
Nuclear Astrophysics 

Prof. Anil Kumar Gourishetty 

Department of Physics 

Indian Institute of Technology-Roorkee 

Module – 04  

Lecture – 20  
Resonant Reactions 

 

Welcome back students; today's lecture is last part of the 4th unit that is non resonant reactions 

and resonant reactions. In the syllabus if you see there are 8 parts and today is the last lecture 

of the 4th part. So, in today's lecture I am going to complete the discussion on resonant reaction 

and I will be discussing neutron induced non resonant reactions as I have said in the previous 

lecture. 
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So, let us quickly go through the content of the previous lecture where I have spent some time 

on the non resonant type of nuclear reaction where 𝜎 is smooth dependent function of energy 

and resonant reaction which is contrary to this reaction, 𝜎 varies dramatically at a few energies 

of projectiles which we call as resonant energies. So, those energies of projectiles, the Q-value 

and the projectile energy gives rise to excited state, like projectile energy it will become 

resonant energy when this value by adding with Q-value gives rise to an exited state which is 

the characteristic of the nucleus. 

 

And I have written expression for the cross section of a resonant reaction considering it as two-

step process and I have also assumed the collision between the projectile and the target nucleus 

as the collision between the momentum of the projectile and the impact parameter. And then 



for different values of orbital angular momentum we have seen the maximum possible cross 

section for each value of l is nothing but (2l + 1) 𝜋ƛ2
 and if we include the spin we can come 

up with a general representation like statistical factor 
2𝐽+1

(2𝐽1+1)(2𝐽2+1)
 and then for identical 

particles I have included one Kronecker symbol. 

 

Then by taking the analogy between damped oscillator and resonant reactions because in both 

systems the response is maximum at specific incident values, specific input values. So, by 

comparing the strength of the oscillator with the product of the partial width, what is partial 

width? It represents the probability for each step to occur and the Eigen frequency is compared 

with the resonant energy and the damped factor f is equivalent to the total partial width of the 

nuclear reaction fine. 

 

That was famous Breit-Wigner formula. So, continuing the salient features of this Breit-Wigner 

formula and some examples, I would like to spend some time on resonant reactions. So, in 

today's lecture I will be spending some time on resonant reactions and also neutron induced 

non-resonant reactions. 
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So, let me start with the formula with which I have ended the previous class that is Breit-Wigner 

formula.  𝝈(𝑬) = 𝝅ƛ𝟐 𝟐𝑱+𝟏

(𝟐𝑱𝟏+𝟏)(𝟐𝑱𝟐+𝟏)
(𝟏 + 𝜹𝟏𝟐)

𝒂𝒃

(𝑬−𝑬𝑹)𝟐+(/𝟐)𝟐. So,  is the total partial width 

that is formation width 𝒂 plus decay width 𝒃 and 𝑬𝑹 is the resonant energy and 𝜹𝟏𝟐 is the 

Kronecker symbol and 
𝟐𝑱+𝟏

(𝟐𝑱𝟏+𝟏)(𝟐𝑱𝟐+𝟏)
 will reduce to (2l + 1) if spins are not included, but for 



general expression we have included both orbital angular momentum and also the spin of the 

entities in entrance channel. 

 

You know very well that 𝜋r2 is the geometrical cross section that is area seen by the projectile, 

the area seen by the target when projectile falls on it and this term is replaced by 𝜋ƛ2
. So, this 

is the equation which we have derived in the previous lecture. What to do with this? We need 

some more discussion to answer a question which I have posed in the previous lecture. What 

kind of resonances play important role, to decide the properties of the stars, low energy 

resonances or higher energy resonances. 

 

To understand this we need to take some interesting approach,   it follows like this. See this 

Breit-Wigner formula is valid for isolated resonances. So, basically when I am saying resonant 

reactions it has 2 properties that is isolate resonances and narrow resonances. So, when I say 

isolated, it means in terms of total partial width which is the sum of the formation width and 

decay width. This is greater than the separation between the excited states of compound 

nucleus. 

