
Physics through Computation Thinking

Dr. Auditya Sharma & Dr. Ambar Jain

Department of Physics

Indian Institute of Science Education and Research, Bhopal

Lecture 40

The Monte Carlo Method - 2

(Refer Slide Time: 0:40)

Hi guys, so this is the next module on The Monte Carlo Method, so in this one we will do

something very fun I think and that is to use the Monte Carlo Sampling Method to evaluate a

definite integral and using this get an estimate for log 2 and then for pi. So, that is the agenda

for this module.

So, let me start by just giving you a brief introduction to this method of computing definite

integrals using The Monte Carlo Method and so we will just directly, quickly give you some

examples and then you see how the method operates and only then later on we can think

about why it works at all.

(Refer Slide Time: 1:14)

So, suppose I want to integrate this function and the limits are set to 0 and 1, it is very

straight forward, I am very sure you can use your pen and paper or even you will be able to

write it down instantaneously and the answer is just the log 2, very easy. And so in fact we

can also tell mathematica do this for us and tell us what is the answer and I have already done

this and you can see that using the integrate function, I have the answer log 2.

So, what I want to do is, show you how with The Monte Carlo Sampling we can get an

estimate for this number what does it really to log 2.

So, the method is very simple, all you do is to get a random number generator. So, I did not

explicitly say it out last time, but basically the point is that these programs give you what are

called pseudo random numbers.

So, since the program is able to do some operations, some complicated operation and give out

a number, there is a deterministic method involved underlying it, because there is a

deterministic method involved, you cannot really say that it is random. So, in that sense it is

actually, there is a deterministic aspect to it so it is not random.

But on the other hand, it appears to be random, it satisfies all the properties of a random

numbers. How do you know it satisfies all the properties? You can look at its distributions, so

1
1+x

we saw for example histograms, and you can look at its first moment, second moment, third

moment, so you can do a range of tests on the pseudo random numbers for generator.

In fact this is the way to benchmark whether a pseudo random number generator is reliable

one or not. You need to study its various moments and since it is able to satisfy the properties

of the distribution it is suppose to generates, it is indeed, it mimics the full original

distribution as closely as you want, so it is a pseudo random number.

So, that is what is used in all these numerical simulations in this Monte Carlo Methods of all

kinds. So, now what I will do is call my RandomReal function so which gives me lots of

random numbers between 0 and 1 and it will give me a uniform distribution as we have

already checked by using the histogram function in previous module.

And then I will simply evaluate this function 1/(1+x) at all of these different random

numbers. X between 0 and 1 and take the average, and that is it. So, the formulae will give

me an estimate for this integral and you will see that it agrees actually really pretty well in

fact for this kind of the method involving the random numbers.

(Refer Slide Time: 4:12)

So how am I going to do it? So, let me actually open this up for you. I have a small piece of

code, but so what I am doing is really first of all, I am using, so this is random real, so let me

copy this out and paste it here. And convert the cell to input. So, if I just do RandomReal, 1/

(RandomReal + 1) that you understand because it is just generating a random number

between 0 and 1 and I am evaluating this function 1/(1+x).

But I do not want to do it just once, I want to do it many many times. So, am going to create,

I am going to table this up, write it as table of this function, I do not know, I can do it 10

times for example, so it will give me a table like this. But I do not want it to be just any

number like this, I want to keep this as a variable n, and why is that? I will tell you in a

moment.

(Refer Slide Time: 5:23)

So, once I have computed this, I told you that; so let me illustrate what I want to do. I will

generate 100 of these and then find the mean of this. OK. So, that is all, that is the Monte

Carlo Method . So, that should already give me a pretty good estimate, and if I make this 100

to a 1000, it should become better and better and it should go to log 2.

But I want to also study this systematically, and that is why I want to keep this as n, so what I

will do is that I will make this n and then I will store both n and mean of this and actually

make a table out of this itself. I want n itself to vary as a power of 2 so I will first of all define

n as , that is what I have done here, and then I want to store my value of n, comma this

mean and then.

(Refer Slide Time: 6:28)

2k

So, there is 1 more step involved which is that I can ask myself so before I go to this, let me

actually open this up. So, I can ask myself, so I have computed this mean, so it does not

understand what n is.

So, let us say 100, so if I have 100, it has computed this mean for me, if I do it again it will;

but I can ask myself what would happen or what kind of numbers do I get if I do this many

times? So, I want to create a table of this itself, a table of these means.

(Refer Slide Time: 6:56)

So, I will create a table of these means running this Monte Carlo simulation many many

times if you want. Let me fix this number to be, I do not know 1000, I have fixed there, but it

is something that you can play with. So, having got this, I want to find the mean of this itself,

so this is another mean finally, and this is the number I will store.

So, there are two kinds of means here, one is the mean which is computed in my full Monte

Carlo simulation, I just do a Monte Carlo simulation over many steps, I have sampled the

region between 0 and 1 uniformly many many times, found the average of this and I am

claiming that is a measure of this. But, I do this whole exercise itself a 1000 times and find its

mean, that is what this is.

(Refer Slide Time: 7:55)

And finally, I want to store this number as I vary n. So, now I will replace this 100 by n and

this n itself I like to use powers of 2. So, data is equal to table of n = and then I will store

up these two values n and mean and then I will allow this k to go from 5 to 8 let us say and

then I close this table. So, that is all, so this is a very compact code.

(Refer Slide Time: 8:47)

And then maybe I will allow it to go from 5 to 10, and then I will, instead of leaving the data

as it is, I will give it a nicer form to this, table form of this data. So, this the font was a bit

messed up, so I have n equal to , yeah now it should work. There you go.

