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Lec 7: Schmidt Decomposition Method

Hello, welcome to lecture 5 of this course. This is lecture number 2 of module 2. In the
last lecture, I have given you a brief technical introduction to quantum entanglement and
I started discussing the so-called Schmidt decomposition method, which is a technique to
characterize quantum entanglement, particularly in bipartite system. But to understand
Schmidt decomposition method, we needed to learn singular value decomposition
method, which we have done in the last lecture. In this lecture, I will first revise the
singular value decomposition method by illustrating an example, and then we will begin
discussing Schmidt decomposition method. So let us begin.
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To find singular value decomposition of the matrix, A is equal to 1 0 I 1 0 I As you can
see, this is a, it's a 3 by 2 matrix. That means 3 rows and 2 columns. So to find out the



SVD, singular value decomposition of this matrix. So first, let us calculate A dagger A.
Now, if A dagger, if you find, then you just have to take the transpose of the matrix A and
then take the complex conjugate. So first row would become 1 0 minus I. Second row is
also going to be 1 0 minus I. And the matrix A is 1 0 I 1 0 I.

And if you do the multiplication, you will get 2 2 2 2. So as you can see, A dagger A is
now a square matrix. You have started with a non-square matrix A and A dagger A is a
square matrix of dimension 2 by 2, 2 rows 2 columns.
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Now, you can find out the eigenvalues of this matrix. Eigenvalues of A dagger A. If you
set up the characteristic equation, you will find the eigenvalues as say lambda 1 is equal
to 4. And lambda 2, you are going to the second eigenvalue, you will get it to be 0.
Okay, I just have solved this equation. 2 minus lambda 2 2 2 minus lambda is equal to 0.

And from this, the characteristic equation you can set up, you will get 2 minus lambda is
equal to plus minus 2. So this is going to give you the eigenvalues as 4 and 0. Now let us
find out the eigenvectors corresponding to these two eigenvalues. So eigenvectors,
eigenvectors vector for say lambda 1 is equal to 4. I think all of you know it. If you do
the calculation, you will find the eigenvector for lambda 1 is equal to v as 1 by root 2 1 1.

And similarly, you can show that the eigenvector, eigenvector for lambda 2 is equal to 0.



This is for lambda 1. For lambda 2 is equal to 0, v2, the eigenvector would become 1 by
root 2 1 minus 1.
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So this can immediately give you the v matrix that we discussed. The capital V matrix
would become, you can construct it from these eigenvectors. So first you write v1, v1 is 1
by root 2 1 1 and v2 is 1 by root 2 1 minus 1. So this is going to be your v matrix.

And the sigma matrix is easy to get because already we have got the eigenvalues. So
this is going to be a 3 by 2 matrix. It has the same dimension as that of the original
matrix A. And it would be square root of lambda 1 0 0 square root of lambda 2 0 0. So
therefore, the sigma matrix would become lambda 1 is equal to 4. So square root of
lambda 1 is 2 0 0 0 0 0. This is the sigma matrix.
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Now, what about the capital U matrix? What about this capital U matrix? So to do that,
you have to find out A A dagger and if you do the mathematics, you can show
calculation. If you do, you will find that the A A dagger would become 2 0 minus 2 I 0 0
0 2 I 0 2.

And again, you have to find out the corresponding eigenvectors. Again, here the
eigenvalues of A dagger A is going to be the same eigenvectors. Sorry, eigenvalues, I
should first find out the eigenvalues. Eigenvalues are going to be the same as that of A A
dagger. Only thing is that you can have an extra eigenvalue here. So what you are going
to get is eigenvalues of A A dagger. Again, you can get it by setting up the characteristic
equation. You are going to get the eigenvalues as lambda 1 is equal to 4, lambda 2 is
equal to 0. You will get three eigenvalues because it's a three by three matrix and lambda
3 is going to be equal to 0.

And corresponding eigenvectors you can find it out. For lambda 1 is equal to say 0. Ok,
so first let me do it for lambda 1 is equal to 4, right? So lambda 1 is equal to 4. You will
get eigenvectors as u1 is equal to 1 by root 2 1 0 I.

