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Today's lecture, the plan is to discuss briefly sketchily role of so-called timing analysis in the

context of physical design flow, okay physical design automation flow. Most of you would be

aware of timing analysis in particular in fact static timing analysis you would have used in while

using the tools, FPGA CAD tools or ASIC tools, guidance tools. 

Just this lecture would aim to give you some brief idea behind about the core techniques, core

algorithmic idea used in this timing analysis, the concepts, the notions of focused directed or

cyclic graph, topological sort, couple of notions which are only present in the algorithms of this

kind, okay. So first of all, I mean physical design I say it is about layout rate, so what is the

connection with timing analyses, I mean what is the connection of timing analysis with physical

design. 

First of all, most importantly you recall that we I mean I mentioned that in the automated process

of layout generation, lot of the importance is given to minimizing the wire length, right. So why I



mean first of all must a remark that if number of wires or length of the wires is very large that

would kind of lead to more complexity for routing that is if you have one of rout within some

limited area then of course it becomes harder to route if you have long wires, wires are running

very long from and so on. 

Of course number of wires is going to be same as number of nets, but if we have done a poor

placement then it could possibly mean that a lot of wires are running very long. Okay from one

side of the chip to other side, so that is why while doing placement one of primary goals of good

placement is to ensure as low as possible total wire length. 

Of course, until one does routing, one does not really exactly accurately know what wire length

is, but after placement one can get some estimates of how much the wire length would be and

based on those estimates, the replacement heuristics would be guided to like sort of make a better

placement and so on. So why was this wire length crucial okay, so in particular suppose this

interconnect delays, okay the wired delays were insignificant or negligible.

Okay then would we have been worrying so much about the wire length, of course wire length

would mean like complexity of router, it will be more headaches for the router, but in terms of

delay  or  timing,  the  length  of  the  wires  would  not  matter.  If  delays  of  interconnects  were

extremely insignificant compared to the delays of the gates themselves, of the modules or cells

themselves, okay. 

So in this case wire length would not be so crucial, but definitely that is not a situation. Of course

to some extent it will be crucial in terms of area optimization, but not in terms of timing, but

reality is that wire delays are significant or becoming increasingly more significant. So they have

to be kind of given good attention. 

So in this sense, like because timing is very important and estimates of timings are important one

would get an idea of what would be the acceptable wire length and so and so. Also like certain

tools or the so-called static timing analysis would tell a designer about like there is an automation

tool about what is timing critical portion of the netlist and if one gets an idea about that.



Then in a manual or automated fashion, the timing critical portion which could involve some

gates which could involve some wires, those gates could be resize to improve the delays, the

inertia or the wires could be widened so as to restrict the resistance or some appropriate buffer

insertion would be done to reduce the delays along the long wires in the timing critical portion of

the netlist.

So netlist restructuring can be done in case one gets a timing estimates as accurately as possible

or  as  quickly  as  possible  so one would have to  kind of  this  will  not  be one-step procedure

because everytime you make some tentative placement or routing layout decisions, you have one

like you know feasible kind of routing, but then you might want to improve upon it and then you

look at a timing and identify the critical portions trying to improve the hoping to get overall

improvement in the timing and so and so forth.

So this is how the timing analysis tools will be interacting with the layout generation tool, so

many of this placement routing algorithms would actually be getting a quite a bit of feedback

from the timing analysis every now and then. So we aim to look at some core notions in this

timing analysis with the help of examples illustrations. 
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So as I mentioned since wire delays are significant  therefore it is now interest  to have high



performance or optimum or close to optimum wire length okay or appropriates sizing. Another

point I mentioned is that the timing analysis helps identify the critical portions of netlist, and this

can be improved in various ways as it is like by upsizing resizing the gates so as to reduce the

inertia or like you know improving this interconnect or inserting buffers at appropriate locations.

Many of these problems have been studied for the algorithmic solutions. 

(Refer Slide Time: 08:56)

So core  notion and timing  analysis  so one of  the  simplest  to  understand and develop some

intuition for more difficult concepts and problems so that is so-called static timing analysis. So

this static refers to static is not dynamic, is something that does not really put any, give any

specific emphasis to the runtime behavior,  dynamic behavior,  more about the most,  so static

analysis  means mostly based on static  information  not  runtime information  that  is  the delay

estimate, worse case delay estimates.

