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   In this problem solving session, we are going to solve some problems related to 
quantum entanglement measure. 
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  As a first problem, let us consider a composite system described by the state ket psi, 
which is written as a superposition of ket 0,0 and ket 1,1.  You are asked to find the von 
Neumann entropy of the system and you are asked to show that the subsystem are 
entangled. So let us do that. 
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 First of all, let me work out the density matrix.  So density matrix would be ket psi bra 
psi and we have done so many problems on density matrices. So you can immediately 
write the density matrix as 2 by 3 ket 0,0 bra 0,0 plus root 2 by 3 ket 0,0 bra 1,1.  And 
then you will have terms root 2 by 3 ket 1,1 bra 0,0 plus 1 by 3 ket 1,1 bra 1,1. 

  And this you can write in a matrix form. To write it in a matrix form, generally the trick 
is you arrange the row this way. Say it is ket 0,0, ket 0,1, ket 1,0 and ket 1,1.  This 
method will be helpful for all other purposes as we will see and we know already.  So the 
column are also let us say we put it this way ket 0,0, ket 0,1, ket 1,0, ket 1,1.  Then we 
can write the first element as 2 by 3 0,0 root 2 by 3.  Then we will have 0,0,0,0 and we 
will have 0,0,0,0 and we will have root 2 by 3 0,0,1 by 3. 
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  So this is the density matrix. Now to find the eigenvalues of rho let us set up the 
characteristic equation first.  To set up the characteristic equation we know how to do 
that.  So we just have to find the determinant of this.  We have to set the determinant to 
be 0. 2 by 3 minus lambda 0,0 root 2 by 3 0 minus lambda 0,0 0,0 minus lambda 0 root 2 
by 3 0,0 1 by 3 minus lambda.  So this determinant is equal to 0 and if you actually open 
it up it is very straight forward. 
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  You will get this equation lambda square into 1 by 3 minus lambda.  Please verify it 
yourself.  2 by 3 minus lambda minus root 2 by 3 is equal to 0.  

So therefore the eigenvalues of rho are this density matrix will be lambda is equal to 0,0 
from here.  Then you will have one third from here and from the last part you will have 
lambda is equal to you will get 2 minus root 2 divided by 3.  So these are the four 
eigenvalues you will obtain.  Now you are asked to find out the von Neumann entropy of 
the system.  So to do the von Neumann entropy we know work out the von Neumann 
entropy. 
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  S rho is equal to minus trace of rho logarithm with base 2 rho and this is equal to minus 
summation of lambda i.  Lambda i is the eigenvalues, ith eigenvalue log 2 lambda i.  So 
you will get minus 1 by 3 log 2 1 by 3 plus 2 minus root 2 by 3 log base 2 2 minus root 2 
by 3.  In fact if you work it out using a calculator you will get it to be 0.988. 
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  Now to do the next part, next part was to you are asked to show that the subsystems are 
entangled.  To do that let us first calculate the density matrix of the subsystem A for 
example.  Any subsystem you can pick up.  So let us find out the reduced density matrix 
of A then you have to trace out B. 

  So reduced density matrix rho A would be if you trace out rho then you will be able to 
get that. And in fact we have done problems like this you can immediately get it to be 2 
by 3 ket 0 bra 0 plus 1 by 3 ket 1 bra 1.  And this you can write it in a matrix form.  In 
matrix form it would be 2 by 3 0 0 1 by 3.  Alright. So here it's very straightforward. Now 
the eigenvalues of rho A are you have only diagonal elements so it is 2 by 3 and 1 by 3.   

 

(Refer Slide Time: 08:33) 

 

So to know whether the subsystems are entangled or not we just need to find out the 
reduced von Neumann entropy.  So in this case let us work out as rho A that would be 
minus trace rho A log 2 rho A which is nothing but the summation of the eigenvalues of 
rho lambda I.  Lambda I is the eigenvalue of rho A.  There are two eigenvalues so base 2 
log 2 lambda I and you will get minus 2 by 3 log 2 2 by 3 plus 1 by 3 log base 2 1 by 3. 
And if you work it out if you put it in a calculator you are going to get 0.918. 