(Refer Slide Time: 07:59)

And for lambda 2 is equal to 0, you can get, you can show that the eigenvector is 0 1 0.
And for lambda 3 is equal to 0, these eigenvectors are, is going to be u 3 is equal to 1 by
root 2 1 0 minus I.
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So therefore this capital U matrix, you will get it as 1 by root 2. It is going to be
constructed from these three eigenvectors u 1, u 2 and u 3. So just let me write it column
wise. It will be 1 0 I 0 root 2 0 1 0 minus I. Ok, so this is your capital U.

So this way you will be able, you are then able to get the singular value decomposition of
the matrix A. And that would be capital U sigma v dagger. You have found out this
matrix V, V matrix you have found out. So you just have to take the Hermitian conjugate
of that. And you can actually verify it taking the matrix products of these three matrices.
Then if you work out, you will be able to get the original matrix A.

Now having learned the required mathematical tools, we are ready to discuss the Schmidt
decomposition method.
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Let us consider a bipartite system and a bipartite system as you know has two
components. That is a system having two components. Out of these two components
having one component living in, living in the Hilbert space H A. And other living in the
Hilbert space H B. So it is a system consisting of two subsystems A and B.

And any arbitrary state ket psi of the system can be expressed as it is a pure state. So I
can express it as a direct product state. I am going to explain all the terms one by one.
Summation is going from i is equal to one to dA. Where dA is the dimension of the
Hilbert space H A.

And this other summation go from j is equal to one to dB. dB is the dimension of the
Hilbert space H B. And these coefficients are Cij. And I have this basis ket phi Ai direct
product with phi Bj. Where phi Ai are the orthonormal basis.

These are the orthonormal basis in the Hilbert space H A. On the other hand phi Bj are
the orthonormal basis in the Hilbert space H B. Okay? And overall the system lives in
the Hilbert space. Overall the system lives in the Hilbert space H A tensor product H B.
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Alright. Now you see these coefficients Cij they form a matrix C with the dimension.
Let me write here Cij this coefficient form a matrix say capital C with dimension. That
means the size of the matrix is dA cross dB. That means it has dA number of rows and
dB number of columns. That's the size of the matrix. As you can see this may be a
non-square matrix. And in that case from singular value decomposition one can apply.

(Refer Slide Time: 14:11)

Now apply the singular value decomposition to express this matrix C in the form capital
U, capital sigma and. Now here this capital U is a square matrix as you know from SVD



method already you have learned. It's a square matrix with size dA cross dA. As you
have seen that this capital C is a matrix with size dA cross dB. So capital U is a matrix
with size dA cross dB. While V is a square matrix again even its hermitian conjugate is
also a square matrix. It's a square matrix with size or dimension dB cross dB.

On the other hand this capital sigma it is a non-square matrix. It may be a non-square
matrix because not necessarily that you know A is not equal to B. This SVD method can
be applied even to a square matrix as well. But in general this sigma matrix has a size dA
cross dB. It's a non-square matrix which has non-zero elements along the main diagonal.
And both this capital U, both this capital U and capital V are unitary matrix. And it's very
important to remember this U and V are unitary matrix.
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So we can therefore express, let me write this once again. Therefore we can express this
ket psi state which we have written as say I goes from 1 to dA, J is equal to 1 to dB. I



have Cij phi Ai cross that's a transfer product with phi Bj. Here Cij is a matrix C is I can
express it using the SVD method as U sigma V dagger.

(Refer Slide Time: 17:05)

So this ket psi can be expressed as ket psi is equal to summation i is equal to 1 to dA,
summation j is equal to 1 to dB and I will now express this matrix capital C in terms of
components Cij I am just expressing in terms of matrix. So this can also I express in this
form. I am going to write another sum going from say k is equal to 1 to the dimension
would be such that it will go from the minimum of dA and dB. All these things will be
clear to you once I discuss some example later on. And this coefficient Cij in terms of
this matrix C, I can express in terms of capital U, capital sigma and V as follows.

