide Time: 20:14)

This works under the Galois field theory where in the multiplication by x serve as the right shift

in LFSR and addition operation is simply XOR operation or model to operation. The Ts company

matrix, the properties I already explained to you this gives you the near exhaustive sequence, so

that means here other than all zeros, it may give you all the sequences. So that means your cycle

length may go to 2 raise to the power n-1.

That means it excludes 0 because once it goes to all 0 state, it may never come out from that and

hence that can never be generated.

(Refer Slide Time: 20:57)

So this is one of the implementation of that. The other implementation here you have a feedback

or XOR gates in the feedback path, you can generate the same property by placing. So now here

in worst case, if you are tapping input from all in that case here, there can be a sequence of n

XOR gates from the last flip-flop to the first flip-flop and that makes the system slower. So now

here in order to improve that, the another LFSR is proposed wherein you place the XOR gate in

the feed for all path and this generates the same sequence.

(Refer Slide Time: 21:39)

If you look at the companion matrix of this in that case, your companion matrix of the modular

LFSR is the transpose of the previous one. Now, here you are reading taps. These taps from left

to right, whereas in the standard LFSR, you are reading these taps from right to left. That is the

difference. And now again here the same characteristic polynomial remains same as 1 + h1x +

h2x square up to h n-1 x raise to the power n-1 + x of n.

(Refer Slide Time: 22:13)

If you want to achieve very long sequence, in that case here the polynomial that you implement

or characteristic polynomial that is given by this expression. Is should be a primitive polynomial.

And what are the conditions for the primitive polynomial. One of the condition is that it must be

a Monic, so that means here coefficient of Xn term must be 1. So that means here it always

should have 1 + x raise to the power n term.

If you look at here in that case here it should have 1 + x raise to the power n term. These terms

may or may not be there.

(Refer Slide Time: 22:56)

Then the other condition is that the characteristic polynomial must divide the one - x raise to the

power k or 1 + x raise to the power k. So, like in this previous example, I can write the

characteristic polynomial of this as 1 + h1x, so we are taping from here, so in that case here this

is 1 into x + we are not tapping anything from here. So 0 into x square + x cube. So this is 1 + x

+ x cube.

Now here let us see whether this is primitive polynomial or not. This is generating the longest

sequence of 7, hence it should be a primitive polynomial.

(Refer Slide Time: 23:37)

So what are the conditions. So condition says that this should be a factor of 1 - x raise to the

power k or 1 + x raise to the power k because it follows the modular theory and where k is 2

raise to the power n-1 where n is the number of flip-flops that we have. So it should be 1 raise to

the power k where k is 2 raise to the power n-1. Here in this case n is 3 hence k would be 7

because there are 3 flip-flops I am using.

So that means here it should be a factor of 1 + x raise to the power 7 and that must have 1 + x

raise to the power n as mandatory term in that, right where n is here 3, so that means here that

must have 1 + x raise to the power 3. Let us look at the factor of this. Factor of this would be 1 +

x, one + x + x cube and 1 + x square + x cube. These are the factor of 1 + x. Keep in mind, we

are using the modular theory.

So that means x + x is 0 because + is XOR operation. So now here, let us look at which factor

qualifies for this. This factor, does it qualify, it does not qualify because here it does not have x

raise to the power 3 term. So, here this is unqualified term. Now look at this. This has 1 + x cube.

So that means here this is qualified term. This has 1 + x cube term, so this is qualified

polynomial for LFSR, this is primitive.

(Refer Slide Time: 25:20)

Hence it can give you the longest sequence. So that means here, I can have modular LFSR that

can generate. So now here this is one of the LFSR that implement 1 + x + x cube and another

LFSR could be like here, both will give different sequence, but the length will be the same 7 and

this will implement 1+ x square + x cube.

(Refer Slide Time: 25:58)

So this way you can generate a long sequence. So now here we discussed that how we can

generate the test sequence. So this can give you nearly exhaustive, as I said that we are not

interested in exhaustive sequence, but we are interested in a long sequence so that here our fault

coverage can be very good or in other word I can say that we can quickly assume very high fault

coverage. So that means here the nature of the curve that we were looking for can be like this,

whereas say this is 100% and these are the test vectors, okay. So here we are interested.

(Refer Slide Time: 26:57)

Most of the time in practical systems because we have some of the random pattern resistant

faults, hence we may not be able to get very high fault coverage even after running your LFSR

for long time. So what do we do is, we go to some reasonable state and after that because the

remaining faults are not covered by this, because these faults are random pattern resistance. So

these are the Pseudo-Random Pattern Resistant Faults and almost all these faults do need a

unique test.

