
Advanced VLSI Design
Prof. Sachin Patkar

Department of Electrical Engineering
Indian Institute of Technology- Bombay

Lecture – 29
Brief Overview of Basic VLSI Design Automation Concepts

Welcome, today’s lecture is a brief overview of some basic VLSI Physical Design Automation

Concepts. I missed in the title it is Physical Design Automation that we are going to deal with,

not general VLSI design which also includes Logical Design Automation. So, this and next

couple of lectures, there will be some basic simplistic overview of fundamental concepts will be

given without too much rigor and very formal treatment.

So, what VLSI Physical Design Automation is the stage in the design automation after the

Logical Design Automation. The Logical Design Automation, the automation tools convert a

behavioural specification given in some high-level language or some Hardware Description

Language that is converted into a logic circuit, in terms of gates or may be in terms NMOS or

PMOS switches.

So, this automated processes followed with the process of the flow of physical design, in which a

logic net list is converted into a layout. Okay, so basically this is logic to layout automation. So,

in this and the next couple of lectures, I will focus on some, you know, I will give you a brief

overview of some simple fundamental basic concepts of a layout automation.

(Refer Slide Time: 02:04)

I mean it is a subject by itself, so you can I mean look up the course material of a course on VLSI

CAD and that will you more details of this alright.

(Refer Slide Time: 02:21)

So, in the Physical Design Automation Cycle, there are several stages. The ones which I am

going to concentrate on, rather overview in this two-three lectures are this first three stages

where things begin with circuit partitioning. A very general kind of stage. A very important stage

to manage the complexity of large designs. Circuit partitioning is followed by floor planning and

placement. With the help of partitioning of a circuit.

A chip area is floor planned and different zones of the chip area are, a sort of, assigned to

earmark for different sub-designs. Typically, this could be manual designed into very logical

subsystems of the original of big complex design. So, floor planning one can think of it is as

approximate, like you know, getting an approximate idea of how the layout would like which sub

design would be on, in which portion of the chip.

How much area in which part of the chip would be reserved for which sub design. That is a

general objective of floor plan. It is a bit course level process. At the final level, the placement

process will find out detailed locations of the cells. The cells in the blocks or the cells in the sub

designs are to be placed in appropriate locations of the portion of the area earmarked for that sub

design. Okay, so that is a placement.

So, at the end of placement, we have these regions where the cells are going to be placed

including the orientation, so we also know more or less precisely the location of the connection

pins of those cells which have been placed and this information where the connection pins are at

which coordinates of the chip, this information is fed to the routing stage. The routine stage will

make use his of this placement information and connect up this.

Layout of single net or wires based on the locations of the terminal pins, so that is router’s job, or

we will stop more or less over here. Also included will be some overview of the core concepts of

Static Timing Analysis and how they influence this physical design process floor. So, that will be

subject of the next couple of pictures. So, in this lecture, I will just skim through some basic

concepts and for routing.

I will give illustrate couple of basic algorithms through some example. So, I missed out

something, I deliberately kept this blank. One can look at different levels of details. Within the

routing, there will be some specific routing for clock tree as well as power grid, power and

ground network and after routing stage, there will be typical stage of compaction of the layout

and will be a stage of verification of the layout and so on so.

For extraction, circuit simulation again, post layout simulation. So, let me begin with circuit

partitioning, a few remarks on that.

(Refer Slide Time: 06:01)

So, circuit partitioning is about conquering the complexity of implementation of a large design

by partitioning the large circuit into sub circuits. Basically, the automation is required for very

large designs. Complex digital systems where fairly complicated behavior requires a lot of, like

you know, is realised with the help of tens of thousands of millions of gates. So, the design is

extremely complex large scale.

So, the algorithm even if there is efficient in terms of runtime, the size of the problem is so big

that to really aim for efficient runtime, one has to divided and conquer approach wherein will

divide the problem, solve sub problems more or less independently. Then conquer (()) (06:54)

together solutions of the sub problems and get apparently good solution of the big problem. This

technique does not necessarily always work perfectly.

But it is obvious natural paradigm for breaking down the complexity of problem by using this

divide and conquer approach. So, we will partition the large design into sub circuits and these

sub circuits I will call blocks of the partition. So, each block is a sub circuit and while

partitioning the factors such as sizes of the block, how big the block is allowed to be, how many

gates is it allowed to have.