I will write the sum as this Uik dk k because sigma is a diagonal matrix. Its main
diagonal only I am going to consider and then I have Vjk star it's a hermitian conjugate
and we are having the other parts as phi Ai cross phi Bj. Okay. Now let me define to
simplify this big expression I can define let me define quantities. Say ket uak, small uak
is equal to summation i is equal to 1 to dA Uik phi Ai and Vak VBk.
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Let me write another ket phi VBk is equal to j is equal to 1 to dB Vjk star phi Bj. Okay.
Now due to unitarity of capital U and capital V this ket uak and ubk they form
orthonormal basis. Let me write here form orthonormal basis of the Hilbert space HA.
And similarly VBk form orthonormal basis of HB. Okay. So using this definition we can
obtain this ket psi in this form is going from k is equal to 1 to minimum of dA and dB.
Whatever is minimum out of dA and dB then you have this dkk uak tensor product with
VBk. Okay.

(Refer Slide Time: 20:16)

So to write it in a more convenient form I can write this in a more convenient form. Let
me write psi is equal to k is equal to 1 to R lambda k uak direct product or tensor product



with VBk. Where lambda k as you can see is equal to dkk and R is equal to minimum of
dA dB. Actually let me explain this quantity R a little bit. This refer to R refers to the
number it refers to the number of non-zero diagonal elements. Non-zero diagonal
elements of the or in the capital sigma matrix. And this has a name and this quantity is
called R is named as the Schmidt number. It's called it's an important quantity. This is
called Schmidt number of the state ket psi.

(Refer Slide Time: 21:22)

And the coefficients, the coefficients lambdas, the coefficients lambda k has also a name.
R called Schmidt coefficients. It is easy to show, easy to show that I encourage you to do
it yourself. It's very trivial that summation over k mod lambda k square is equal to 1.
And you can show it because of the fact that this state psi ket psi is normalized. So using
this fact you can easily show that summation over lambda k square mod lambda k square
is equal to 1. Now before I go further just quickly let me also write down the density
operator for the bipartite system.

Using this new form where we have written the ket psi in this particular form and this
form is known as the Schmidt form. This is what is basically Schmidt decomposition. It
may be useful to write the density operator for the bipartite system using this Schmidt
decomposition form.
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The Schmidt decomposition form that we have is this ket psi is equal to k is equal to 1 to
R lambda k U a k tensor product with V b k. This is the so called Schmidt decomposition
form. And the corresponding density operator you can easily work out yourself and you
can see that it would be summation over k and summation over L lambda k lambda L star
U a k the bra U a L direct product with ket V k and bra V b L. I think you can easily
follow it. It's easy to follow from the form that I have written from here. Using this you
can easily get it.

So we have seen that every bipartite system in a pure state can be rewritten in terms of
Schmidt decomposition. Let us now illustrate this method using a quick example.
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Consider a bipartite state given by this ket. ket psi is equal to half phi a 1 phi b 1 plus
phi a 1 phi b 2. All these phi's are orthonormal states phi b 2 plus i phi a 3 phi b 1 plus i
phi a 3 phi b 2. Okay this is the ket state given to you. Now this can be rewritten. This
particular given state can be rewritten as follows. It can be rewritten as ket psi is equal to



summation i is equal to 1 to 3 and summation j is equal to 1 to 2 cij phi ai. As you can
see phi ai here i goes from 1 to 3 right as you can see and, in the process, as you can see
phi a2 is equal to 0. But anyhow the suffix i goes from 1 to 3 it would be direct product
with phi bj and j goes from 1 to 2 as you can see here in this expression. We have phi b1
and phi b2 is there so it goes j goes from that's why from 1 to 2.
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So obviously this is a pure state and this coefficients cij form a matrix. This coefficients
cij would be 1 1 0 0 i i. So this is a non-square matrix. This is a 3 by 2 matrix 3 rows it's
a 3 by 2 matrix 3 rows and 2 columns.

