
Advanced VLSI Design
Prof. D. K. Sharma

Department of Electrical Engineering
Indian Institute of Technology – Bombay

Lecture - 23
Introduction to Verilog

In this  series of lectures,  we have looked at  the  general  principles  of  Hardware Description

Languages  and  gone  through  the  details  of  VHDL which  is  one  of  the  leading  hardware

description languages, these days Verilog is also extremely popular indeed in commercial circles

perhaps  even more  popular  compared  to  VHDL.  Therefore  we shall  have  a  brief  review of

Verilog as a hardware description language.

The underlying principles remain the same, but there are some differences in how various objects

are handled in Verilog as opposed to VHDL, therefore we will begin with first understanding

these major differences, otherwise it is largely a matter of syntax and once you understand how

to program in one hardware description language it should be possible to adapt to the syntax of

another one.

The additional advantage of Verilog is that it syntax is very similar to C indeed as a just like

VHDL is based on the programming language ADA, Verilog is based on C which is familiar to a

very large number of people, therefore Verilog unlike VHDL is case sensitive just like C, it uses

essentially the same comment, markers etc. etc.

So in  general  it  looks  and feels  very  much  like  C of  course  as  we have  often  remarked  a

hardware description language is very different from a programming language and therefore it

retains all the characteristics of a hardware description language. So let us first of all see what are

the major differences in the objects which are handled using Verilog first of all Verilog makes a

distinction between two kinds of signals the position taken by Verilog is the following suppose a

particular node is say 1.

The question is who is keeping at one who is keeping this node at the value 1, there are two

possibilities, one there is a driver attached to this node and this node keeps this signal at 1, so it is



the duty of the driver should there be any noise or any loss of charge or whatever to make up this

losses and to keep this node at 1 such signals are called continuously driven signals and are in

general classified as nets.

There is another class of signals which hold their value simply, because there is an associated

memory with them that  means the assignment  to these nodes is  not continuous they are not

continuously driven they are given a evaluate at an instant of time and they have the inherent

capability of retaining this  value,  because of the memory associated with them, this  class of

signals are called registers unfortunately this choice of terminology is not very good.

Hardware designers tend to think of registers as a static latch or a complicated circuit, whereas a

particular node might we termed a register simply, because it has a capacitance and once you

place a 0 or 1 on this, it is likely to hold this value till a new value is written.

(Refer Slide Time: 05:05)

So in short the picture that we take is the following you have a particular node and either you

have a driver which keeps this node at the value which is assigned to it in that case this driver is

continuously connected  to this  wire and therefore this  node is  continuously driven and such

nodes are called simply nets, you might have a node which has notionally it may not be a piece

of hardware, but you have notionally a memory associated with this node.



And now you can assign it a value at an instant of time you are not continuously driving it to that

value, the assignment is made at any instant of time, and now it is the memory associated with

this node which holds the value at this point, now this memory could be as simple as just the

capacitance associated, so such nodes are called registers.

So all signals are either nets or registers remember if you have a programming language like

interface which is what we called a process in VHDL in that case the assignment takes place only

at one instant of time and such assignments are permitted only for registers, nets are much more

common for the structural kind of description in which you place hardware and then you connect

wires to this.

We shall see later what are the sequential and concurrent elements in Verilog and the kind of

things that we choose, kind of signals that we choose depends on whether these nodes are inside

those sequential elements or outside, so this is the first major difference you have nets and you

have registers in Verilog, whereas you just had signals in VHDL.

(Refer Slide Time: 08:23)

The other difference is the basic hardware object in the language this is now called a module, the

module is in fact an amalgamation of the entity architecture combination that we had in VHDL,

in VHDL you could have a single entity with possibly many architectures associated with it and

that is because entity and architectures were different bodies.



In case of Verilog we do not do this, the entity and architecture are together so there has to be

only one architecture and you change the entity all together if you want to change its behaviour,

so unlike VHDL you have a module and the module like a C function has a port list associated

with it, so you might have for example a module D flip-flop and now you will have the port

signals as in the case of an entity declaration.

You will now declare the ports and other local signals and then this is followed by the body of

the module which is equivalent to the architecture, now one difference from this syntax of C is,

that in C we use curly brackets to begin and end blocks, whereas in Verilog we use the keywords

begin and end as in C the statements are terminated by a semicolon, however begin and end are

commands and do not take the semicolon, okay.

So this is roughly the structure of the basic description of a piece of hardware. Now let us look at

the signals like nets and registers in a little more detail.