So what do we do in practice is, we generate test using LFSR and achieve say 95 or 90% fault

coverage and after that, here we do the fault simulation, we find out how many faults are

remaining. For the remaining faults, we go to ATPG, generate the test using ATPG and then here

we burn those vectors in ROM and put that ROM.

So first we run LFSR to exercise the test pattern on the chip and then after that we use the top-up

pattern from the read-only memory where we stored those deterministic tests. Because here,

these patterns are very small in number, hence here we do not need big RAM. So this is the way

we generate test if we use the Built-In Self-Test. Now the second question is, how we collect the

response and then here how I compare with the golden response.

As we know that here we are generating the Pseudo-Random Test Patterns, these are repeatable,

so we can do the simulation and we know what would be the real output of the fault-free circuit.

Now the question is, we can one way is we can store this response and read-only memory and

compare. Again here, if you store everything on read-only memory, in that case here the number

of bits you need in ROM would be very large, hence that will consume lot of area.

So what we need to do. What we can look for is, we can look for is the reduction of volume of

that data and one of the way is rather than using the real data, we can compact the data, generate

some signature, like for example when you go to bank, nowadays bank do have the photograph

and they match the photograph and all these things but still if you write a check, they do not look

at the photographs, they just compare the signature.

So signatures are representatives, so you can have the compact storage of the signature and then

you can compute.

(Refer Slide Time: 30:35)

So now here let us say for example is you have 5 million random patterns generated, there are

200 outputs. In that case, you need 1 million bits and then here, this is very uneconomical to

store one 1 million bits. So now here we need compact. So what could be the way to generate the

signature.

(Refer Slide Time: 30:56)

One of the problems could be like even if you go to bank, somebody else may sign and that looks

like same as your signature. So that means there is a little possibility that other person's signs that

matches with your signature. That is known as Aliasing. So that means here due to information

loss, a signature of good and bad circuit matches, that is known as aliasing. So now here when

you generate signature.

Here, we have to be careful that here aliasing should be as little as possible or ideally there

should not be aliasing. Then we define two terms, one is the compaction and another is

compression. Compaction is drastic reduction in bits in the original circuit response and then

here we lose some information. So that means here this is irreversible process. From the

compacted response, we cannot get back the original response.

The other term that you people are well familiar with is compression, like here you do ZIP. So

where in you compress the data and then here you can again expand it to the same original data.

So those are lossless. Signature analysis is another term that we define. What it says is that here

compact good machine response into good machine signature, actual signature generated during

the testing and compared with the good machine signature.

That is, so we have to compact the good machine signature, store somewhere that needs lesser

memory space and then we again generate the signature on the fly from the circuit under test and

match with the stored response. One of the way is that here we can use the transition count in the

bit stream.

(Refer Slide Time: 33:00)

Like here for example, if this is the circuit, if I apply a bit sequence here in five different cycles,

then here what I will get is, I will get this as response when it is fault free and when it is faulty.

So now here when it is fault free and faulty, here both of the responses do have different

transition. So here if you look at, there is only one transition from 0 to 1. Whereas in this, here

you can see there can be to two transitions, one is from 1 to 0 then 0 to 1.

And then again 1 to 0, so there are three transitions. On the same way at the second output, here

there is one transition and here there is also one transition. So if you look at only this output, in

that case here you have distinguishable transition of fault free and faulty machine, whereas on

output 2, you may not have distinguishable number of transitions for fault free and faulty circuit.

So if you happen to have only one output say X2, in that case here.

If you use the transition count, you cannot distinguish whether machine is faulty or fault free,

that is known as aliasing. Whereas if you have only say X1, in that case here, you can distinguish

that. So what we want is that here aliasing should be as small as possible and here in this, I do

not want to go in detail the aliasing analysis of this, but here the aliasing probability goes like

this. So if there are n number of inputs that you are compacting in K.

So for the very low and very large, like here if the number of transition is either zero or one, in

that case, there are only few possibilities. Sorry this will go from here. Now here, but here when

the number of transitions are somewhere in the middle range, the aliasing probability is very

high.

(Refer Slide Time: 35:16)

So transition count is though it is very easy because here you need to XOR the previous input

and the current input, generate the output using this one XOR gate and then here you can count

these using a counter and so the transition count is one of the easy mechanism but aliasing

probability is very high. The other solution is that you can use simply an XOR gate.