Okay. And this matrix we can express in the form of SVD. In fact we have actually
already worked out the singular value decomposition of this matrix a few minutes back.
And we can use those results now from the example that we have done in the context of
singular value decomposition. We have exactly used this particular matrix c. Let me
write here instead of cij let me write capital C that's the matrix I have formed from this
coefficients cij. And now this matrix can be written in the singular value decomposition
form where we already worked out.

It would be U capital sigma V Hermitian conjugate of the V matrix. We have already
worked out this capital U matrix in the example that we have done a little while back. It
is 1 by root 2 1 0 1 0 root 2 0 i 0 minus i.
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And capital sigma is 2 0 0 0 0 0. So this capital sigma matrix has only one non-zero
diagonal element. So or we can write it as 1 0 0 0 0 0. And this matrix V capital V matrix
we worked out as 1 by root 2 1 1 1 minus 1. We want to write ket psi in the Schmidt
decomposition form as follows. ket psi is equal to summation k is equal to 1 to r lambda
k U ak tensor product with V bk small v bk.
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Now r is equal to 1 here. Now r is equal to 1 why because the number of non-zero
elements in the sigma matrix is 1. That's why r is equal to 1 as per our definition of r
that's called the Schmidt number. r is equal to 1 as the number of non-zero elements in
sigma matrix is equal to 1. So ket psi is equal to in the Schmidt decomposition form
summation k is equal to 1 to 1 lambda k U ak tensor product with V bk.

Now what about lambda k? What is this? Now from the sigma matrix let me write the
sigma matrix we obtain as 2 0 0 0 0 0. And because lambda k is equal to dkk it may
occur to that you should take lambda k is equal to 2. But because k runs from 1 to 1 that
means we have only one lambda that is lambda 1. So you may write lambda 1 is equal to
2 but you have to be careful here because lambda has to satisfy this equation lambda k
square is equal to 1. Right and this means that we have to take the normalized form of
lambda and lambda 1 you better take it as 1.

(Refer Slide Time: 31:20)

So therefore ket psi we should write as the summation is has no meaning now only we
have only one term that is lambda 1 only one coefficient lambda 1. And other terms are U



a1 direct product with V b1. So this is the Schmidt decomposition form of the example
that we have considered but now let us find out what is U a1 and what is ket V b1.

Now as per the definition of ket U a1 k we had summation i is equal to 1 to 3 small u i k
phi a i. And this we can now because k is equal to 1 therefore we can now write U a1 is
equal to if I open it up I will have U11 phi a1 plus U21 phi a2 plus U31 phi a3. Right
now the fact is that U a2 phi a2 ket phi a2 is equal to 0.
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So I will have U11 phi a1 plus U31 phi a3. Now look at the matrix elements of capital
U. Capital U matrix if you recall this was 1 by root 2 1 0 1 0 root 2 0 i 0 minus i. So
from here you can easily see that U11 is equal to 1 by root 2 and U31 is equal to i by root
2. So therefore you have the ket U a1 is equal to 1 by root 2 phi a1 plus i phi a3.
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Okay what about V b1? Similarly you can work it out I leave it to you. Similarly you
can show that ket V b1 is equal to 1 by root 2 phi b1 plus phi b2. So we can write the
given ket psi in the Schmidt form as follows. ket psi is equal to U a1 V b1 and if I write
U a1 ket U a1 is 1 by root 2 phi a1 plus i phi a3 tensor product. 1 by root 2 phi b1 plus
phi b2 or half ket phi a1 plus i ket phi a3 tensor product with phi b1 ket phi b1 plus ket
phi b2.
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Now you please see that I am able to write the Schmidt form here in such a way that this
part refers to the subsystem or one component called A component A or subsystem A on
the other hand this one I write for subsystem B. So these states are separable here and in
this example here the so called Schmidt number R is equal to 1 and the state is separable
so it implies so I can conclude that if R is equal to 1 it is not an entangled state it's a



separable state. It's not an entangled state. On the other hand if you find that for a given
bipartite state R is greater than 1 that may imply that the bipartite state is not separable.
In other words it is entangled.