2k

2k

So, finally I have an answer where I get, if I chose the number of samples within my interval

0 to 1 to be 32, I get you know this 0.693576 then and if I make it to 64, I get another

number, or you can see that for larger and larger values of n it is becoming closer and closer

to log 2. So, in fact I can even go ahead and study how the error varies.

(Refer Slide Time: 9:47)

But before I do that, let me just plot this, get a list plot of this, and you see that indeed it is

converging to a number which we already know it should be log 2. Log 2 is around 0.693.

(Refer Slide Time: 9:58)

So, in order to find the error data, so what I do is, I just directly subtract this log 2. I subtract

this log 2, and then take the absolute value of this. I take the deviation of this Monte Carlo

result from log 2 and take the absolute, sometimes it will be higher, sometimes lower than

this, so I will just take the absolute deviation, absolute value of the deviation and then only

table of this, where I am doing the tabling up with 1000 times, that part I am doing only after

I have taken the absolute.

So, this is a, you can go back and check this code and unravel it, like I did for the first one,

you should, this is always the standard rule with mathamatica is when you read the

mathamatica code is, to take the inner most part and then sort of go outwards and take break

it into small pieces, understand each of them and then go inward out and then basically you

will know what is going on otherwise it can lo very messy sometimes.

(Refer Slide Time: 11:06)

Alright so there you go, if I do this, I have, then I do the table form of err data, and I get, you

know, you see that the error is falling as a function of this n. And then I am interested in

understanding in what way does it fall? Alright, so you go back to many modules ago when

we described how to get fits of these kinds of data. So, I can actually do a study of how the

errors are falling with the sampling number and then I am going to fit it to this form . axb

(Refer Slide Time: 11:43)

So, the problem is, I have used up a for something else, so let me call it by some other;

instead of a let me call it c and there you go, so c is this and then find fit, so function has to

be, has to use the parameters from in here, and then if I show my plot and this together on the

same plot, so by the way before I fix this, so notice that b is a value which is very close to

minus 0.5, so that is the point.

So, basically it goes as 1 over into the half, c is not very important but the fact that b is very

close to minus a half, that is something instructive here. So, in fact the errors fall off as

. So, why is this plot not showing up.

(Refer Slide Time: 12:40)

1/√n

So, let me plot only this. Suppose I plot only; I think this point is, this should work out. I got

to make this into input, so there you go, so this part is working out. So, there you go, it all

works out. So, indeed the fit is very good and it goes as , so that is the main message

from this, in this exercise.

1/√n

(Refer Slide Time: 13:39)

So, let us quickly look at another example, in this we want to estimate using the same

technique, with Monte Carlo sampling. So, once again I have conveniently chosen this

interval from 0 to 1 and this function , this integral is also should be very familiar, so it

is , and it is going to give you , so is just . So,

if you do this integral numerically with Monte Carlo integration, it should give you an

estimation of And, we can of course quickly get mathamatica to check this for us, indeed

it is .

(Refer Slide Time: 14:18)

π

4
1+x2

4 tan −1(x) tan − 1(π) tan − 1(1)= π/ 4 4π/4 π

π

π

And we will use basically everything from the previous example. So, I will directly use the

code from there and if you want to understand all the nitty-gritty in here, you can actually go

back to that part of this video and check what this code is really doing.

So, only thing that has changed here is instead of function I had, in the previous

example, now . RandomlyReal Square comes in and everything else is the same. So, if

I run this you will see that it is nicely converging to . So, 3.1415 already from 32 onwards,

and to once again I can do a ListPlot of this, and indeed it looks very nice.

1
1+x

4
1+x2

π

(Refer Slide Time: 15:06)

So, if I do error data, so again I am using the same type of method as before, to compute the

errors I am using the absolute function and subtracting from here instead of log 2. is the

exact value, and what is the deviation from ? It could be positive or negative, so I am using

the absolute function.

And if I go ahead and so once again I can use 1000 here, 100 is also, but let us see what

happens if I do 1000 and indeed you see that the error falls off with the number of Monte

Carlo steps. As the number of Monte Carlo steps is increasing, we can ask in what precise

way does it fall.

(Refer Slide Time: 15:56)

π π

π

So, let us quickly plot the error data itself, you see that it is falling off, we saw that it went as

of n earlier, and maybe the same will hold here. So, we can quickly check this

functional form of, which is the power log form. Then I do this fit using the fine fit, indeed I

find that the exponent is very close to -1/2.

(Refer Slide Time: 16:24)

So, I can use this to super impose the data set and this fitting function and you see the

agreement is excellent. And once again we see that the error goes roughly goes as 1 over

square root n. So, there is a theory behind why this is , you can work it out and so on,

what are, for our purposes it suffices to just see this as an illustration of the Monte Carlo

Method.

1/√n

1/√n

(Refer Slide Time: 16:51)

So, what did we do in this module? We saw that if you want to evaluate some definite

integrals between some limits a and b, you can simply sample in this entire interval, take a

uniform distribution and then sample these points, the more points that you sample, the better

will be the final value.

So, you sample these points uniformly, and then simply compute the average of the value of

the function evaluated at all these points. So, there is a lot of theory you can study the details,

maybe if you do it as a like a full fledge course on probability and stochastic processes and

all. But for our purposes we just want to see how this works out. This is yet another simple

illustration of a very powerful tool.

So, we hope to give you some more examples and get you started off on this Monte Carlo

method. So, there are lot of very very sophisticated techniques which are built on this. So, the

power of this method should not be diluted by thinking why bother doing these kind of

integral which you can do anyway by hand or get mathamatica to do it, or use some other

numerical tool.

But the power of this method comes in other context, where other methods will fail and

Monte Carlo turns out to be an excellent tool. So, that is it for this module. Thank you.