 

The width of the state which was populated because of the nuclear reaction, should be greater 

than the separation of the nuclear levels. That is what we mean by isolated resonances and 

when I say narrow resonance it means, the total width which is some of the formation and 

decay width, should be much less than the projectile energy at which this resonance is 

happening. 

 

That means the total width is constant over total resonance width, whatever resonance region 

is there throughout the resonance energy region total width should be constant. That is what 

we mean by isolated and narrow resonance. Considering this the stellar reaction rate which we 

are waiting for to write down based on this cross section formula looks like this, before that let 

me write down the general expression for the stellar reaction rate. ⟨𝜎𝑣⟩ =

√
8

𝜋𝜇
  

1

(𝑘𝑇)3/2 ∫ 𝐸 𝜎𝐵𝑊(𝐸) 𝑒−𝐸/𝑘𝑇 𝑑𝐸
∞

0
. So, E is a well-known quantity, center of mass energy. 

 

And here the cross section is replaced with Breit-Wigner formula which depends on the energy 

slightly, though it is a resonance energy region, so we have taken a general representation that 

is in 𝜎 as a function of energy and anyway the particles are distributed according to Maxwell 



Boltzmann form. So, this is a well known reaction rate formula. Now replace this cross section 

with the Breit-Wigner formula this one. 

 

So, for narrow resonance if you consider then the change in this Maxwell Boltzmann 

distribution is very small, because the residence is happening at a very sharp value of the energy 

around that if you consider the distribution of the velocities the change is very small. So, 𝑒−𝐸/𝑘𝑇 

will be very small. So, by saying this I am taking this quantity outside the integral fine. 

 

Then the reaction rate can be represented by this equation, ⟨𝜎𝑣⟩ =

√
8

𝜋𝜇
  

1

(𝑘𝑇)3/2 𝐸𝑅𝑒−𝐸𝑅/𝑘𝑇 ∫  𝜎𝐵𝑊(𝐸) 𝑑𝐸
∞

0
, where the energy is also taken out because we are 

dealing with the resonant reaction and 𝑒−𝐸𝑅/𝑘𝑇 is constant, it can be taken outside and the Breit-

Wigner formula is inside this integral. Now the task is to calculate the value of this integral. 

So, I will not go into the details you can do easily using the expression in the very first place 

which I have written. You need to calculate the value of this integral. So, the final result I am 

showing, ⟨𝜎𝑣⟩ = √
8

𝜋𝜇
  

1

(𝑘𝑇)3/2 𝐸𝑅𝑒−𝐸𝑅/𝑘𝑇 ∫  𝜎𝐵𝑊(𝐸) 𝑑𝐸
∞

0
. 

(Refer Slide Time: 09:19) 

 

So, the integral of this cross section of the nuclear resonant reaction given by the Breit-Wigner, 

can be derived as like this, ∫  𝜎𝐵𝑊(𝐸) 𝑑𝐸 = 2𝜋2ƛ
2𝜔

𝑎𝑏



∞

0
, where, ƛ is the reduced de Broglie 

wavelength, 𝜔 is statistical factor, 𝑎 is formation partial width, 𝑏 is decay partial width and 

 is the total width. So, let me introduce one more parameter, 𝜔𝛾, this is called as resonance 



strength, where 𝜔 is a statistical factor which involves J, J1, J2 and gamma 𝛾 =
𝑎𝑏


. Why am 

I emphasizing this word, because this is one of the experimentally measurable parameter to 

understand the cross section of the resonant reactions. 

 

So, resonance strength is represented by the statistical factor and the ratio of product of partial 

width corresponding to formation and decay width and the total partial width that is sum of 

these partial widths. This gives us information about the strength of the resonance. So, use this 

for representing the reaction rate in future. At incident projectile energy equivalent to resonant 

energy, the cross section exactly at that particular energy I can write down by replacing E as 

exactly ER then by taking the help of this integral and remaining things I can come up with this 

kind of expression. 