  So you see as the reduced von Neumann entropy is non-zero this implies that subsystem 
A is entangled with subsystem B.  Alright.   
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Now let us work out this problem. Consider a state represented by the density operator 
rho is equal to p ket psi minus bra psi minus plus 1 minus p I by 4.  I is the identity matrix 
where p is the probability so it has to lie between 0 and 1.  ket psi minus is the Bell state 
which is given as 1 by root 2 ket 0 1 minus ket 1 0.  Applying the PPT that is the positive 
partial transpose criterion which is also known as Perry's Horodicki criterion.  You are 
asked to find the condition for which the two subsystems will be entangled. 

(Refer Slide Time: 10:51) 

 
 



  So let us work it out.  This is an important problem and very interesting as well.  So let 
us work it out.  So rho is given as p ket psi minus bra psi minus plus 1 minus p I by 4.  
Let me work it out systematically. 

  First let me work out psi minus ket psi minus bra psi minus.  This would be 1 by root 2 
ket psi minus is ket 0 1 minus ket 1 0.  Then you have 1 by root 2 bra 0 1 minus bra 1 0.  
So this will give me 1 by root 2 ket 0 1 minus ket 0 1 bra 0 1 minus ket 0 1 bra 1 0 minus 
ket 1 0 bra 0 1 plus ket 1 0 bra 1 0.  So this is what I will get. 
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  In fact I can write it in the matrix form.  That would be 1 by root 2 ket 0 0 0 0 1 minus 1 
0 0 minus 1 1 0 0 0 0 0.  So this is what I will have.  Now again we are having another 
term in the density matrix operator. I by 4 would be 1 by 4.  I by 4 is a 4 by 4 identity 
matrix.  So you will have 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1.  So now if I combine this with 
this one.  If I put it here then I can finally write rho. 
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  So rho would be equal to the density matrix would be equal to. I have 1 minus p by 4 0 
0 0 0 1 plus p by 4 minus p by 2 0 0 minus p by 2 1 plus p by 4 0.  And last rho would be 
0 0 0 1 minus p by 4.  So this is what I will have.  OK. 
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  Now before we proceed further. I think it will be useful to understand how the matrix 
element of rho are written in the basis vectors of subsystem A and subsystem B. 

  So let me explain that carefully.  You see the basis vectors.  Let us say basis vectors of 
A are in the Hilbert space of A are say phi A1 and phi A2. And basis vectors.  Vectors of 
B are.  ket phi B1 and ket phi B2.  OK.  The basis vectors of the composite systems in 
this matrix is going to be arranged in this form. Phi in this order. 

  Let us say it is phi A1.  Because now the this is a composite system.  This density 
matrix represents a composite system of A and B.  And basis vectors.  This Hilbert space 
composite Hilbert space is spanned by the basis vectors of A and B. And these basis 
vectors are going to be arranged in this order.  Phi A1 phi B1 and you will have phi A1 
ket phi B2.  Then you will have phi A2 phi B1 and you will have phi A2 phi B2.  Let me 
explain it little bit more clearly. 
 
  Let me write the density operator.  Density matrix.  And it is the similar line I am going 
to discuss it the way I have done it in the previous problem.  So let me arrange it in the 
row.  Row would be in this order. Phi A1 phi B1.  Then you have phi A1 phi B2.  And 
you have here phi A2 phi B1.  And you have phi A2 phi B2. 

  Similarly the column.  Let me write it this way.  Let me take it little bit this side.  Let me 
put a gap here.  Similarly this one. And let me.  The column are also.  Phi A1 phi B1.  Phi 
A1 phi B2. Phi B1.  Phi A2 now.  You have to be careful.  So phi A2 phi B1.  Then you 
have finally phi A2 phi B2. 