(Refer Slide Time: 35:46)

So that means here all inputs here you can compact in one, the problem with XOR gate is that if

your fault effect propagates at one of the input, in that case here always you will get fault effect

at output, but if fault effect propagates at two places, then here it will mask because the generated

signature would be same as the good machine signature and hence it will go unnoticed.

If it propagates to odd number of inputs, in that case here, you will get distinguishable signature,

hence you can detect. So this can detect the error which propagates to 1 or odd number of inputs

but this cannot detect if your fault effect propagates to even number of outputs. So now here if

you look at the aliasing probability, in that case here aliasing probability would be roughly half

or 50%, that is very high.

So now here we have to device. Transition count was one of the methods, use of one XOR gate is

also another method but here the aliasing probability is very high. So most of the time, it is not

very usable method. so now here the other way is we can use the cyclic redundancy code which

were in use in communication systems for longtime. So what do they do, when they transmit a

bit stream.

They generate some redundant bits from these data bits and send along with the data and then

when you receive at the output, you regenerate that. If there is a match, in that case here, you can

say that your transmission was good; otherwise, there was an error in the transmission. Same

concept we can use here. We can generate the CRC codes from the given bit stream.

(Refer Slide Time: 37:59)

So now here also we can treat data bits from the circuit primary output and we can compact that

in the decreasing order of polynomial which can be given by LFSR, means the circuit that we

can use to compact is again here the LFSR kind of circuit where in we have linear feedback shift

register. So now here when you scan it through the LFSR, here it will generate a redundant code.

(Refer Slide Time: 38:36)

So say this is LFSR whose characteristic polynomial is x5 + x3 + x + 1 and then here, through

this XOR gate, here you are combining the input bit stream. Say this is the input bit stream and

initially say we initialized this feedback shift register to all zero values. Keep in mind, in L FSR

we do not have any input bit stream but here it accepts the data input.

(Refer Slide Time: 39:13)

Now here let us look at what it will generate. So if you look at, it starts from all zero states and

then when you will receive this bit stream 1 0 0 0 1 0 1 0, then here based on the LFSR

characteristic polynomial, it will give you the output and at the end after this 8 bits, here we will

have 1 0 1 1 0. So this would be available in the flip-flops. So we have five flip-flops. This

would be data in the flip-flop.

I can write this as a polynomial that means 1 into x raise to the power 0 + 0 into x raise to the

power 1 + 1 into x raise to the power 2 + 1 into x raise to the power 3 + 0 into x raise to the

power 4 that combines to 1 + x square + x cube. In the same way, I can write a polynomial for

this input bit stream that is your 1 0 0 0 1 0 1 0 and that I can represent by polynomial.

(Refer Slide Time: 40:24)

The same thing you can obtain by division operation. So now here say this was x7 + x cube + x

is the polynomial of this data. This is x + x cube + x7. So this is input bit stream, that is divided

by the characteristic polynomial.

(Refer Slide Time: 40:44)

So if you look at here the characteristic polynomial of this LFSR is x5 + x3 + x + 1. And then if

you use the modular theory and do the division, in that case here you will get remainder as x3 +

x square + 1. That is same as the remainder in the flip-flops. So hence if you divide this by the

characteristic polynomial, you will get the remainder. So now here if this remainder matches

with the correct response that we obtained after the logic simulation.

In that case, your circuit is good and otherwise circuit maybe bad. This may result into some sort

of aliasing because here now aliasing would be much better because you have multiple flip-flops.

So now if you look at the aliasing, say there is a bit stream of n bits and there are k flip-flops. So

now here you can have 2 raise to the power k combinations of bits generated from this one and

out of 2 raise to the power n combination.

So now here the 2 raise to the power n divided by 2 raise to the power k pattern will result into

the same pattern. Out of these pattern, 2 raise to the power n - k, out of that, one pattern maybe

good and other patterns are just aliased pattern. So - 1 is the good pattern. Out of this 2 raise to

the power n are the total pattern but out of that one pattern is good which is compacted, others

are bad.

So this would be 2 raise to the power n - 1, this is the probability of aliasing or probability of

masking. This if you say if n is greater than k, in that case here, this is equal to 2 raise to the

power - k. So this gives us very good observation that here now if you use LFSR. In that case

here masking probability will not depend on the number of inputs and that will depend only on

the number of flip-flops that you have in the circuit.

(Refer Slide Time: 42:58)

So if you want to reduce that masking probability, you can have more number of flip-flops in the

in the circuit. So now here so far what we discuss is that for every primary output, you need to

have one LFSR or one signature register that is typically known as single input signature register

SISR and so if you have singling input, so this is your circuit output, you have one signal input

signature register.