Actually at the runtime the delays may not be as bad as the worst case delay estimates and also

the topology, it is graph representation or graph abstractions. By looking at topology and worst

case delay estimate one can fathom a lot, one can get a lot of useful information about timing

requirements and timing optimizations and which will help in hoping to arrive at good high-

performance layouts placement routing.
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And you hear about static timing analysis, you will automatically hear about the terms like AAT,

which stands for actual arrival time, RAT or some other notation for like mnemonics for this

required  arrival  time,  so  these  are  the  times  arrival  times  of  signal  transitions.  So  we  will

obviously elaborate with the help of examples so things will be very clear and based on these

two concepts, there is a notion of slack which is quite important slack. 

Slack will be roughly speaking it is the difference between RAT and AAT of individual notes.  It

is just so in the timing analysis interesting we will be kind of dealing with only some kind of

combinational, so if you start looking at timing analysis algorithm many of them seemed to be

just talking about combinational circuit,  so I mean what is it  mean so does it mean that this

things apply only to very restricted situation of purely combinational designs, no in fact this

combinational portion of any design is really the core of it in terms of the logic part of it.  

Other  than in  any sequential  circuit  there is  going to  be flip  flops  and there  is  going to  be

combinational  logic portion,  the flip-flops are being used for storing the data  or the state of

controller or the state of the computation data path state okay and combinational logic that is the

portion of the circuit, which is actually like you no continuously working, continuously kind of

updating its outputs in response to the changes at inputs.

Okay, so that is the combinational part of the sequential circuit is the one which is kind of trying



to compute the next state of computation,  next state of controller  and the next values of the

variables, the data items and the flip flops are only like you know holding onto the state or the

state of computation or the data current values of the variables, the data items and so and so

forth.

So for the timing analysis the flip-flops, we will not have to worry about the flip-flops so much

in fact at an abstract level, we will kind of be cutting the circuit at the flip-flops and once you get

big sequential circuit at a flip flop, if it is a very descent sequential circuit then what will be left

with is obviously purely combinational but more interestingly, there will not be any feedbacks

within the combinational portions. 

The circuit obviously will have feedback, there will be some like you know next state depends

on the current state so that means and the next state is going to become the current state in the

next clock cycle, so there is a roll of feedback in sequential algorithms of sequential circuits, but

anytime there is a feedback then that feedback path will necessarily include one or more flip-

flops.

So if we cut at the flip-flops you are going to have all the feedbacks removed and whatever the

purely combinational circuit that is left is feedback free okay, of course there is nothing wrong

really in having feedbacks in the inner circuit which has just combination gates put those kind of

feedbacks can give you latches, can give rise to memory elements or can give rise to oscillators

configurations so there is no need like for designing latches and oscillators. 

In  large  distance  one  would  typically  make use  of  them as  black  boxes  or  as  well  descent

components and the combinational gates would be purely used in the feedback free manner for

generating the next state logic or the output logic milli or more output logic, okay so one of the

things about static timing analysis you will notice is that this example circuits that we will be

dealing with will be shown to be purely combinational and without feedback.

Also so I am emphasizing cautioning that like feedback freeness is not the absolute necessity in

designs, especially feedback free, but like in a very descent circuit the combinational part did not



have free feedbacks. If at all feedback is meant for holding like designing a memory element like

a  latch  then  you  could  as  well  use  a  well-designed  latch  in  that  particular  implementation

technology. 

And it helps a lot to like you know assume that there are no feedbacks that makes the algorithm

design process, analysis process very smooth and interesting and inefficient, okay. So I will take

an example right away which we will be kind of exploring to shows some concepts.

(Refer Slide Time: 16:51)

So here is one circuit.  I have some labels or notations over here. In about a moment,  I will

explain what this mean. So this is again an example curtsy. Okay, here it is 0.15, the book VLSI

physical  design from graph partition into timing closure by Kahng, Lienig,  Markov and Hu,

Springer, I think it came out last year ago or couple of years ago maybe. Good book, fairly

elementary introductory and well-written.