These kinds of factor as well as the important factor of number of interconnections between the

blocks. These factors are extremely important while deciding the partition. So, we would like to

say keep the sizes of the blocks under control. They should not be too small or too large. Too

small would be a waste of the resource that the block is going to be laid out on. Layout of the

block is going to be better and then connections.

Also we would like them to be minimized for fairly intuitive two reasons as would be clear in the

course of next lectures. So, partitioning is a very interesting large-scale optimization problem,

very well researched and has applications in not just VLSI CAD, but a large set of applications in

scientific computing and various other domains.

(Refer Slide Time: 08:41)

So, here is a small toy illustration of circuit partitioning concept. So here is on the left, we have a

circuit with this eight gates, A, B, C, D, E, F, G, H and the here there are two doted lines, dash

lines marked here. One is labelled cutline which is separating gates A, B, C and D from the rest,

that is E, F, G, H. So, cut one is separating the block of the circuit A, B, C, D from the other

block E, F, G, H, whereas this vertical cutline.

I mean this particular dotted cutline which are labelled cut 2 to is separating the block containing

A, B, D and E, these gates from the block containing the gates C, F, G, H. So, these two cuts are

describing two different partitions, each partition having two blocks. Okay, but the quality of

these different partitions will have different implication as far as this layout is concerned and that

is one of the most obvious thing that you see over here is that.

For the first partition which we have obtained using cut one which separates A, B, C, D from E,

F, G, H, you see that there are only two connections going from one block to the other block, that

is the layout of one of the blocks. Between the layout of these two blocks, there are only two

connections crossing. So, it indicates like long-running wires will be relatively few. On the other

hand, for the other cut which separates A, B, D, E from C, F, G, H.

You see that there as many as four signal nets being cut between the layouts of this blocks, that

means there is more chance of very long-running wires and that clearly like from the intuitively

from the timing point of view, it could be a bad layout. By the way, this example and these

figures are taken from the book VLSI Physical Design, title is VLSI Physical Design from graph

partitioning to timing closure. The authors are Kahng, Lienig, Markov and Hu. It is published by

Springer.

It is a good compact book with several topics of physical design explained very well. Algorithm

details are given plus a lot of illustrations are there and a good book for both students as well as

practitioners. So, this as well as few other examples will be borrowed from this book. So, some

concepts in partitioning like terminology.

(Refer Slide Time: 11:39)

Partition of block is a group collection of components of cells. In general, very typically one

looks for a two-way partitioning. Partition into two blocks but one can in general talk about K-

way partitioning where the task is to divide a circuit into K partitions. So, very often or like very

typically partitioning problem is studied with abstract graph models where nodes represent cells

and edges represent connection between the cells.

Sometimes, in the context of VLSI CAD, the extension of graph, this hyper-graph concept is

more often used. So, here is a net list and the cells of that net list, A, B, C, D up to G are

represented by the nodes of this graph, the way these cells are connected to each other in some

sense, maybe sometimes with the direction information, sometimes without direction

information. Here in this case, there is no direction information captured here.

So, not everything that we know about the circuit is required for the sake of partitioning, like

only the abstract essence is required and that is the graph model and that graft is subject to

partitioning algorithms of like various complexity of cleverness, degrees of cleverness, and we

get useful solutions of information out of it. More generally so-called hyper-graph model is used

which I am not going to go into but very popular standard model.

You look up in literature more and you will encounter it very easily and like there will be very

lucid descriptions or explanations of that concept. So, I think that was just few terminology, few

terms that one encounters in the context of partitioning. I will give one special lecture on

partitioning alone which will give us illustration of one of the central pioneering algorithm

heuristics for circuit partitioning.

Of course, it will not be a very clever kind of algorithm with lot of sophistication but it turned

out to be an algorithm which solved a problem decently and which gave rise to lot of very

interesting variations and extensions. So, that is later, so partitioning I will skip over to the next.

In fact, after partitioning, I should say partitioning group would have been used for deciding the

floor plan of the chip.

Like if some good partition is known which divides a big circuit into some very modular logical

sub circuits or some algorithm finds good partition, good blocks, then correspondingly the chip

area is divided into appropriately large or appropriately shaped rectangles or regions and

different regions are earmarked for different sub designs which have been obtained in the process

of partitioning.

After floor planning, one gets a rough idea about where the layout of each one of the sub designs

is going to be and then the placement problem is going to detail out the exact locations of the

cells within each block of circuit and within the corresponding area of the chip.