 

At exactly resonant energy the cross section of the resonant nuclear reaction can be represented 

as 𝜎(𝐸)= 𝜎(𝐸 = 𝐸𝑅) = 4𝜋ƛ𝑅
2 𝜔

𝑎𝑏

2 . So, this leads to the fact that I can always write down the 

integral value like ∫  𝜎𝐵𝑊(𝐸) 𝑑𝐸 =
𝜋

2
𝜎𝑅

∞

0
. So, this is just rewriting the expression of cross 

section at ER and the integral symbol. There is no much difference. Now the area under the 

resonance curve is given by the total width and the height 𝜎. 

 

So, the reason for expressing this integral in terms of sigma R is following. Now earlier when 

you have taken the plot of the probability and the energy and initially when you take this 

Maxwell Boltzmann distribution 𝑒−𝐸/𝑘𝑇, there is a sharp peak at resonant energy. So, the 

gamma peak at which majority of the nuclear reactions used to take place for non resonant 

reaction is just replaced with a resonance peak. 

 

At this particular value cross section is very high, at this value only majority of the reaction 

take place, at remaining places no. So, that is how we have initially defined the nuclear 

reactions when cross section changes suddenly at particular value of energy. So, the area of 

this resonance curve is nothing but the total partial width and the height is nothing but this 

cross section 𝜎𝑅. So, taking this let me write down the final expression for reaction rate when 

resonant reactions are discussed. ⟨𝜎𝑣⟩ =  (
2𝜋

𝜇𝑘𝑇
)

3/2

ℏ2(𝜔𝛾)𝑅𝑒−𝐸𝑅/𝑘𝑇𝑓.  

 



So, (𝜔𝛾)𝑅 is the strength of resonance exactly at the resonant energy and 𝑒−𝐸𝑅/𝑘𝑇 is the 

Maxwell Boltzmann distribution term and 𝑓 is the electron screening factor. Though it is 

negligible just for the sake of representation I am including this f also in reaction rate. If I tell 

the stellar density is very high one has to take into account this electron screening factor. So, 

this is nothing but stellar reaction rate per particle pair because ⟨𝜎𝑣⟩ is there and if you multiply 

with Avogadro number then no need to write down the particle pair, but for narrow resonance. 

This reaction rate expression is for narrow resonance not broad resonances. 

 

So, to measure the nuclear reaction rate what one should find out? The strength of the resonance 

width of the resonance and the resonance energy. These three are the parameters one has to 

measure experimentally. So, that one can come up with reaction rate directly, you see here in 

this expression of reaction rate there is no cross section formula. There is no cross section term 

involved in this reaction rate for narrow and isolated resonances. 

 

Just measure the width of the resonance, just measure the strength of the resonance and anyway 

incident projectile energy is known, measure it accurately, you are done with the reaction rate 

measurement for narrow resident reactions. So, as I said the gamma peak is replaced with 

resonance energy ER. 

 

So, the nuclear burning take place at a narrow resonance, the burning happens at these narrow 

resonances only. If more narrow resonances are involved in the reactions, how do you express 

this reaction rate? Simply take the summation of strengths of the resonances. That will take 

care of this reaction rate when many narrow resonances are involved. 
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Now I am going to discuss one of the very important feature of this nuclear astrophysics and 

that is the importance of low energy resonances, for the sake of simplicity let us consider this 

reaction where projectile, x is reacting with target nucleus A giving rise to product nucleus B 

and gamma ray. In two step process remember if it is one step process then it is basically non 

resonant reaction, there is no point in discussing this topic. 