Of course there are other books, but I chosen to use examples because this is not a core course

like full-fledged course on VLSI design automation just for the overview of some concept try to

keep  the  matter  simple  example  and  notion  simple,  simplistic  overview  essentially.  In  this

particular example, here we have a netlist again important to notice is that there are no flip-flops

here, it is purely combinational gates and also what you notice is that there is no looping, there is

no feedback here.



This a, b, c, they have to be regarded as inputs and f is only output, of course you could have

multiple outputs and many more inputs, much more complex such combinational circuit. There

are notations, the labels here 0, 0 and 0.6, they represent the arrival time of signal transitions at

these inputs, so you know from somewhere like with respect to certain synchronizing time, let us

say  positive  age  of  a  synchronizing  clock  in  the  system,  this  signal  becomes  stable  at  0.6

nanosecond after the rising edge of the clock.

This signal is let us say immediately stable and so on, taken to the pinch of salt, this thing need

not  be zero.  Then the labels  on this  wire segments  are  like  they indicate  the delays  of  this

interconnects. The labels on the gates and this label name is y and this quantity in 2 indicate

delay, the worst-case delay of this particular gate and this is the inverter with delay 1, this is or

gate with delay 2 and gate with delay 2 and these are the wire delays, 0.2, 0.25 nanosecond, 0.3

nanosecond, 0.1 nanosecond. 

So you do not worry too much about you know this net is being driven by this, this is going here

it is going here, so like you know what is the delay of this common portion, what is the delay of

this portion, one can study at that level. So if anyone studies more delay, RC trees, but right now,

just assume that this 0.1 means that it is a delay, the worst-case delay for the effect of signal

transition at this point to reach this particular pin of this gate and so on. 

So 0.3 is a delay between signal transition here and corresponding signal transition over here,

okay and let us assume that for the purpose of so-called pessimistic static timing analysis the

whole circuit,  all  the elements of circuit,  the wires and gates are behaving in the worst-case

fashion that is all this numbers that we are showing which are worst-case estimates, they actually

like you know the signals are stabilizing or like you know making transitions with the worst-case

delays, okay.

So things might turn out to be better than at runtime and those things are also studied in this

subject  but  that  will  complicate  our  discussion  a  bit,  okay.  So  based  on this  feedback  free

combinational circuit  which would have been obtained like you know out of general kind of



sequential circuit which has this kind of structure.

(Refer Slide Time: 22:02)

There is a controller, a controller is basically a set of flip-flops which maintain the state and

combinational logic which will generate the next state based on the current state, these flip-flops

maintain the current state and there is a clock and this combination logic is computing the next

state which is to be loaded into the flip-flops at the beginning of the next clock cycle or the end

of the current clock cycle. 

Also, this  combination logic is also influenced by primary inputs or inputs from some other

source not inputs from this  flip-flop okay. These are considered to be primary inputs of this

particular control, this is the controller and then there is a data path. So the data path might have

some flip-flops albeit there are some combination logics and there is a set of registers followed

by and so on. 

Okay, it could be this is kind of linear picture I drawn just for us, in general data path can be far

more complex, there will be registers, combination logic or there will be multiplexers and so on,

but again the data path you see that there are flip-flops and there are combinational logic clouds,

okay.  Controller  also  has  added  flip-flops  for  maintain  a  state  and  combinational  logic  for

generating the next state and the outputs. 



The outputs of this controller go to the data path and so and so forth, we are aware of that. We

are not going back I mean like leading the discussion back to FSM + data path, but the important

like here I want you to identify that this combinational logic is the one that we have to focus on

for static timing analysis, just cut this flip-flops like you remove them from the picture what you

are left with is possibly disconnected state of combinational logic clusters or clouds we can think

of them as which are feedback free okay.