For another one, you have again single input signature register and so now here say you are

getting n inputs in n number of cycles and then you are compacting this in K bits where K is the

number of flip-flops that you have in SISR. Now here it has k flip-flop here, k flip-flop here, k

flip-flop here, so now here hardware overhead is too much.

(Refer Slide Time: 44:00)

But if you look at this SISR, this is a simple Linear Feedback Shift Register, this is linear system.

If it is linear system, in that case it should obey principle of superposition. So now here if it

follows that, in that case here, now what you can do is, you can combine all these SISR into one

and then you can form a Multiple Input Signature Register.

(Refer Slide Time: 44:31)

So that means here in multiple input signature register, one input you are multiplexing here,

another input you are multiplexing here, another input you are multiplexing here. So if you have

K number of flip-flops, in that case here inputs from k number of primary outputs of the circuit,

you can multiplex here and now here if you want to find out, because this is linear system and

this is the companion matrix of this LFSR.

Then you can write equation for the output in the next cycle X0 t + 1, that would be companion

matrix multiplied by the current values + the input arrival at this point in time, so D0, D1 and

D2.

(Refer Slide Time: 45:17)

So here again the companion matrix will remain same, it should follow same property that we

discussed earlier. So now here, if you use LFSR that is known as Multiple Input Signature

Resistor, MISR and if you use, then again here the masking probability will remain same as 2

raise to the power - k where k is the number of flip-flops we have in the circuit. So now these can

give you very compact response, it needs very less hardware.

(Refer Slide Time: 46:06)

If you compare with the previous approach that we discussed with the transition count, in that

case here, you can say that in a circuit, this is the good value, there are three inputs and this is the

good value and if there is Stuck-At 1 fault at A input, Stuck-At fault at B input and Stuck-At fault

at F output. These are the responses. So here if you see, now this output if you use the transition

count, it may not be able to detect the output, so this can give you the difference between the

transition count and L FSR.

(Refer Slide Time: 46:38)

Okay so in summary here, I can say that LFSR, means the Built-In Self-Test is wonderful

approach that can give you facility to apply test at any point in time, that means your chip can

test itself and hence we can use that for the field test and so this allows you the at-speed test and

field test. Okay this completes the Built-In Self-Test. Now so far we discussed about the test for

Stuck-At 0 fault.

Let us briefly discuss about another kind of circuit that we have and those are say memory type

of the circuit. So in memory, here it is a very special type of circuit, wherein it does very specific

job, it stores value, that value can be zero or one, it should retain that value until it is rewritten by

the system.

(Refer Slide Time: 47:41)

So if you look at the memory structure, in that case here, it will have the cell, it will have the row

decoder and column decoder to enable one of the particular cell and you want to read by using

the sense amplifier or if you want to write, you can write on to that particular cell.

(Refer Slide Time: 48:00)

So now here look at how complex algorithm I can afford. One thing is, shall I go for the logic

test kind of approach wherein you model every fault as Stuck-At 0 or Stuck-At 1. We do not

need that essentially for memory because it does only restricted operation. So now here say if I

have n number of cells and assume that I do one operation with every cell, in that take case here

the complexity of my algorithm that I run would be n, so that means here n operations I do.

Let say I run a test at say 16 megahertz, in that case here if your memory is 1MB, it will take

0.06 second; if it is 4MB, it will take and now here you will easily have 2GB, 4GB, 8GB, 16GB,

kind of memory and it will take say if it is 2GB, 128 seconds if you run your test. If you look at,

if the complexity grows to n log n or n raise to the power 3 by 2 or n square that means here you

do n square operations with every cell, in that case here it may go to several hours and that is

impractical.

So that means here you have to devise a mechanism to test memory which has complexity as n

so that means here you can have fixed number of operations with each and every memory cell.

(Refer Slide Time: 49:44)

So now here as I said that here memory does some restricted function. Now we can generate a

simplified functional model for that. So you place address for the memory, address decoder will

decode the address, it will enable one of the memory cell and then you will read or write that and

if you are reading in that case here, you will get data out.

So now there can be a fault in the decoder so that means your decoder may enable 2 cells or

multiple cells so that may not enable any of the cells. Your memory cell that may stuck to always

logic 0 that may stuck to logic 1 or there may be a coupling between the memory cell so that

means here if I am reading or writing one memory cell, it will also affect the another memory

cell.