(Refer Slide Time: 15:31)

So, placement is the problem where we are given a netlist, like logic netlist of circuit. We have to

find the exact locations of the cells. The primary objectives are area and wire length. We like to,

for natural reasons, intuitive reasons, we would like to minimize the area of the layout because

one typical wants as small as possible VLSI chips and we would also like to minimize the wire

lengths, either the total wire length or the maximum length of any particular wire.

So, all kind of combination of such objectives will be used for optimization. Wire length is the

directly related to complexity of routing as well as the delay, the timing performance critic. So,

placement is a complex problem because it is going to deal with large problem and it has both

combinatorial as well as geometric character and lot of research has happened in this area and

there is a variety of approaches fairly interesting subject by itself.

So, one specific lecture I will illustrate, one interesting example of a placement algorithm, just

for the sake of flavor, so that will be later. So, I will just give a very brief introduction to the

notions involved in placement or example, not to algorithm itself in this lecture. In later lecture,

there will be illustration of a specific algorithm which I just mentioned which one.

(Refer Slide Time: 17:22)

So, placement as shown again in this figure from the same book that I mentioned earlier. There is

a netlist with these eight gates and if the target of the placement is a one-dimensional chip

wherein we can accommodate a row of standard cells for example, then the placement problem is

really about like ordering each one of the cells which would be implemented as a standard cell.

The placement is essentially deciding on a linear ordering, sequential ordering of this cells.

Depending on in which order we layout the cells, the length of the wires would be optimized or

maximum length of any wire would be optimized and that would give rise to different degrees of

timing performance. If the target chip is two-dimensional, the placement might look like this in

two different rows in 2D fashion and depending on the placement of cells in different positions,

the wires might look congested or might become bit long or total wire length might be large.

And router might have more difficulty and the timing might be better or worse depending on the

quality of the placement. After placement and routing, one would typically have a picture like

this where we have this gate placement as standard cells, like in two different rows with

sometimes some gas between them through which routing can be done, but there will be

optimization of this placement done by the placement algorithm and.

The router will take care of finding the best possible route so that the amount of routing region is

as minimum as possible, so that the whole area is as small as possible. At the same time, the

locations of the terminals, IO pads would also be taken into account while doing this placement

and routing. So, in the end, we would have layout of this kind and for last designs it will have to

be necessarily automated.

(Refer Slide Time: 19:50)

Here is a picture of how placement can influence the quality of routing. So, both these figures

show some different placements of a set of cells from A to whatever G or A to K. Both this

placement roughly occupy the same area, so that means the same amount of routing area, but the

placement on the left hand side is clearly like you know something that favours a better routing,

so as seen, like although this is not the routing.

But we know that the wires are going to go from the terminals of the cells to the terminals and so

on so forth. This information is known because the placement process has computed the

locations of the pins and the circuit information has the connections how the pins are connected

to each other. So, that gives us some approximate picture of how the routing will look like.

Whereas in this the routing appears to be much worse.

So, the placement influences the quality of routing in a significant fashion. So, placement is a

very important part of the process.

(Refer Slide Time: 21:12)

In placement algorithm, there is a rich set of placement algorithm broadly classified into this

paradigms. First one is stop down, not in specific order, but first popular paradigms is top-down

which is a recursive paradigm. Then, there is iterative method for placement VLSI layout circuit

placement. Then this constructive or incremental process of generating a layout or placement.

And there quite interesting mathematical approaches based on linear algebra, matrix

computations or mathematical programming, in particular say quadratic programming. Many of

them use eigenspectrums, eigenvalues and eigenvectors of matrix called Laplacian which is

matrix obtained from the connectivity information. This top-down approach is a recursive

approach which typically uses two-way or min-cut partitioning which partitions the circuit into

two parts.

And these two different parts are to be laid out on two roughly equal portions of the chip, and

this two portions of the chip would have been found by like choosing a horizontal or vertical

cutline dividing the chip area into two parts. So, the circuit is partitioned into two blocks and the

chip is partitioned into two parts and then we have two separate sub problems which should be

solved separately.

And then maybe with some awareness of each other and the solution should be stitched together.

If each one of the sub problems itself is not small enough, then we have to do this. We can go

ahead and do the same process recursively. Partition each one of the blocks into two parts, but

now like you know use the alternative, like other kind of cutline. If we had earlier chosen to

divide the chip into two parts, left and right.

Now for the next level we can divide the chip into each portion of the chip, left and right portion

into top end bottom, left top and left bottom, similarly, right top and right bottom. So, we can

have alternating division or space division of the chip and correspondingly we will be recursively

subdividing the given netlist also. So, appropriate circuit partitioning algorithm would be used

depending on the efficiency or quality.