  Then the density matrix elements would be.  First element would be.  Let me put the 
indices 1 1 from here and 1 1 from here from the column. So first element would be rho 1 
1 1 1.  This first element belongs to A.  This first one belongs to A.  This one belongs to 
B.  This indices belong to A. And this indices belong to B.  Then you will have in the 
second term.  You are going to have rho 1 2 1 1.  Rho 2 1 1 1. Rho 2 2 1 1.  Then the 
second row would be.  Rho 1 1 1 2.  Rho 1 2 1 2. Rho 2 1 1 2.  Rho 2 2 1 2.  And then 
third row.  You will have rho 1 1 2 1.  You see. I hope you are getting it.  Then rho 1 2.  
Rho 1 2 2 1.  These indices are very critical.  Then you will have. You will have here rho 
2 1.  2 1.  And rho 2 2.  2 1.  And finally. In the final row you will have.  Rho 1 1. 
2 2.  Rho 1 2.  2 2.  Rho 2 1.  2 2.  And rho 2 2.  2 2.  Right.  So this is how we can write 
the. All the matrix elements of density operator. 
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Now.  Taking transpose over B.  Means.  Interchanging the indices associated with B.  So 
all and keeping indices belonging to A intact. So.  Say I have the indices I J K.  I J K L. 
Where I belongs to A.  J belongs to B.  And K belongs to  A and L belongs  B. 

  Here I mean to say. Taking you know.  Taking transpose.  Taking transpose.  Over.  B.  
Which means.  I will keep the indices belonging to A intact.  And I will interchange the 
indices belonging to B. So I will have I L.  K J.  This is what we have. 

 For example.  In the density operator here.  If I have the element is say.  Density matrix 
element is say rho 1 2 2 1. Then taking transpose means I will have rho 1.  1.  2 will go 
here and 1 will go here right. It will be rho 1 1.  And.  You will have 2.  2.  So I will have 
the elements here.  If I look at the.  Matrix here. So I have this one.  And if I want to take 
the transpose over B.  This will go. This side.  And this will go this side.  This would get.  
Interchanged.  If I just talk about this one only. 
 
  I hope you get this idea.  And this is very important.  Now.  To do that. Let us see.  
Because I have to take the transpose over B.Of the given density operator.  I am given the 
density operator.  
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 Let me write it. This is what we have worked out. Let me write it once again here.  1 
minus P by 4. I have.  0.  0 0.  And then I have 0. 1 plus P by 4.  Minus P by 2.  0.  0.  
Minus P by 2.  1 plus P by 4.  0.  0.  0.  0.  1 minus P by 4.  Let me.  Take it to the other 
base. Let me take it here.  Now.  Okay. 
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  Now.  Let us find out.  Partial transpose.  Transpose over.  B.  If you follow the scheme. 
Then you will get this.  Please do that yourself.  You will get it very easily.  Diagonal 
elements.  Please do that yourself.  Diagonal elements are going to remain unaffected.  It 
will remain  It will remain unchanged. 

 But here you will see. You will have this will now become  Because of the transpose  
Over B. It will become minus P by 2.  And you will have  The elements will be  0. 0.  1 
plus P by 4.  0.  0.  Minus P by 2.  0.  1 plus P by 4.  0.  0.  0.  1 minus P by 4.  So this is 
the  Transposed  Partially transposed matrix  We are having. 
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  Now let us work out the  Eigenvalues of this matrix  Rho T B.  And to do that we have 
to  Set up the usual  Characteristic equation.  The characteristic equation  You can set up 
easily.  And if you do that  Characteristic equation would be  Lambda minus  1 plus P by 
4  Whole cube  Into  Lambda minus  1 minus 3 P by 4  Is equal to 0. 
 