(Refer Slide Time: 24:42)

Like in this example this circuit is feedback free, of course this must be a very small part of a

very small sequential circuit if at all, but in general it could be hundreds of thousands or millions

or tens of billions whatever, very big, not everything would be one like you know monolithic

combinational circuit, there could be lots of separate parts of it and after partitioning they can be

separately identified, separately analyzed, 

So partitioning has one big role in this timing analysis also, okay. So this was just a picture of a

general sequential circuit which will have controller data path, so highlighting which portion is

the one that we are going to look at in this timing analysis, this combination logic.
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So the notion of timing critical, this is like vaguely remarked at the timing analysis, static timing

analysis is going to compute this so-called actual arrival times and required arrival times which

will be listed on this example, but after doing that and after computing the slacks the analysis

will identify the timing critical portion and in particular.

This critical pass is an important like concept which all of you will be very well aware of, critical

path is the one which is important because that is the one which has the maximum delay from

any input to any output and which will  like influence the maximum frequency at  which the

sequential circuit can be driven so that will influence the speed of your implementation.

So critical path is the path which has max delay from any input, any output, okay, so how is

critical  path  identified.  So  the  state  of  art  timing  analysis  has  much  more  ability  than  just

identifying critical paths, but it will help to begin with, like you know understanding how critical

paths are found and like that is a core notion, what kind of algorithmic idea is more in the graph

models, graph algorithms get used that gives you some kind of insight motivation to study the

next level more advanced concepts so I will just focus on the basics.

(Refer Slide Time: 27:36)



So this concept of actual arrival time, so actual arrival time at U say where U is a pin of a gate,

okay, say it could be output or input pin, so this actual arrival time at a you at a pin U say U, this

is a gate and this is say U okay, so how is it going to be defined and what will determine this

particular actual arrival time, which is the arrival time of the signal transition.

The signal transitions are happening at the inputs and like you know because of the delays of the

wires and delays of the gates, the corresponding signal transition will happen at certain time and

the time at which that signal transition occurs as being that all  it  gates and all the wires are

working, are acting in the worse case fashion with worst-case delays, the time at which this

corresponding signal transition occurs and after which this signal at U achieves its correct value

is the actual arrival time.

So this will clearly be like you know based on say this is V1, this is V2, this is V3, so if these are

the signals at the input of this, then this will be max of AAT in this example, AAT of V1 + what

the delay of the gate G, okay, AAT of V2 + delay of G, AAT of course I can say it will be much

more elegant fashion, but anyway let us see how our thought ideas develop. So clearly this rate.

So it will be influenced by the one, by the pin which has the latest or actual arrival time, so this

particular input might like become stable very early, but it will not like you know, it would be of

no use, if some other input is going to arrive much later, so the one which is going to arrive input



that is going to arrive at the latest time instant is going to determine the actual arrival time at the

output of this gate.

The delay of this gate is also include, that is common for all these cases. So it looks like you

know it hints at the fact that this actual arrival time recursively defined and that is the main key

of things, okay. Similarly, the notion of RAT, required arrival time, is also going to be recursively

defined and I will just come to that in a moment. 

(Refer Slide Time: 31:14) 

To do this recursive computation of AATs and similarly of RATs, these recurrence relations is

with the help of dynamic programming.  I did not mention this but this if one is interested one

can  look  at  this  as  note  that  these  are  very  interesting  important  examples  of  dynamic

programming otherwise one can also invent these ideas or discover these ideas without like you

know appealing to this sophisticated notions of dynamic programming, very intuitive concepts.

So  this  recursive  computation  uses  the  help  of  dynamic  programming  or  otherwise  can  be

efficiently done in iterative fashion. By that I mean like we are going to compute the AATs at all

pins of combinational circuit which does not have feedback, we are going to start at the inputs

and then like iteratively compute the AAT, actual arrival timings at different pins, you know

insert in order. 



The pins or gates will be processed in a clever but natural and simple, clever idea like so called

topological sort, clever, simple, natural okay. So I do not want clever to necessarily mean that it

is something very hard to fathom or understand, very simple idea. So in some kind of topological

sort  again  its  one of the very simple notions  in  algorithms and quite  likely you are already

familiar with it. 

It is going to be used to like you know visit these notes, the gates or pins and set an order and

compute at AATs and similarly for RATs, may be the order would be different over there but the

idea is the same. 

(Refer Slide Time: 34:05) 

Incidentally I think I have missed mentioning one small point, one of the reason I was like you

know bringing your attention to the flip flops and like you know while talking about in that we

will see the focus on combinational circuit, although there is most genuine like digital designs

filled of flip-flops, the flip-flops are for the purpose of storage, combinational logic is for the

purpose of computing the next state, doing the data processing and computing the outputs. 