In fact, many different heuristics can be tried. One does not always put full faith in just one

algorithm. I mean most of this problems are hard and so we little of guarantees are given about

the qualities but roughly the benchmarking would indicate that many of the algorithm are good.

They perform quite well, still one would like to try out different algorithms and choose the best

result among them.

Then, about iterative paradigm, iterative algorithm is one of the most well-known algorithm like

based on one more celebrated well-known paradigm called simulated annealing which is like an

extension of Metropolis Algorithm regarded as one of the top 10 algorithm of the century. Very

popular paradigms which is based on interesting theory of Markov Chain, so it is not extremely,

but it does tend to give like good solutions if you run it long enough.

And it is always available as one of the options in the kit for the placement algorithms. Another

important iterative method that is again based on some interesting concept from physics is the

so-called Force Directed Placement. The Force Directed Placement is based on like it uses this

mass spring model, so the cells which are regarded as masses and connections between the cells

depending on the degree of connection, the amount of connection.

Spring is strong or a weak spring is attached and based on the forces exerted, the masses will

settle down in some position and that position is used as an estimate or as an approximation to

the placement detail of locations. Constructive algorithms are incremental, they start with some

cells at the centre and then place highly connected adjacent models around them. So, it is

incremental.

You make some clever decision about what to place first, which seems to be at the centre of the

things and then based on those location and the connectivity of some of the models which are

highly connected to this setup already place cells. We start placing those highly connected

adjacent models around them and so on so forth. Then, less thickly connected models will be in

the outer zone and so on.

So, this incremental thing might look nice, but again the choice of which cells to choose, how to

estimate, how to efficiently compute the good neighbourhood or good cells for the next

placement and all that. There is lot of cleverness possible here. Various heuristics would have

been designed for these paradigms. As I already mentioned about Linear Algebraic approach, the

use, the eigen spectrum of Laplacian and to embed the prop.

Convert the more or less combinatorial problem of finding the locations or the positions at which

the cells should be placed. This problem is converted into geometric problem where the

geometric information is obtained with the help of several eigenvectors for example. Which

eigenvectors, that would depend on the smallest eigenvalues or set of certain smallest number of

smallest eigenvalues.

So, it is backed by interesting theory from like Linear Algebra and Spectrographs. One of the

main theorems, easy but important theorems whose variations are used here is the so-called

Hall’s Theorem. Very similar to these linear algebraic eigenvectors based approaches, there is a

mathematical programming approach based on quadratic programming where we use sum of the

squares of like the kind of square of Euclidean distance, length of the nets.

So, it will have some of the squares kind of form, so it will have the quadratic objective function

and using again Lagrange techniques or calculus nonlinear programming ideas, one can arrive at

good solutions with these interesting approaches. Of course with some post processing and with

combining these solutions with some other heuristics, one can get better solution. So, these

techniques will not claim to be the best techniques by themselves.

They can be variously combined with each other or independently used for finding the best and

so on. So, there is a fairly broad set of algorithm for placement.

(Refer Slide Time: 29:22)

So, in one lecture I am going to focus on placement by partitioning, slightly informal

introduction or illustration would be given and that placement by partitioning is the top-down

approach where a partitioning may be targeted for 1D or 2D layout of a chip and the netlist will

be partitioned into two parts at each level of the recursion, with the objective that they should be

placed into two parts which we have cut the chip into, maybe left and right part or top and

bottom part.

The aim would be to minimize the number of crossing wires and if the sub-problems still happen

to be complex in sense of size, then we recursively continue the same process, but the chip

subareas will be partitioned with alternating directions, horizontal, vertical and so on so forth.

So, that is a rough idea about placement by partitioning. After this, I will move to overview of

routing algorithms.

Here, I will have a couple of concrete illustrations but very informal, very sketchy, just

highlighting the main ideas which are very intuitive. So, at the end of this lecture, I would have

given you a couple of examples of routing, then in a couple of subsequent lectures there will be

an illustration of placement algorithm, specifically placement b y partitioning with the idea of

terminal propagation, separate lecture will be there on partitioning also.

Simple well-known algorithm called Kernighan–Lin will be discussed there and in another

lecture, I would give you some idea of overview of the main core concepts of timing analysis.