Ok now some final words on Schmidt decomposition there are various forms of Schmidt
decomposition in the literature.
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For example sometime you may see this particular form say ket psi is equal to
summation i is equal to 1 to R square root of Si uAi tensor product with vBi this is for a
bipartite system with the condition that with summation sum over Si is equal to 1 where
Si is greater than 0 these are called Schmidt coefficient just like the number lambda i's
and R is basically a natural number it's a number and it is called R is the Schmidt number
of the state ket psi.

In fact it is basically the same thing we wrote for Schmidt decomposition of ket psi just
to remind once again as a final comment we have written and we are going to take this
particular form in this course of Schmidt decomposition where k goes from 1 to R
lambda k uAk direct product or tensor product with vBk ok so this is the form we are
going to use in this course and if you look at the correspondence here lambda k refers to
square root of Sk in the previous expression and lambda k is termed as Schmidt
coefficient.
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Now before I end this lecture let me now briefly talk about entanglement of mixed states
we already know that the mixed state can be represented by a density operator say rho is
equal to sum over j Pj ket phi j bra phi j now consider a composite system where it has
consisting of say subsystem A and B subsystem A belongs to the Hilbert space HA and
the system B belongs to the Hilbert space subsystem B belongs to the Hilbert space HB
now let rho be a mixed state over the Hilbert space H is equal to HA tensor product with
HB.
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Rho is a product state is a product state in H in the Hilbert space H if there are mixed
state there are mixed state rho A belonging to the to a set of linear operators on a Hilbert
space HA that means rho A as you know it's a density operator it's an operator so it's a
operator on a Hilbert space HA belonging to all set of linear operators that is in the
Hilbert space HA similarly say rho B which is the mixed state for corresponding to the
subsystem B and it also belongs to the set of linear operators in the Hilbert space HB ok
and rho is such that rho is equal to direct product of the density matrices corresponding
to the subsystem A and subsystem B and if we can write it in this form obviously rho is a
product state.

What about the case where we have a n number of such product states forming a mixed
states how can we characterize if they are separable or not there is a concept called
convexity which may be useful in this context let us discuss it.
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Say we have rho1 rho2 rho n n number of product states are there that belong to the set of
product of linear operator in the hilbert space H and In that case then the mixed state
which is formed out of this all this product states belonging to the linear operator in the
Hilbert space H is separable if there are convex weights I will explain what it is there are
convex weights denoted by say Wi which is greater than zero and also sum of all w's is
equal to one such that rho is equal to summation i to n, i is equal to one to n, Wi rho i.
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Now what I mean by convexity is the following by convexity I mean the following I
mean that for every pair for every pair rho 1, rho 2 which belongs to one of the rho i's the
set of operators the set of operators rho i cap in fact these are also operators rho 1, rho 2,
rho i so they form a for every pair rho 1, rho 2 the set of operators rho i form a convex
set if rho you can write as w1 rho 1 plus w2 rho 2 so this is valid for every component



that is belonging to the set of operators rho 1, rho 2 up to rho n you can write such
relations of this type if you can do that with the condition w1 plus w2 is equal to one so
this is what we mean by convexity and this is a very simple meaning
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it means that for any two members form a convex set say rho 1, rho 2 they form a
convex set if they can be connected by a straight line without leaving the set so this is
what I mean by a convex set so as you can see in this convex set rho 1 and rho 2 can be
connected to each other without leaving the set on the other hand by a non-convex set I
mean the following say I have this member here rho 1 and this is rho 2 and if I want to
connect rho 1 and rho 2 by a straight line so as you can see I have to leave the set right as
you can see I have to leave the set so it's an example of a non-convex set so a convex set
of rho is equal to rho 1, rho 2 up to rho n are separable that means in simple words if the
product states rho 1, rho 2 up to rho n form a convex set then they are separable.
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On the other hand rho is entangled if it is not separable. Let me stop now in this lecture
we have learnt an important characterizing method of quantum entanglement in terms of
the so called Schmidt decomposition method in the next lecture I am going to discuss the
EPR paradox and Bayles inequalities and so on this may help you to get an intuitive
understanding of quantum entanglement so see you in the next lecture thank you so
much you.