So what are the so-called inputs of this combinational logic and outputs from the combinational

logic. Of course some of the inputs from the combinational logic are coming from the external

world and some of the outputs are going to the external world, so they are primary inputs and

primary outputs, okay. 



But other than that we should regard the outputs of flip-flop, also as kind of secondary input to

combinational logic like output of this flip-flop can be regarded as an input to this combination

logic and to differentiate it from the input coming from external sources, I will call it secondary

input. Similarly, output of this combination logic is not going to the external world, but is going

to like over here, it is going to flip-flops again, so this is to be regarded as a secondary output of

this combinational logic. So should be in some sense regarded as an output. 

(Refer Slide Time: 35:27) 

And that is of course crucial because this notion of critical path that I mentioned which you are

really familiar with which says, it is max delay path from any input to any output, but that any

input, any output include not just primary input, primary output but also this secondary input,

secondary output which are respectively the flip-flop outputs and flip-flop inputs, okay.

So when says loosely like critical path is the max delay flip-flop to flip-flop path, but also should

include primary inputs and primary outputs. So basically any input or output path where input-

outputs could be either of the primary kind or the secondary kind.

(Refer Slide Time: 36:18) 



So I am sorry for the digression but we are just going to get some more idea about how to

compute actual arrival times and required arrival times and I say they are like at a sophisticated

level one can think of all these as very good example of so-called dynamic programming very

important idea in algorithms as per as in particular VLSI CAD has many applications of this and

this notion of topological sort some kind of ordering.

Anyway this is what you will get to study when you do that course on design automation or

course on algorithm data structures. So a graph modeling is preferred, okay one can do this on

the  netlist  itself,  but  like  to  make  good  use  of  standard  packages,  standard  libraries  for

implementation one should like do a clean analysis, clean algorithm development and use of

libraries like the abstractions are very useful so a graph modeling and again there is no just single

particular way of modeling things by graph.
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So that circuit that I drawn this one, I am going to modulate as a graph. 

(Refer Slide Time: 37:30)

So I will just draw the graph first, recall that there are a, b and c, there are this primary inputs or

it could be secondary input, but inputs and there were labels here, 0, 0 and 0.6, okay. So this

label we are denoting the arrival times of signal transitions at this input, so I am going to have

some kind of dummy source and arcs of this kind, directed edges of this kind and this I am going

to label with this. 

So this is going to mean that a signal transition arrives at this input c at 0.6, but at a and b, it is

there from time zero itself, okay. Then a is connected to input of the gate y, so I am going to



represent y by one node okay and I am going to label this by 2, remember that y is an end gate

with worst-case delay 2 and this connects this wire from a to y has delay of 0.15, so that IO am

going to represent it as directed edge because this is the direction in which the signal travels is

0.15. 

Similarly, I am going to draw the rest, so B drives this inverter x which has delay 1 and I think I

forgot this first 0.1, so 0.1, this is x with delay 1, output of x drives y as well as this gate z, so z is

or gate with delay 2, z is driven by c as well as by x. The length of delay along this wire from c

to z is 0.1, this delay is 0.3 like you know do not go by the lengths, they could be because of the

width of the interconnects and some other factors, okay. 

X also drives y with delay 0.1. so this 0.1 and 0.3 correspond to this x driving this pin of y up to

0.1 delay and this with 0.3 delay. C driving z with 0.1 delay, okay. So let us complete the rest of

it, like there is another gate called w which is and gate with delay 2 which is driven by y. Delay

of the wire is 0.2 and also driven by z, this delay is 0.25 and this is generating as shown in that

picture like it is going to output and wire connecting the output of w to this output f is of delay

0.2.

Okay, this is your f, so I have introduced this dummy source for the purpose of kind of capturing

this arrival time information at the inputs a, b, c, so a, b, c are not really gates, think of them as

some kind of input pads or some input terminals at which signal transitions arriving at certain

specific time, time zero, time zero and times 0.6 so all information has been captured here and

you should convince yourself that like this will suffice to like you know the sense of the timing

information, the input information that is delays of wires and delays of gates.