Again, how the graph model is used and how using the delay information the so-called actual

arrival times and required arrival times are computed, that will be in a separate lecture and why

timing is important from the perspective physical design flow that also will be remarked.

So, next I will be going to routing. After having taken a very brief look at the concepts of the

partitioning and placement, I will just give a couple of examples of concepts, the algorithmic

ideas involving in routing. Routing as I remarked before is about finding the layout for the actual

wires. The actual layout for this signal nets because at the end of partitioning, we know the

locations of the terminal pins of every signal net.

Some of them are coming from the periphery or boundary of the chip. Some are obviously driven

by the cells. So, with this information, we have a fairly complex task of like routing possible

millions of wires. So, it is a very large-scale problem again. So, again in some sense like of

course we can look at several sub portions and routing separately, but routing itself is divided

into two phases.

(Refer Slide Time: 32:37)

There is something called global routing which is a bit course level routing and there is

something called detailed routing, so these are the major phases in routing. The global routing

would have the task of assigning signal nets to routing areas. After placement, we know exactly

where the cells are and we know which areas of the chip are free for routing the signal nets. So,

these routable areas are divided into subareas called routing regions.

So there is a vast collection of routing regions. Maybe they are like rectangle or square like shape

regions. The global routing would identify for every net which of this routing regions, the signal

net should be laid out. Detailed routing is going to actually find out the particular track inside

each region along which the wires layout will be fixed. So, a global routing is going look at big

problem, the whole chip, the whole set of routing regions and all single nets and for every night.

It is going to find a set of routing regions through which a net will ideally pass, so that the routes

are as short as possible hopefully. Detailed routing is going to look at each subregion and within

the subregion it is going to fix the position of the wire, the track on which the wire will, on which

layer, on which horizontal track, on which vertical branch, all that will be decided by detailed

routing.

(Refer Slide Time: 34:33)

So, global routing after placement we have the exact terminal locations and we want to assign

this routing regions which could be either channels or switch boxes. You are going to find which

of these channels and switch boxes should be used to route a particular net and this has to be

done for each net. Detailed routing will determine exact route and layers for each net within the

assigned routing region. Okay, that is what I just remarked.

(Refer Slide Time: 35:01)

So, here is one illustration from the book of Sherwani. So, these blue rectangles are the regions

where the cells have been placed and this dotted red lines are like approximate picture of how the

wires will be routed and then the detail routing is going to fix exact location the horizontal

tracks, vertical branches along which this wires should go. This is still just abstract picture, but

this is one way of visualizing what global routing and digital routing mean.

(Refer Slide Time: 35:45)

Here is another picture of example taken from the net from the course of Texas University. So,

here is the set of cells and some wires connecting them. Then, the regions outside the placed cells

is the routable region and that region is broken up into rectangle shapes which are called

channels. So, for example, this is one channel, this is another channel, one more channels here.

So, so many channels and few switch boxes like this. These are called switch boxes.

So, these are regions are identified by the preprocessing part of global routing and then for every

net, everyone of this connect signal net, the global router would identify that this particular net

which goes from D2, this particular pin of B should go through this channel and then should go

through this switchbox and then through this particular channel and onto this particular pin and

so and so forth.

So, for every net, such sequence of channels and switch boxes would be identified. Then detailed

routing is going to look at each channel and each switchbox and fix the positions of the wires

tracks, which track and which branch, vertical branch, which horizontal track that will be fixed

by have detailed routing, that could be something like this.

(Refer Slide Time 37:14)

Then to model the algorithm, to kind of describe the algorithms, routing regions are represented

typically using the graph model. Again, graph is a very popular data structure in this

combinatorial algorithm for Physical Design Automation. The notes of the graph would represent

routing sub-regions, like channels and switch boxes and they just represent the adjacencies.

For each connection, each net, the router that determines the path within the graph that connects

the terminal pins. Maybe like something tree, not just a path as illustrate in the next example, but

the important thing is that the path can traverse those notes and edges of the graph which has

sufficient remaining routing resources. For example, this is a sequential process one net at a time

is routed maybe, just one net at a time and then after approximate routes for each one of this nets

done so far.

We should reduce the capacities of those regions because some of them have been committed for

the layout of some of the segments of the nets. So, the resource availability of each routing

region or each channel is going to be updated and that information would be used while figuring

out the global route for the next net that would be considered. So, this graph models have the

notes and edges with capturing the appropriate information about routing regions.