  So therefore it implies  That the Eigenvalues  Would be  Eigenvalues of  Rho T B are  
Lambda is equal to  It is you see threefold  So you will get  1 plus P by 4  1 plus P by 4  1 
plus P by 4  And from the  Last one you will get  1 minus 3 P by 4  So this is what you 
will obtain  So these are the four  Eigenvalues out of which  Three are  Degenerate and 
one is  Non-degenerate the last one. 
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  Now you see  P lies between  0 and 1  Right?  So the first three  Eigenvalues are  First 
three  First three Eigenvalues are positive  Eigenvalues  Are always positive  Are  Always  
Always positive  But if you look at  The  This is the first three one  However if you look 
at the last one  However  However  The last  Eigenvalue  It's very easy to see  The last 
Eigenvalue  Which is  1 minus 3 P by 4  Can be negative  Can be negative  Can be 
negative  If  You can easily see  If P is greater than  1 by 3. 
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  So this is important  If one of the  One of the Eigenvalues become negative  We say that 
rho T B  This is  Not density matrix any longer than  This matrix  Will not be semi 
positive definite  Will not be  Will not be  Semi positive  Semi positive  Definite. 

  That means one of the  Eigenvalues are going to be negative  If  P is greater than  1 by 3  
This implies  As per  Positive partial transpose  Criterion  Or PPT criterion  What you are 
going to have is that  The state  Will  The state will not be  Separable  Not be  Separable  
What does it mean?  It will be  The state will be  Entangled  So this is the condition you 
are asked  To find out in this particular  Problem. 

  So the condition that you have basically  Arrived  The required condition of 
inseparability  One  P should be  P cannot be  If P is greater than  1 by 3  Because P 
cannot be greater than 1  It has to be less than 1  But if P is greater than  1 by 3  If this is 
the condition  This is the condition  This is the  Condition for  Inseparability  For 
entanglement  Inseparability. 
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  Let us now work out this problem.  A bipartite system  B is represented by this density 
operator  You are asked  To find out the negativity  And logarithmic negativity  For the 
subsystem B  As you can see  By this density operator  That this is a mixed  Step and it's 
a collection  Of  Bell state phi plus and Bell state psi plus  With probability  1 by 4 and 3 
by 4  Respectively. 
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  To do this problem  Let me write it in a  General form  This density operator  Rho is 
equal to let me write it as  P phi plus  ket phi plus bra phi plus  And  1 minus P  ket psi 
plus bra psi plus  ket psi plus bra psi plus  ket psi plus bra psi plus  And here  And here  
We have P is equal to  1 by 4  Okay  But first let me  Set up the density matrix for this  In 
this form  And we know that  Phi plus is equal to  1 by root 2  ket 0, 0  plus ket 1, 1  And  
psi plus  ket psi plus  ket psi plus is 1 by  root 2  ket 0, 1 plus  ket 1, 0  Okay 
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  So I can write  ket phi plus bra phi plus  In a matrix form  It would be  We already know 
it  It would be 1 half  1, 0, 0, 1  0, 0, 0, 0  0, 0, 0, 0  1, 0, 0, 1  On the other hand  Psi plus  
ket psi plus bra psi plus  That would be equal to  1 half  0, 0, 0, 0  0, 1, 1, 0  0, 1, 1, 0  0, 
1, 1, 0  0, 0, 0, 0, 0  0, 0, 0, 0 . 
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 So using this  I can now write our density  operator in this matrix form  Rho would be 
equal to  P by 2  0, 0  P by 2  0, 1 minus  P by 2  1 minus P by 2  0  0, 1 minus  P by 2  1 
minus P by 2  Please verify it yourself  It is very straight forward  P by 2  0, 0  P by 2   

 

(Refer Slide Time: 30:39) 

 