Now we can start building up this propagating actual arrival time information and similarly the

required time arrival information so actual arrival time at a, b, c are 0, 0 and 0.6 okay, so it is

going to be a bitter of character here, so I say A stands for actual arrival time, A at this is going to

be 0, A at this node is zero, A at this node is 0.6, yeah that is enough because signal comes here,

these nodes are not really gates or you can think of them as a simple dummy gates with 0 delay. 



So at the output of this like over here we know that the arrival time is 0, 0, arrival time is 0.6

now based on this for which of the other nodes their outputs we can find arrival times.

(Refer Slide Time: 42:42)

The signal is arriving here at times 0 so based on this can we decide what would be the arrival

time of signal at the output of y, not exactly I mean we know this information, this 0.15 +2 but

this signal transition here to a final value possibly could depend on some other input path. For

example,  it  could  depend  on  a  signal  going  along  this  wire  getting  delayed  here,  getting

converted and other delays. 

So this would have led to 0.1+1 that is 1.1+0.1, 1.2+2, 3.2 okay. so just knowing this alone

would not give this knowledge 0.1 and 0.2 will not give us the actual arrival time here, okay. To

know the actual arrival time at this point you will need to know the actual arrival time over here

and over here. To know this, you will need to know the actual arrival time of this okay and so on.

So we have to kind of process this, visit this in certain order.

So before visiting y we should visit x simply because y depends on x, okay so this so-called

topological order is ordering of these gates or nodes as in graph in such a way that we visit a

node only after we have visited all the nodes on which it depends. So we will visit y, we will

process only after we process a and we process x, because y depends on a and x, okay x we can

process as soon as we know information about b.



Similarly, z we will process only after we have processed x and we have processed c.  C would

have processed quite  quickly,  once we have processed x and a,  b,  c  then we are eligible  to

process y and do a computation at z, and once we have computed at z and we have got AAT also

at Y, then we can go onto computing this at f or the output of this w and so on. We have to go in

this particular order.

And that is an example of so-called topological order that is simply visit the nodes in a manner

such that you do not visit something before having visited all the nodes that it depends on, okay. 

(Refer Slide Time: 45:17)

So topological order here will be first we will do x, because x does not depend on once we had

done a, b, c, x can be done immediately but neither y nor z or w can be done because they will

depend on x, so what will be the arrival time of the signals transitioned at the output of x, A at

this point will be see that because of this path 0+0.1+1, 1.1, there is no other way output of x will

be influenced. So it is 0+0.1+1, 1.1, so A is decided over here. 

Now, A is decided at this point and at the output of x. Now because of the signal has made a

transition here to its correct value after another 0.1 there will be a stable value available at this

input pin of y and at this input pin of y the stable value is available at 0+0.15 that time, then there

is a further delay of 2 nanoseconds, let us say at this gate y, so at the output of y now we are



ready to compute A, actual arrival time and that will be max of how much 0+0.15+2 that is 2.15,

1.1+0.1+2 that is 3.2. 

1.1 at the output of this +0.1+ the inertia of this gate that is 2, so that is 3.2, so this will be 3.2.

Similarly,  A over  here  can  be  computed  because  it  is  going  to  be  max  of  1.1+  0.3+2,

0.6+0.1+6+0.1+2 which is equal to 3.4. And similarly what will be the actual arrival time at the

output over here, A will be, this is 3.4+0.25+2 that is 3.65+2 that is 5.65 and from this side it is

3.2+0.2 that is3.4+2 that is 5.4, so a maximum is 5.65. 

And at f, A will be 5.85, okay 5.65+0.2, so it is a very simple calculation, very easy to implement

as an algorithm in any language like it is just looking at topology we define, figure out an order

in which this node should be processed, all labels are indicating all the information that you

need, the delays of the wires, delays of the gates and based on that in a systematic in a very linear

efficient time you can get all these values, actual arrival times at the outputs of all the gates in

this particular design. 