(Refer Slide Time: 50:38)

So if you look at the functional fault model, in that case here I can categorize these fault model in

four different categories, one is Stuck-At fault so that means here any element can stuck to logic

1 or stuck to logic 0, so that means it may not have transition. Transition fault means here, it may

not make a transition from 0 to 1 or 1 to 0.

So that means if you have stored 1 in that case, it may not go to state 0 or there can be a coupling

between to 2 cells or if there is some specific pattern around your cell, in that case here, it may

invert the value of the cell.

(Refer Slide Time: 51:16)

So now here in order to test these, here the simplest approach that was explored was, what do

you do is, you initialize memory in some particular state. Say you have 3 x 3 array, so you

initialize all the these, so you can go in any order and initialize all these bits to 0. So that means

here, you are writing 0 to all the memory states and you can go in any order of address. So this is

like you are marching from the first location to the last location.

(Refer Slide Time: 51:58)

Then what do you do after that. Next time, you come back and see. First read the earlier written

value. If it is 0, in that case that cell is good, that means that can store value 0. So there is no

Stuck-At 1 fault there. So now what you do is, you read this value, that is 0 and then here you

again rewrite that to 1. So now here you read that value and then here you write 1. Again here the

second one you do the same thing, third one you do the same thing, fourth, fifth, sixth, seventh.

In case any of the cell is stuck to logic 0, in that case that was not able to make a transition to 1

and then you can detect that immediately here. So now here you in this you can detect Stuck-At

1 fault but here you are not able to detect Stuck-At 0 fault. What do you do in the third time, you

can come back and now here read this values. So if you read this value, again here, if it is 1 in

that case, this is correct; if this is 1, this is correct.

So again here you march from first location to last location. So that means here you are reading

1, so this can detect Stuck-At 0 fault. So, now here how many operations. So now here, this one,

first you initialize this memory in all 0 states or all 1 states. Then here in one order of address or

may be either from first to last or last to first, here you read first the earlier value, compare with

the earlier written value and then change to the inverse value. So read 0 write 1.

You finish this then the next time here, again you start either from the last value to come down to

the first or first to last and then let us say you come from last to first and you read all these

values. This can detect all Stuck-At fault. And now here how many operations with one cell you

need to do. Here for all these cells, you are doing n number of operation. Here with every cell,

you are doing 2 operations.

In that case, you have 2n number of operations and here n number of operations. So that means

here total 4n number of operations you are doing, so that means here you are accessing if say 1

microsecond is the memory access time and you have said 9 memory cells, in that case you need

4 x 9 x 1 microsecond as the test time for this memory. That is known as March Test. So here in

this notation, here we say this is March 0, March 1 and March 2.

(Refer Slide Time: 55:08)

So there are various March Tests were proposed, you can go through the various March Tests.

(Refer Slide Time: 55:14)

And if you look at what they detect. The very basic tests that is known as MATS that I discussed

that it has complexity as 4n and it can detect all Stuck-AT fault. This can detect some of the

address decoder fault, this may not detect all address decoder fault. Whereas the MATS + that is

augmented by again here W0 in the third March, so that means you are writing back zero and

here you are going in the forward direction.

Here you are going in the reverse direction, that make sure that you will also detect all the

address decoder related fault. So now here this can detect all these faults.

(Refer Slide Time: 55:57)

If you look at the complexity of various algorithm, in that case here this will be the complexity.

(Refer Slide Time: 56:03)

(Refer Slide Time: 56:05)

This example, I already given you, so I will skip.

(Refer Slide Time: 56:06)

So now here if you look at the memory, in that case here, we are following certain pattern and if

you follow certain pattern, in that case here always it is easy to implement that as a Built-In Self-

Test. So what we are doing, we are generating address right from the first to last or last to first

and you are writing some single bit or we are reading single bit for that and so now here for that

you need to have a pattern generator.

This pattern generator is nothing but it is address generator, so now you need to have a counter or

LFSR that can generate the rising address and falling address and then you are writing that value

to that particular memory state. So what is important here to detect a fault is you have to go in

certain order of address and when you come back you have to come back exactly in the reverse

order of address.

So the memory is one of the circuit that is most favored by Built-In Self-Test and practically now

all the memories are coming with the Built-In Self-Test and that is why when you power up your

laptop, most of the time you might have observed that it will start to test the memory. So that

here you can always make sure that your memory is good. Sometimes we have some additional

rows and columns.

So once you identify a bad row or bad column, you can replace that bad column or bad row by

the redundant row or column and hence here you can full make use of your memory. Thank you

very much. Good day.