Now let us take the  partial transpose  over the subsystem B  So if I follow the same  
procedure as we have done  in the last  problem, previous problem  partial transpose over 
B  you will get the  matrix in this form, you will get  P by 2  0, 0  1 minus P by 2  0  1 
minus P by 2  P by 2  0  Diagonal elements actually would remain as it is  0  P by 2  1 
minus P by 2  0  1 minus P by 2  0, 0  P by 2  So this is what you will  obtain, you can set 
up the characteristic  equation for rho Tb and  solving the characteristic equation  you can 
find out the eigenvalues  for rho Tb 
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  and if you do that  you will obtain the eigenvalues  of  rho Tb  as  1 half  1 half  1 half  
into 1 minus  2 P  and 1 half  2 P minus 1  Now here  in this problem  in this problem  we 
are given  P is equal to 1 by  4, so therefore  the eigenvalues  for the given  problem 
would be 1 half  for rho Tb here would be 1 half  1 half  1 by 4  and minus 1 by 4  So as 
you can see  that one of the eigenvalues  is negative so therefore  the state  is basically 
entangled  and rho Tb  is not semi positive definite  so as per PPT criteria  rho is not  
separable, it is inseparable  
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 and negativity you can work  it out easily, negativity for  the sub-system B  negativity 
and  of rho is equal to  sum of our modulus  of the eigenvalues  minus 1 divided  by 2 and  
if you do that we have  1 half plus 1  half plus  1 by 4 modulus we are taking  so it would 
be 1 by 4  sum of all this  minus 1 divided by 2  so this is going to give  us 1 by 4  so you 
see the negativity is  non-zero that also ensures the sub-systems  are entangled  
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and the  logarithmic negativity we can easily  work out, logarithmic negativity  the 
formula  for logarithmic  negativity is  En of  rho is equal to  logarithm of 2  you have to 
take the trace norm of our  rho Tb  so in fact  trace norm rho Tb  is equal to  you have to 
take the modulus of  sum of the modulus of all the  eigenvalues of rho  and because the 
eigenvalues  already we have worked it out  if you add all this  if you take the modulus  
then you are going to get  3 by 2  so  this implies that the  logarithmic negativity  would 
be log 2  3 by 2  so this is the  answer that is  required.  
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As a final problem  let us work out this problem  you have to prove the  Schwarz 
inequality  and using it obtain the  Heisenberg uncertainty principle  for two observables 
A and B  in the form of variance  we encountered variance  in the context of  Duan 
criteria that we have discussed  Heisenberg uncertainty  principle actually plays very 
important  role when we  discuss about continuous variable  entanglement. So let us  
work it out. 
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First of all  let me consider  a state vector let us  say ket alpha  plus lambda  ket beta  
where lambda  is  any complex number  and  now let us  take the scalar product of this  
vector  with itself and if we do that  we will get  bra alpha  plus lambda star  beta  scalar 
product  with ket alpha  plus lambda  beta  and you know that the  scalar product is 
always  positive it is greater than or equal  to zero. So  we have this inequality now  from 
here  let me open it up we will have  bra alpha  scalar product of alpha with itself  then  
mod lambda square  scalar product of  beta with itself  plus lambda  star scalar product of  
beta and alpha plus  lambda into  scalar product of alpha and beta  and this is greater than 
or equal to  zero. 
 
(Refer Slide Time: 36:18) 

 