So, now that means we know as a result of signal transitions arriving at a, b, c at this given times,

at the time 5.85 we will get a correct value of signal f as a result of I mean correct combinational

value at signal F okay, so now the related question is like if this is the actual arrival time what

like you know what would have been the required arrival times of the signals at different nodes,

was it really necessary that at A the signal should have arrived at time 0.

Was it really necessary that at this c the signal should have arrived at 0.6 could it have been that

signal would have been allowed to arrive a bit later, so what are the required arrival times at the

nodes. Now we know that we are being able to receive a correct value at time 5.85 and that is

because of these assumptions that  we have made about arrival  times here,  this  is  the actual

arrival times, but what could be the required arrival time so that we meet a certain target required

arrival time at the destination at this sink at a target.

So that is a dual kind of, opposite kind of question and as your intuition would be telling you that

it would really amount to making a backward pass, here we are going in some kind of forward



direction of the signal flow, okay we process a node only after we process all nodes which drive

that particular node, so that is we are going in the direction of the signal flow. 

If you go from the target in the direction backwards, reverse direction of the signal flow, we will

be able to similarly compute this logical like intuitive notion of required arrival times and why is

that required arrival time useful or interesting is because we get to know like whether we have

been a bit to like you know too pessimistic and like you know trying to generate a signal very

early. 

We could have afforded a bit of delay, the signal might have at certain time it pins, the signal

might arrive later and still we will have a computation or like you know our result available at

the required time say at 5.85 okay. Definitely 5.85 is the best that you can get because these are

the actual arrival times of signals, but could the signals have arrived late, supposing we get an

information that signal can arrive at node A at time 0.2 okay and still we will be able to get at

time 5.85 correct value.

If the required arrival time at a is found as 0.2 then we know that there is some kind of slack over

here 0.2 that means we could have some circuit that is generating this signal transition here, we

can afford it to be less efficient in terms of delay and generate this signal transition a bit later,

okay. 

(Refer Slide Time: 52:28) 



So having computer the arrival times we know that A here has been found to be 5.85 okay. Now

we say that this is also the required arrival time RAT is also 5.85 okay, we require this as like you

know f has been given by this actual arrival time. So let us say we require it exactly at this time.

Then we go back analysis to see what are the required arrival times of signals at the other nodes.

So here we want it to be at 5.85 then over here the required arrival time will be clearly 5.85-0.2

that is 5.65 okay. Then can we immediately go back to finding the like you know guessing the

required arrival time over here, no right, because the required arrival time here would like you

know intuitively naturally depend on the required arrival times here and so on. 

So we have to patiently in certain kind of opposite order in a direction opposite to the signal flow

that is in this direction and process nodes, so w is known. So we hope to find the required arrival

time here and required arrival time here so how much at z. At the output of the gate w, it is 5.65,

so over here at output of z will be, this is required at 5.65. 

Because of the 2 ns delay of this and 0.25 ns delay of this wire over here at output of z, we must

require the signal transition to take place at 5.65-2-0.25 that is 3.4 again. It just happens to be

same as A, like understand the reason for this phenomenon that why it turned out to be the same

that bit later over here, so this is 5.65 we required the signal, there is a 2 ns delay, 0.2 ns delay. 



So we require this at 3.45, like 5.65-2-0.2, right, 3.45. Can you compare it with the actual time

here? This output of the actual arrival time was 3.2, over here it was 3.4. 

(Refer Slide Time: 56:33) 

Somehow maybe a coincidence but like actually it is not, over here we have found this required

arrival time at the output of z to be 3.4 which is same as the actual arrival time at the output of z,

which is 3.4 but the AAT at output of y is 3.2 but the required arrival time at the output of y is

3.45,  so  there  is  a  discrepancy  here  and there  is  like  you know thing  matching  over  here.

Anyway, so just you would have probably guessed the reason for that also. 

So this is going to tell us something about critical path, okay, now having known the required

arrival time at y and at z we can compute a required arrival time at x and that will be how much

will that be, that is interesting, so RAT at the output of x. By x I mean that output of x is going to

be,  you can check for yourself.  I  will encourage you to kind of think about it  on your own

because all these are very intuitive natural concepts.