 

If this radiative capture reaction happens in two steps formation and decay width term. Then 

in general that is gamma decay width because we are assuming this as a ready to capture 

reaction, it is very, very less sometimes you know of the order of 1 eV or less than 1 eV, very 

less. This very less value of the gamma decay partial width is going to play very important role. 

 

Please pay attention to this topic. I want your special attention to this particular discussion.  So, 

I am trying to discuss the importance of a low energy resonances. For that I have considered a 

reaction, where x is reacting with A and giving rise to gamma ray and B product nucleus. So, 

there are 2 partial widths. 𝑥 is the formation width and 𝛾 is the decay width. 

 

In general the decay width is always less or equal to 1 eV. Now I am bringing this statement if 

the resonance energy is near the Coulomb barrier, please listen to this carefully. If at all the 

resonance energy is near to Coulomb barrier remember in any case it is happening only above 

the Q-value of the reaction, but if resonance energy is near the Coulomb barrier then the 

formation width is of the order of MeV.  

 



And already have said 𝑥 is very large, so 𝛾 can be neglected and 𝑥 and  will get cancelled. 

Finally, you are left with 𝛾. The strength of the resonance is decided by the very low value of 

the gamma decay width. If the resonant energy is far below Coulomb barrier then please ignore 

this then this formation width is no more of the order of MeV, it is much less than the decay 

width. So, what does it mean? The resonance strength decreases very rapidly due to barrier 

penetration term in formation width why because formation partial width considers the barrier 

penetration phenomenon not the decay width. 

 

This you have to understand   and from the reaction rate we can write down this equation which 

I have shown in the previous slide I am continuing with that. From this reaction that you can 

see this term especially, please pay attention here. This is very important resonances with 

values of energies near kT dominate the reaction rate. See nowhere you have energy and kT in 

this expression except here. So, if ER and kT are comparable to each other then this reaction 

rate is maximum. 

 

So, basically the resonances with ER and near kT only will dominate the reaction rate. So, for 

low temperatures that means at low values of kT, that means at low values of resonant energies 

it is very important to know the locations and the strength of the low energy resonances, not 

high energy resistances are important. So, I hope you are following what I am trying to convey. 
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For example let me take a reaction 14N(p,)15O. Assume T6 = 30. If you see the ratio of reaction 

rates at low energy resonance say 10 keV and at 2 MeV it comes out to be 10312. Please do the 



calculation.   For more details please look into the textbook Rhodes and Rodney otherwise, we 

can assume some values and see how it is very important. 

 

So, this tells us the mean lifetime of the nuclei and the properties of the star change dramatically 

for a small difference in the resonant energies. Now if you consider the resonant reactions 

induced by neutrons then the strength of the resonance is nothing but this    which holds for 

all resonance energies nearly because in the formation width there is no Coulomb barrier for 

neutrons. 

 

So, it always depends on the partial width of the decay process second step. Now the interesting 

question which I am posing here is nuclei having states with long lifetimes can take part in the 

reaction. I am talking about the metastable states or sometimes isomers. That means states with 

longer lifetime, you might have went out the concept of lasers there you might be getting the 

idea of you know this metastable states where the levels are having longer lifetimes. 

 

In stars when nuclear reactions are happening, sometimes the compound nucleus exerted state 

may possess longer lifetime. So, it will have enough time to react with other nuclei before 

coming to the ground state. I am talking about this reaction of the reaction between the other 

nuclei and the compound nuclei in exerted state not after reaching the ground state. Then how 

to find such number? 

(Refer Slide Time: 24:02) 

 

Let me take the production rate and the decay rate. So, the production rate is always 

proportional to number of nuclei in resonant state. That means N1 and N2 and at higher 



resonance energies if you consider then the formation which is always greater than decay width 

of course not at the low energies. Then this is equal to nothing but total partial width is nothing 

but which is the sum of formation width and decay width and this is negligible. 