(Refer Slide Time: 11:33)

The most common kind of net are the wires and a wire is just that it is like a wire connecting one

node to the other, it has to be continuously driven like any net should be. Now, there are other

kinds of wires these are called wand and wor, these are things which are wired and wired or

combinations and should the wire be multiply driven then the resultant value on the node is the



end or depending on whether it is wire and or wire or correspondingly the resultant value on the

net will be the and or or of all the driving signals.

So this permits essentially the open collector and other kinds of circuit in which you can have

multiple drivers on the same wire, for example a microprocessor bus can have multiple drivers

and the resultant value will be decided by a logical function of all the driving signals, there are

also in fact that term tri is also used for wires and tries are signals which can from which the

driver can be removed which can be tri stated and just like wire and and wire or you can have

that tries with and and or associated with them.

Now a Verilog uses a signal value system by default which is 4 value, now if you recall in VHDL

the standard thing defined by the language was bit which was 2 value but the most commonly

used signal type is std logic which is invoked by including the IEEE standard library and that

was 9 value. Verilog takes a middle of the road approach and permits 4 logical values for each

node, these 4 values are you can have 1 0 these are the standard bit values.

But you can also have Z which is a high impedance value that means this node is not being

driven currently even though a driver is attached the driver is driving it to Z that means the driver

has been tri stated and X which is an unknown, for example a signal simultaneously driven to 1

and 0 will acquire the value X because its value cannot be determined. So these are the various

values which can be assigned to signals in case of variables or in case of signals, in case of in

Verilog.

So we will use this 4 valued logic throughout in our discussion on Verilog, now just like VHDL

we have various styles of describing hardware we have for example structural descriptions there

is a data flow kind of description and behavioural, now notice that when you there are various

modules which are built in and known to the language this is different from VHDL, so Verilog

has built-in gates.

So the gate level descriptions do not require you to define the behaviour of say NAND gate as

we did in case of VHDL, so it has built in gates and all the standard gates like AND, NAND,



NOR, XOR, XNOR etc. these are all built in, this immediately brings a kind of problem first of

all and which has a solution the AND gate and have a variable number of inputs so you have a

variable number of inputs and one output.

Similarly, NOR, OR or XOR gate could have a multiple number of inputs and a single output

this being the case it is difficult to describe the structure which you will be using, the module is

pre-defined for you by the language but you have to place the component in your design suppose

you want to use a three input AND gate now the AND gate is provided by the language but how

do you specify all the inputs and outputs of this piece of hardware.

Now because for most of these there is a unique and single output, therefore in Verilog it is

conventional to put in the signal list so you had for example module say D flip-flop and here we

have the signal list the port list in the port list you place the output first and put as many inputs as

you like subsequently.

Therefore since the first element is always there the output is identified and depending on how

many additional parameters are provided the language knows how many inputs does this gate

have of course this is a user-defined component D flip-flop is not a part of the language, but even

for user-defined components we tend to follow the same convention, so that we are consistent

and essentially what it means is that this signal list is output first.

The declaration of these signals can be in line just like C functions the type of these things can be

in line right here or it they can be declared immediately afterwards.

(Refer Slide Time: 19:29)



So to complete the example that we started with the module D flip-flop could have let say a

signal q as the output and d and clock as the inputs, now because you are going to assign to q

inside this module and perhaps only once and this will retain its value, therefore it should be a

register, so the main type of register is called reg and therefore you will say reg q which is an

output signal, similarly d and clock will be declared as wires this completes the declaration of

these signals.

This will be followed by a begin and end module and here will be all the logic the equivalent of

architecture, so this is the general structure of describing a hardware element in Verilog having

got this, so now we have essentially a combination of various hardware modules some of this

these  are  pre-defined these  are  all  the  basic  gates  and then  there  are  some which  you as  a

programmer as a hardware description language writer will described.

So these are user developed, for example you have this particular D flip-flop and now you would

like to put all this together and interconnect them, in fact there is a user-defined primitive or a

UDP which is defined in Verilog, the user defined primitive becomes equivalent to the basic

gates defined in the language but the user defines this primitive as a table driven architecture,

where the output is a function of all the inputs and all possible combinations of inputs are given

in a table.



These combinations include values as well as transitions, so therefore the behaviour of a UDP is

nothing more than a table lookup, so the inputs are presented to the UDP and the output is just

read from the table from which our description matches, this is a unique feature of Verilog and

no such thing existed in VHDL.