And their adjacencies, but some kind of resource capacity information is also available which

will be decremented to keep track of how much is the available routing resource within that

region. One of the specific kinds of graph used in this global routing is so-called grid graph. So,

this grid graph is a commonly used data structure or graph of structure. The example is over here.

This example is from Kahng’s book.

(Refer Slide Time: 39:40)

So, whole chip area is divided into this grid. This size of the grid will be chosen appropriately. If

you want to use this idea for global routing essentially course approximate routing, then this can

be coarse. If you want this idea of grid graph to be used for detailed routing, like you want to get

more accurate idea, then the grid should be much finer.

Along the grid, we will have there will be places where the cells are placed and based on that

part of this grid cells would have reduced capacity for routing purpose and so on. For example,

the cell number 12 has plenty of capacity routing capacity, cell number 11, this is not cell of the

circuit, but cell of the grid. This grid cell of the chip will have more routing capacity whereas

something like grid cell number 13 will have very little area for routing and so on.

The adjacency of this grid cells is captured by edges. The grid cells are represented by notes of

this graph and some shortest path or variations of shortest part of algorithms are going to be

implemented on such the graph structures which will lead to the solutions of global routing

problems.

(Refer Slide Time: 41:05)

As an alternative to grid graph, there is something called channel adjacency graph where every

channel, say channel 1, 2, 3, 4, each one of the channel is represented by a note of a graph and

depending on which channels are adjacent, there is an edge between the notes of the

corresponding channel. So, channel 1 and channel 2 are adjacent, so there is an edge. Again,

there could be some capacity information of this notes and edges reflecting the routing capacities

or some other factors.

(Refer Slide Time: 41:38)

But for the sake of illustration, I am going to lead you through one very simple paradigm called

Maze routing. In various like other context you might have heard about Maze routing. It is very

popular. It is one of the earliest algorithm for the routing problem. So, as shown over here, Maze

routing will use some kind of grid and this light blue portions represent some obstacle in the

maze and these are indeed the places where logic circuit cells have been placed. So, these are not

available for routing.

Whereas this empty white background grid cells are available for routing. Supposing a

connection has to be made from somewhere over here to someplace over here, then and

correspondingly we will to find some kind of shortest path through this grid, the maze and that

would evidently be this, okay. If you just look at other alternative which will be bit longer than

this.

So, there are more possibilities than this, but one such the good as short as possible or often the

shortest possible sequence of such grid cells is used for the purpose of eventual routing of wire

from a S to T, and once that is chosen, then the capacities of each one of the grid cells along this

path would be decremented to reflect that some partial use of those routing regions.

(Refer Slide Time: 43:34)

Now, I will take you through an illustration of a simple idea. So, supposing here is a chip area

which is divided into this grid and this dark blue portions are the regions where you cannot do

any routing because this is where this circuit cells have been placed and let us say in this grid

cells marked A, B, C, D, we have some pins which need to be connected by a single net, okay,

maybe that net is getting driven by A and is driving some pin of a gate in this zone C or in zone

B as well as zone D. These are the grid cell zones.

(Refer Slide Time: 44:24)

So, we would like to eventually arrive at some so-called a net of this kind. A driving it, the signal

flowing to B as well as to C as well as to D. Okay, so how is this to be computed. So this is the

initial data.

(Refer Slide Time: 44:38)

For every net which could be multi terminal net you would have such routing cells marked as the

terminals to be connected, terminal cells or grid cells to be connected, so main idea in this

algorithm is so-called wavefront and very natural idea. So, what we are going to do is

propagating waves and in synchronous fashion.

So, from every cell, you will start out a wave which will like more one distance one

neighbouring cell further and when this wavefront meet each other, that is the time we know that

a short connection is found out and a bit of bookkeeping is required with the help of so-called the

front of the wavefront and that will give us the final answers, help us in getting the layout of a

net connecting A, B, C, D.

(Refer Slide Time: 45:37)

We start the wavefront. In the first step, the wavefront would be at the distance one from the

sources, so this is grid cell marked 1A indicating that it is a distance one from A. It is part of the

wavefront that is started from A. Similarly form B, the wave front reaches this cell as well as this

and this. From C it reaches here, it is marked 1C and 1C and from D it reaches these two. In the

next step, note that the wavefront are not still like touched each other.

Whereas in the next step from 1C and this cells, the wavefront will reach this, this, this, as well

as this. But before growing the wavefront of C, we would have grown the wavefront of B and

these wavefront would have reached over here. So, this would have been marked 2B.