 

So, total partial width is nothing but formation width. Accordingly the strength of the residence 

is nothing but decay width will dominate as I have discussed earlier, because of this  is nothing 

but ab/. In that case one can write down the production rate as this is a well-known 

expression for the production rate. Here I am writing the expression for reaction rate. 𝑟12 =

𝑁1𝑁2

1+𝛿12
⟨𝜎𝑣⟩ =

𝑁1𝑁2

1+𝛿12
(

2𝜋

𝜇𝑘𝑇
)

3/2

ℏ2𝜔 𝑏 𝑒−𝐸𝑅/𝑘𝑇 

 

And there the strength of the residency is replaced with this 𝑏 decay width. Now coming to 

the decay rate; this decay rate determines the lifetime of the nuclei in the reactions. So, the 

decay rate is nothing but the ratio of number of nuclei N12 and the lifetime of the N12 nucleus 

and using this concept of Et = ℏ, here 𝑏𝜏𝑏 = ℏ. I can write down the expression for decay 

rate, 𝑟12 =
𝑁12

𝜏𝑏
=

𝑏𝑁12

ℏ
. 

 

Combining these two terms decay rate and production rate I can find out the expression for 

total number of nuclei presenting in the reaction, 𝑁12 =
𝑁1𝑁2

1+𝛿12
(

2𝜋

𝜇𝑘𝑇
)

3/2

ℏ3𝜔 𝑒−𝐸𝑅/𝑘𝑇. This is 

called as famous Meghnad Saha equation. So, this is the contribution of Meghnad Saha in 

finding out the number of nuclei participating in the reactions within the stars and the institute 

of nuclear physics named after Meghnad Saha which is located in Kolkata, Saha institute of 

nuclear physics and it is a great coincidence that it is hosting the facility of FRENA. 

 

Facility for Research in Experimental Nuclear Astrophysics, FRENA. So, the contribution of 

Saha we can remember in this particular context it gives us the number of nuclei participating 

in the collision. So, this equation is valid for all reactions when equilibrium is established, 

because production rate is there and decay rate is there. What is the famous example? In the 

last lecture initially I have hinted this point.  So, what is the famous example for this number 

of nuclei participating in the exited state of the compound nucleus? 

 

Triple alpha reaction,   +  gives rise to 8Be, this 8Be lifetime is very less even then if the 

transit time between the  particles is small then the lifetime of the 8Be, it can again react with 



the  giving rise to 12C. For that there has to be equilibrium between the production rate of 8Be 

and decay rate of 8Be. Remember 8Be is highly unstable. 

 

So, the ratio of 8Be nuclei and alpha nuclei is found to be 10-10, it is very small however this is 

sufficient the ratio of 8Be and  particles is not above 1, it is much less 10-10. However, it is 

sufficient to bridge the mass gaps at 5 and 8. How these mass gaps came into picture? In the 

initial stage of this course I have discussed one of the fascinating aspects of nuclear 

astrophysics. 

 

I mean without bridging the gap between at mass numbers 5 and 8 how 12C is formed? Triple 

alpha reaction and this is where this formula for nuclei participating in the nuclear reactions 

comes into picture. So, please remember the contribution of Meghnad Saha in this particular 

context. So, in the next lecture I will discuss neutron induced reactions today because of limited 

time I could not discuss it. 

 

So, let me summarize today's lecture. In the last lecture I have derived the expression for cross 

section of a resonant reaction, taking it forward, earlier I have taken the help of this damped 

oscillator and then the importance of low energy resonances. If the resonant energies are near 

Coulomb barrier or much below the Coulomb barrier how low energy resonances are playing 

very important role? 

 

The turning point is that the reaction rate corresponding to the low energy and high energy 

resonances is about 10312. So, that is low energy resonances play very important role in 

understanding the properties of the stars and then to know the number of nuclei present when 

compound nucleus in excited state participates in nuclear reaction with other nucleus Meghnad 

Saha equation really helps us. So, with this let me complete today's lecture, see you soon thank 

you very much. 