So now you have a combination of the basic gates or the primitives the user-defined primitives

and the user developed modules, these are primitives you have user-defined primitives and then

user developed modules like this. Now in structural Verilog you will put these all together and

then the structural Verilog is very similar to structural VHDL.

(Refer Slide Time: 24:19)

And in this case it is just a matter of instantiation of hardware modules and then you simply

instantiate them by giving the instance name, what kind of module you are instantiating and what

kind of signals you are mapping, remember we did this using a port map in VHDL, once you

have  described  all  this  using  signals  which  have  been  pre-declared  you  have  described  a

interconnected set of known components and that is the style of structural description.

We also have a style which is data flow in which we use a continuously assigned signal that

means you have the keyword assign followed by r value this is the recipient of the value to be

assigned equal to some expression, so this expression is evaluated this expression could be a



logical function and that value is then assigned to this signal this is the target of the assignment

and this is a continuously assigned signal.

Notice  a  continuously  assigned signal  will  then forever  drive this  node with this  value,  this

expression will be reevaluated whenever it is sensitivity is struck that means whatever signals

take part in this expression if there is an event on any one of those then it will be evaluated and

that will then be assigned to this r value but the module remains the same that you have a driver

with this value which is permanently keeping this net at the value of this expression.

So it is a continuously driven signal. on the other hand there are two kinds of processes in C and

these are called initial and always, initial and always are otherwise equivalent but initial is run at

the start and it is run exactly once, so this process is started it is triggered at T = 0 that is the

trigger point for starting it and then where it terminates it is never run again, another thing to

remember is that the contents of initial are ignored by most synthesizers.

And therefore  the  contents  are  not  supposed to  be  synthesized  into  the  circuit  that  you are

describing therefore the purpose of the initial block used to setup the input signals and so on and

not really to describe hardware, in general initial is widely used in test benches which then apply

a sequence of inputs to the hardware that you are describing.

Always, on the other hand is the standard and the most widely used structure for in Verilog for

describing sequentially the behaviour and the innards of always are like innards of process that

means  they  look  very  much  like  a  programming  language  and  most  of  the  programming

constructs of C are available as programming constructs in always blocks, so therefore it is really

convenient to use this.

Now notice that in a sequential block the assignment is made at a particular instant, so what is

this  instant  at  which  this  assignment  is  made  and  because  the  assignment  is  instantaneous

therefore the assignments in an always block and indeed in the initial block also, they should

always be to a register so assignments or to a register, it is for this reason that in the D flip-flop

that we described we declared q to be registered.



Because we will be depending on whether clock has had an event or not, we would assign to q a

value inside a logical block which should be an always and therefore q had to be a register, in

general there is an implied conversion from a register to a wire at the output of a module so then

you can connect a wire to the output. There are some very strong notional differences between

VHDL and Verilog and we must be aware of those.

One of these is blocking and unblocking assignments, these make a very big difference and we

must understand blocking and unblocking assignments in Verilog in order to make full use of its

facilities.

(Refer Slide Time: 31:09)

The ordinary procedural  assignment  which is  essentially  just  signal  equal  to expression,  this

implies  that  the  next  statement  will  be taken up only after  signal  has acquired the value  of

expression that simply means that the next expression can assume that signal has already been

updated  to  its  value,  this  is  equivalent  to  inserting  a  wait  0  in  VHDL, these  are  essentially

blocking statements they block until the L value the signal on the left has acquired its value.

There are also non-block statements and the syntax for that replaces this equal to sign by an

assign  to  sign,  so  for  example  you  can  have  assign  to  signal  this  expression,  this  kind  of

assignment remember all of these will occur inside an always or an initial block, this kind of



assignment  is  the  standard  VHDL kind  of  assignment  that  we discussed  that  means  only  a

transaction is placed for making the signal equal to this value.

And then you move on before the signal has acquired this value and usual timing analysis that

we had done in the tutorials that we did a few lectures ago that follows that applies only to the

non-blocking kind of assignment, the blocking kind of assignment you place a transaction and

this transaction has to fructify before you move on to the next, what this means is that now you

have to be aware when this or this assignment is made and this is done through two kinds of

controls.

One is a delay control that means the assign assignment is made after a certain amount of delay

has passed, so for example you might have something like this it is simply says wait for 10 units

of time and then assign the value of d to q, this has to acquire the new value only then you will

go to the next statement and therefore if there are delays associated with various statements,

okay.