(Refer Slide Time: 46:34)

So, in the next step, B wavefront would have reached here, marked in yellow 2B. A wavefront

would have reached this cell is marked 2A, 2A, 2A. This wavefront would have reached here,

here, here, as well as here. Now, when you start like you know updating the wavefront for C, you

notice, this becomes the new grid cell on the wavefront, this also is on wavefront of C, but while

like growing the wavefront from here to here.

One notices that we are already adjacent to the wavefront touching the wavefront of B and that

indicates that now we have identified a sequence of grid cells through which a short connection

can be made between C and D and that we fix in this. Similarly, the wave front of D has been

extended to cover visit 2D and this particular cell. So, only this connection has been made.

Whereas in the next step, this wavefront of A is going to reach such cells this, this one, and this

one. Wavefront of B will reach here. Wavefront of C will reach here, here, here and over here

also and when we start growing wavefront of D, we will notice that wavefront of C which has

reached here is touching the wavefront of D. So, D and C would get connected in the next step as

shown over here.

(Refer Slide Time: 48:10)

The wavefront of C would have reached here and when we start growing the wavefront of D, we

released that this is already adjacent to the wavefront of C and that means between D and C a

good connection has been found out, that means a good set of sequence of grid cells would have

been identified for the purpose of detailed routing which is to be done later. Now still we have,

so far managed to connect B, C and D.

A is still remaining but now looking at the wavefront, we realize that in the very next step, it is

going to be evident that evident that you know when we try to grow the wavefront of A from 3A

to this, it would realize that it is already touching the wavefront of B, so connection between A

and B would also be found out in the next step, that would be this.

(Refer Slide Time: 49:01)

So, this will complete an approximately good. This problem of finding such so-called Steiner

tree connecting a set of terminals is again an NP hard problem, even in the rectilinear Manhattan

kind of setup. So, one does not expect optimal answers for large problems. So, this can regarded

as one clever heuristic which is very easy to implement on obvious data structures and also fairly

parallelable, has some benefits in terms of elegance and simplicity.

So, such a heuristic is going to give you some decent quality multi-terminal Steiner tree layout of

a net and the variations of these ideas. In fact, what I shown here is not the basic idea that was

due to Lee and Moore called Maze routing idea which was essentially for two terminal like nets

where a simplified assumption was made that every net is just having two terminals, a source and

a target, and this wave propagation idea was used to identify the shortest path through this grid

cell from source to the target.

Then, some extensions of this idea where made for multi-terminal nets. So, just to indicate that

various similar ideas are possible, I have given you outline of one idea that is possible. I am not

giving any pseudo code for that. It would be an interesting exercise to correct and capture it as a

well-defined heuristic and how the bookkeeping is precisely done and when exactly the labels

are updated.

When does one realize that wavefront are touching and it is time to capture that information and

record it as a good connection and when to stop and so on. All that would be an interesting

exercise to figure out and convert this into a pseudo code and then into a rigorous

implementation and maybe parallelisation. So, this can be regarded as a simple example of

global routing, like identifying the grid cell regions through which a multi-terminal net should be

laid out.

(Refer Slide Time: 51:30)

Then, at a detail routing, one would have several such problems where we have different

channels and for each channel we know where the net enters through a pin and channels are

those regions where the pins are on either side, the longer side, opposite sides, and we have

specific specification of which pin is to be connected to which one. It could be multi-terminal pin

or could be two terminal pins.

And within a channel we have some number of horizontal tracks and you have to figure out exact

horizontal track that should be used for the layout and corresponding vertical connections from

the pins to that track. One of the natural optimization pattern would be to use minimum number

of tracks, so at the time of compaction of the layout, this channel can be reduced in size.

In the beginning with some pessimism, we would have allowed a big enough channel with

sufficient many tracks and if we optimize well, the number of tracks used would be as few as

possible, would help us string this channel into a narrower channel at the time of compaction

which would improve the size or the area requirement of that particular layout.

So, here is an example where we have a channel with the pins marked 1, 2, 3, 4 and so on. Some

of the pins are not marked indicating that those pins are not to be used. There is no net being

connected to this pins. You see that sometimes net is connecting pins on the same side 1 and 1.

There is no pin number 1 on the other side. Sometimes net connects something like say pin

number 5 to pin number 5 on the other side, as well as there is another pin number 5.

So, this is a multi-terminal net connecting this pin with these two pins number 5, so you can have

different types of nets and a solution would look like this which would make use of horizontal

tracks like this, which are the main trunks of this the net layouts and vertical so-called branches

and so on. So, this net has this particular trunk on this horizontal track and connected using this

vertical branch and this vertical branch.