 Let's say this is  my equation number one.  let me take let us  set now  because lambda is 
a  complex number let us set  lambda is equal to it is  just a complex number I am taking  
say beta alpha  scalar product  of beta alpha divided by  scalar product of beta with itself  
and then  you will have lambda star would be equal  to minus  alpha beta here  beta beta  
and mod  lambda square would be equal to  you will get  it as mod of  alpha beta whole  
square and  beta scalar product  of beta with itself whole square  this is what you will get 
as mod  lambda square. 
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 Now  let me put all these lambdas  lambda lambda star  and mod lambda square in this  
equation one if I do  that then I will get  scalar product of alpha  with itself plus  modulus  
of scalar  product of alpha beta whole  square divided  by beta beta  minus  modulus of  
alpha beta it's very easy  to do this  it's a simple algebra beta  beta and finally I will have  
modulus of  alpha beta mod  square beta  beta this is greater  than equal to zero so  this 
term get cancelled  so from here you will  immediately get  alpha alpha  minus modulus 
of  alpha beta  whole square divided by  beta beta  greater than or equal to zero 
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  so very  trivially you obtain the  required inequality  alpha alpha  beta beta is  greater 
than or equal to  modulus of  alpha beta  scalar product of alpha beta whole  square so 
this is the famous  Schwarz inequality  and this is what is  required. 
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 Now let us do the  second part and obtain the  Heisenberg's uncertainty principle  for 
observables A and B  let us say  we have delta A  A is operator here, A and B are  now 
operators I am not going to use  the operator sign however but please  understand that I 
am now talking about operators  let's say  delta A is equal to  A minus expectation value  
of A  then expectation value  of delta A whole  square  which you can very trivially  work 
out and show that  this would be equal to  this is the variance actually  A square 
expectation value of  A square minus  expectation value of A whole square  right? The 
square of the  expectation value of A  similarly  delta B expectation  value of delta B 
square  this is the variance of B  would be  expectation value of B square  minus average  
or expectation value of B  whole square. 
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 Okay  now in the  Schwarz inequality let me  put ket alpha is  equal to delta A  this is an 
operator operating  on some arbitrary ket  say ket gamma  and then  ket beta is equal to  
which is the result of the operation  of the operator delta beta on the  arbitrary ket gamma  
and if I put this  in the Schwarz inequality  if I put  these things in this Schwarz inequality  
you can  very easily show  let me write the  Schwarz inequality from here  if you use this  
here then you will  obtain very easily  this equation expectation  value of delta A  square  
and expectation value of  delta B  square is  greater than or equal to  modulus of  the 
product of expectation value  of the product of delta  A delta B  then you  take the 
modulus square. So this is  you are getting from the so called  Schwarz inequality 
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Now you see  to get the Heisenberg uncertainty  principle let me write the product  of 
these two operators delta A  and delta B in  this form I can write it  in terms of the 
commutator  delta A  delta B  and the anti-commutator  one half  delta A  delta B and 
commutator  you know this is the commutator  this is delta A  delta B minus  delta B 
delta A  and this anti-commutator  is delta A  delta B plus  delta B delta A  now you can  
you can also show  that this commutator delta A  delta B  is equal to  commutator  of the 
operator A and B  so  we have  the product of delta A delta B  is equal to  one half  
commutator  AB  plus  one half  delta A  delta B this is anti-commutator 
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  now you see  this anti-commutator is  this is anti  commutator  as I have already  
explained this anti-commutator  is Hermitian  this is  Hermitian and  this commutator is  
anti-Hermitian  this is anti-Hermitian  because it is  anti-Hermitian  we know that the 
expectation  value of a Hermitian operator  this is Hermitian  a Hermitian operator is  
purely real  expectation value is real  on the other hand for an anti-Hermitian operator  
expectation value  expectation  value  of  anti-Hermitian operator  is imaginary  this is 
imaginary  and  this is real  for a Hermitian operator it is real 

  so let me write  put it here delta A delta B  expectation  value of the product of delta A 
delta B  is equal to one half  expectation value  of  commutator AB  plus one half  
expectation value  of anti-commutator  delta A delta B  and here  this is as I said this is  
because it is  Hermitian it will be purely  real and  this is going to be  purely imaginary  
this is going to be  purely imaginary  
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 so if I take now  the modulus of  the expectation value of delta A  delta B  then we will 
get  one by four  this modulus  of expectation value of  the commutator  AB  plus one by  
four  because I am now taking the  modulus I am going to get  a positive number  positive 
number here delta A  delta B  mod whole  square right  since this last term is a  real 
number positive real number  this implies  I can now write  modulus of the  expectation 
value of delta A  delta B  whole square  is greater than or  equal to one by four  modulus 
of  the expectation value of the  commutator AB  whole square   
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and therefore finally  from here  from here  finally therefore we  can write I have  this guy 
with me so  if you from this  Schwarz inequality I have this  expression I have worked 
out  worked this quantity out so if  I put it in the Schwarz inequality  then I will finally  
obtain expectation  value of delta A  square  into  expectation value of  delta B square  is 
greater than or equal  to one by four  expectation modulus  of the expectation value of  
AB  commutator AB  whole square right so this  is the so called  Heisenberg uncertainty  
relation written in a  general form for  any two observable  A and B. 