So the not operator is actually the tilde operator so that means this will be attempted at 15 units

of time that means delays or cumulative in a Verilog always or initial block that is because this

unit will first wait for 10 assign the value of q to q this assignment is complete then you will wait

for 5 units of time and then assign the value of not d to q prime, so therefore by the time both q

and q prime are assigned 15 units of time have passed.

Notice by the way that there are no physical types in Verilog, so time is just like a 64 bit value

and the implied units have to be declared right in the beginning by a statement which is time

scale.

(Refer Slide Time: 36:19)



So therefore all design modules begin with a time scale declaration and this gives the time in

units  resolution  format,  the  implied  unit  are  this  and  these  units  are  maintained  with  this

resolution, for example you might say that the units are 1 nanosecond and the resolution is 100

picoseconds, so the time will be quantized to picoseconds and the values will be reported in

nanoseconds, you can choose your units.

Now this particular declaration causes all 64 bit values of time to be scaled according to the time

scale value given and interesting combination occurs when different modules which are being

combined use a different time scale, in that case internal conversion takes place of all those times

and the lowest unit is the unit which is internally used, however there is no inconsistency you can

freely mix different time scales and resolution and the reasonable thing will be done.

There are other features of the language which are different but one particular side effect of

blocking and non-blocking assignments must be well understood, otherwise you may land into

trouble while using Verilog and this I illustrate by the case of a Shift register. So let us say that

you have a shift register and the output of this becomes the d of this, so this could be Q2, Q1 and

Q0 this is the input all of these are clocked together by the same clock signals.

Now we suppose in an always block we say that at posedge of clock by the way that even control

will come to in a little bit, but let us understand this concept first so when there is a positive edge



on clock we are going to say that Q2 = In, Q1 = Q2 and Q0 = Q1 this seems a reasonably good

description of this hardware saying whenever the clock has a positive edge then make Q2 = input

make Q1 = Q2 and make Q0 = Q1.

However  this  can land you in trouble,  notice that  this  is  a  non this  is  a  blocking statement

therefore Q2 will acquire the value of In before the next statement is executed, therefore Q1 will

not be assigned the value of old value of Q2 it will in fact the assigned the value of In, because

by the time you came here Q2 has already acquired the value of In, similarly Q0 will also be

acquired will also be assigned the value of In.

Because Q1 has completed acquiring the value of Q2 before the next instruction executes, as a

result essentially you have Q0 = Q1 = Q2 = In in one clock cycle that is equivalent to same that

you are describing not this circuit, but a circuit in which Q0 Q1 Q2 and In are all shorted, this of

course will not do what you want to do is to describe a shift register and the answer is that in this

case we must use non-blocking statements  which will  follow the kind of logic  that  we had

developed during the tutorial.

So in that case you assign Q2 like so assign Q1 and Q0 by these, now what happens well a

transaction is placed on Q2 to acquire the value of In in the next time cycle here of course the

delay is 0 so therefore in next delta, however currently Q2 keeps its old value and because this

does not wait for Q2 to acquire the transactions value the next instruction is executed before Q2

value changes.

As a result the correct value is then scheduled to be given to Q1 that means the transaction is

placed on Q1 for the value Q2 and the same thing for Q0 and this will have the correct shift

register behaviour just to give you an idea let us say In is 0 and Q2, Q1, Q0 are 1 0 1 at t = 0 and

then these instructions are executed, in the two cases we will see what happens in the first case

Q2 is made 0 and indeed acquires the value 0 before we move to the next instruction.

So at t = delta Q2 is already 0 and this instruction is executed only in the next delta, therefore Q1

becomes 0 because Q2 is 0 and indeed now we must wait till Q1 acquires this value that means



we must wait for the entire delta and now Q1 becomes 0 and finally at t = 2 delta,  Q0 also

becomes 0, because Q0 = Q1, Q1 is 0 and therefore at 3 delta all values are 0 in this case so it is

not a shift register at all.

However in this case let us say that the first statement occurs at t = 0 in that case Q2 is scheduled

to receive the value of In which is 0 at delta, however the time is still 0 and we do not wait for

Q2 to acquire its new value we go to next statement in the current delta itself, therefore the next

statement occurs at t = 0 itself not at t = delta, now when you say assign the current value of Q2

to Q1 the current value of Q2 is in fact 1 that means Q1 is scheduled to receive 1 at delta.