So, there will be a layer of horizontal tracks and they will be maybe one or two layers of vertical

branches; why more, that would become clear because sometimes the nets can have overlapping

positions and the vertical branches might overlap; to have them separately laid out, we might

require more than one vertical layer. So, channel routing is also very, very investigated problem

and one of the very basic idea like for starters is the so-called Left Edge Algorithm.

(Refer Slide Time: 54:32)

So, this is a very simple, very Greedy algorithm which is where one begins the study of such

algorithm because it is based on simple Greedy algorithm strategy which can be shown to be

optimal in the absence of certain constraints, in case of very highly simplified assumptions. For

example, if we assume that all the nets are just two terminal nets.

So, net 1 is connecting this pin with this and nothing else. Net 2 is connecting this pin with this

one. so all the nets here are just two terminal nets and we also assume that we have plenty of

vertical layers, plenty means two or three what that should suffice. So, it is just a matter of then

that because we do not have any restriction in number of vertical layers for fixing the vertical

branches. The problem really boils down to like assigning the horizontal trunks to appropriate

tracks

So, net number 6 should have the scope from this left end point to this right end point, because

this is the leftmost pin of net number 6 and this the rightmost pin of net number six. So, net 6 has

to be laid out in this zone, maybe on this track or some other track. Net number 1 will start at this

X coordinate and will go up to this. It need not be on this track. This track may not be the best

choice for net number 1 one and so on. So, what this algorithm does is sorts the nets by their left

end points.

So, here net number 6 will be the first to be considered because it is left end point is the earliest.

Then, net number 3 or 1 will be considered next because their left end point is the next earliest

and so on. So, now we look at them one by one. So, net number 6. So, that is the first one in the

sorted list because it starts at the earliest leftmost end point.

So, this is laid out on the first available horizontal track and obviously connection is made with

the help of one vertical metal wire here and one of the vertical wires available from here to here.

Wire will be placed over here connecting the vertical segment with this horizontal. After 6, we

will choose 3 or 1. Let say 1. 1 will be connected over here, then on this horizontal track and

then connected again by vertical metal wire from here to here and connected wire will be here as

well as here.

So, the horizontal scope of this 1 is from here to here. Just notice that the track for 1 has been, we

have to choose a new horizontal track for 1. We could not a layout 1 on the same horizontal track

as net number 6 because there would be an overlap and we are assuming that we have only one

horizontal lap but maybe two or more vertical layers. So, we cannot have the layout of net

number 1 and net number 6 on the same horizontal track because of the obvious overlap.

So, net number 1 has to be opened up on a new track, but similar considerations has to be put on

a new track, next track, track number 3. So, we seem to be using one track in every such case.

Let us look at the next one, number 5, that is next one in the sorted order. Again we have to open

up a new track but now when you look at net number 4 which is next, we realize that its scope is

from pin number 4 to this pin number 4 and you see that it can be accommodated on the first

track itself.

Because the first track now is empty, the net 6 has finished its scope and net 4 can now start. So,

you see next that net number 4 can be laid out on one of the earlier utilized tracks, specifically

track number 1 itself. So, this is how we are now hopefully the algorithm is optimizing as

compared to this picture where we have used one track one per net. We will be reusing some of

the tracks for more than one nets.

After that, net number 2 again can be accommodated since its scope is from here to here. This

horizontal scope is just this much. It can be fitted on the second track because net number 1

which was laid out on that track is now over, so 2. So, that is over. So, we have laid out all six

horizontal tracks of the six nets using only four tracks as compared to using six tracks over here.

If you had been less careful, we would have used six tracks or five tracks.

But this can be shown to be optimum solution because of assumptions that we are making

because this particular example has only two terminal nets and I assume that there would not be

any problem in laying out the vertical wires. They will not overlap. If they overlap, we can use

different layer different vertical layer for the vertical branches. In the absence of so-called

vertical constraints, this algorithm will give you optimal result for a set of two terminal networks

which are to be laid out in a channel.

It is more sophisticated variations or more practical enhancements, there is something called

Greedy Channel Router (GCR), there is Dogleg router. Various channel routing algorithms have

been investigated and most of the standard text will give you good treatment of this algorithm.

So, the purpose here was just a very sketchy, simplistic overview and in next couple of lectures,

we will address the other algorithms for placement on partitioning and time, so I stop here.