Even though, you may not have done a formal course on this subject or algorithm, your natural

thinking will lead you to such recurrence relationships. RAT at x is going to be minimum of RAT

at y - whatever, 2-0.1, -2-0.1, RAT at z -2-0.3 and this will turn out to be 3.45-2 that is 1.45-0.1

that is 1.35, that is this term and from here 3.4-2 that is 1.4-0.3 that is 1.1, so 1.1 is going to be

1.1.



(Refer Slide Time: 58:40)

Once again you notice that this is matching this particular actual arrival time of 1.1 over here.

(Refer Slide Time: 58:44)

Again, it is not a coincidence so let us. In fact, wherever we find things matching like you know

5.85 and by design I have chosen this RAT also to be 5.85 and then RAT here was 5.65 which is

matching this actual arrival time of 5.65. So let me like you know color it  differently,  okay.

Similarly, here R and AR matching 3.4. See that 3.4 here and 3.4 and here also they are matching

okay. 

So from this let us quickly compute the remaining, once we know the RAT here, RAT at A is



known and that will be R here will be 3.45-2 that is 1.45-0.15 that is 1.3. Please compare it with

and it is obvious to note that here AAT was 0 but RAT is 1.3 that means you know we got the

signal here a bit too early. We not even got a signal transition, here it is time 0, it could have got

it as late as time 1.3 and still you would have been able to make it that is the meaning of it.

So now over here this is 1.1, this is 1 and that is 0.1, so it is actually is 0, that is interesting, it is

exactly matching the actual arrival time over here and that is why I will like kind of mark this, so

I will mark all the things along which I am seeing things R and A matching. And over here, it is

going to be 3.4-2-0.1 that is 1.4-0.1 that is R is going to be 1.3. So here A was 0.6, but here it is

now it is 1.3.

So they are not matching so now based on that R at this will be 1.3-0 or minimum of that,

minimum of 1.3-0 or 0-0 or 1.3-0.6 and that is really going to be 0. A was also 0 because this is

kind of dummy source arrival at some signal it is at times 0 here and after 0.6 it arrived here and

so on. So this also I will mark it. 

So what I have marked over here is a path along which I have seen this R and A matching,

provided this RAT assume that I required a signal transition at f to be same at time at which it

actually arrives, so RAT and AAT were matched over here and based on that, I retraced and

computed  RAT and  along  this  path  maybe  along  some  other  path  also  it  could  have  been

matching but definitely along these path things matched.

What is it? tell you, in fact this is an example of a critical time which is timing critical in the

sense that if these components here, the gates here are like you know, if the design happened to

be  poorer  then  the  timing  will  become  worse  or  on  the  other  hand  if  they  become  better

marginally, then actual timing can improve, it is not necessary that they become much better, the

timing improves that much better, but there is sensitivity to that.

So the timing of performance of this is going to be sensitive to the timing performance of the

individual, the wires along this path, the gates along this path, so this is what is considered to be

critical  path  and a  lot  of  attention  can  be  given to  this  critical  path,  things  can  be  resized,



restructured, the interconnects can be made more like efficient in terms of delay, buffers can be

inserted along longer wires of this kind 0.3 and things can be improved and design will improve.

So this is  what roughly what happens since timing analysis.  After doing this AAT and RAT

calculation,  the difference is calculated wherever there is a discrepancy that means there is a

slack, things could have been worse, but where there is no slack that is along this, RAT and AAT

are matching, the slack is 0 that is a critical path and that helps us to identify the critical portions

which can be improved for better timing and effectively better layouts.

So this is how the timing analysis can give feedback to the layout automation algorithms, so I did

not show the slacks, slacks were just differences between the R and A, I am not describing this

formally, I just wanted to bring out the intuition and insights, it is something quite simple. So you

are most encouraged to read the book by Kahng, Lienig, Markov and Hu, there are two titles,

various physical design from graph algorithms, graph partitioning to timing closure. 

In fact, the last chapter of this book is on timing closure, bulk of the book is about physical

design and last chapter tells you how timing analysis interacts, what kind of role it has in the

context of physical design automation and so on. So there are some more interesting ideas that is

the timing analysis again is a big subject by itself with lot of interesting research contributions

which should appeal to you. 

You are most encouraged to take a look at it and help of our specific course on VLSI CAD.