And then we proceed we place this transaction and we proceed we do not wait for Q1 to acquire

this value and therefore the next one also takes place at t = 0 and now Q0 is scheduled to acquire

the old value of Q1 which is 0 and then at delta all these values are assigned and therefore Q2

becomes 0, Q1 becomes 1, Q0 becomes 0, so essentially you have 0 1 0, Q2, Q1, Q0 acquire the

new values at delta and that is correct.

Because you had 0 at the input and 1 0 1 in the shift register when you shift then you will get 0 1

0 and that is what we get, now this is all very well this is a very simple case how do we know

when to use blocking and non-blocking assignments, so because the effects can be disastrous if

you do not understand what the impact of this is and when it is appropriate to use blocking

assignments or non-blocking assignments.

This whole business comes about because the blocking assignment which is traditionally used is

actually  not  physical  in  the  sense  that  hardware  does  acquire  time  and  therefore  if  we  are

describing  everything  together  what  Verilog  does  is  to  shift  the  responsibility  of  properly

interpreting this description to this synthesizer and therefore the simulation can sometimes lead

you to difficulties, so now in general there is a thumb rule which is fine.

(Refer Slide Time: 48:11)



So essentially if there is memory involved then use non-blocking if there is combinational logic

then you may use equal to, so this now introduces the new complication in Verilog which did not

exist in VHDL, in VHDL we use the same kind of assignments throughout and in Verilog now

we must determine whether the assignment is being made to an element with memory.

Now noticed that this memory is of different kind this is the proper register kind of memory, the

latch kind of memory, whereas of course every register had a memory but assigning to register is

not always with non-blocking, so there is this complication in Verilog, I think it is difficult to

spend the entire language in one lecture, however as I said before the real understanding of the

language will come when you practice it.

However these things are a bit hard to comprehend at the beginning and therefore I have picked

out those things which require special understanding, so essentially what we had what you need

to keep in mind is first of all the difference between nets and registers and then blocking and

non-blocking assignments, that nets need continuous assignments, that registers assigned at a

particular instant and that instant is determined either by the delay control if you do not give a

delay then 0 is assumed or what I did not describe here in detail is an event control.

So for example you might say @ posedge clock this is called event control, so there is an implied

instance  at  which every assignment  is  to be made in  a  sequential  block in  Verilog and that



implied instant could be if it is not given could be just as # 0 but # anything is essentially wait for

this much time or wait till this event become true and then make the assignment.

Because the assignments are made at a sharp instant of time and then the node is supposed to

hold that value for future, therefore that has to be a register time so it could be typically a reg. As

I said you need to practice it and I would like to finish this lecture by giving you a kind of list of

resources which you may find useful, again for Verilog there is a very large number of good

books.

(Refer Slide Time: 51:32)

Just to name a few there is one by Sameer Palnitkar and another by A. Bhasker, I think the

Sameer Palnitkar books is published by Pearson Education, Bhasker's book is called a Verilog

Primer, in addition to that there is a public domain program which is excellent which is called

Icarus Verilog its versions are available for Linux as well as Windows though it is largely meant

for Linux kind of systems.

It is a public domain implementation if you do not have access to professional VLSI design

software you can download and install it on any Linux installation, Icarus Verilog is a fairly

complete implementation of the language and it works like GHDL in the sense that it produces

an  executable  by  default  a  dot  out  as  is  the  common practice  in  UNIX,  so  it  produces  an



executable a dot out and when you execute this executable file then the simulation outputs are

reported to you.

Icarus Verilog is then coupled with the same waveform viewers that we had discussed earlier and

those waveform viewers are essentially VCD in VCD format which is the value dump format

that  Verilog  has  and there  are  many  public  domain  programs for  viewing  this  waveform a

prominent one is the gtk wave I think with this we shall bring this lecture to a finish. We just had

a general introduction to Verilog.

I would not call it a sufficient for you to even start writing modules in C, however excellent

resources are available in C by the way an excellent learning module on Verilog is available from

CEERI  Pilani  and  this  learning  module  was  developed  for  the  SMDP program  a  special

manpower development program for VLSI design. 

But it might be available in the public domain and this is an excellent step by step tutorial on

how to learn Verilog by yourself in a lab that assumes the availability of let say cadence or other

kind of VLSI design, synopsis, Verilog software, however it will work equally well with the

Icarus Verilog and gtk wave combinations. What I suggest is that you acquire this learning aids

an actually program using either GHDL in case of VHDL or Icarus Verilog in case of Verilog.

And then you will appreciate the concepts that we have discussed in these lectures well, we bring

this lecture to an end here.


